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Abstract
This paper explores time heterogeneity in stochastic actor oriented models (SAOM) proposed by
Snijders (Sociological Methodology. Blackwell, Boston, pp 361–395, 2001) which are meant to
study the evolution of networks. SAOMs model social networks as directed graphs with nodes
representing people, organizations, etc., and dichotomous relations representing underlying
relationships of friendship, advice, etc. We illustrate several reasons why heterogeneity should be
statistically tested and provide a fast, convenient method for assessment and model correction.
SAOMs provide a flexible framework for network dynamics which allow a researcher to test
selection, influence, behavioral, and structural properties in network data over time. We show how
the forward-selecting, score type test proposed by Schweinberger (Chapter 4: Statistical modeling
of network panel data: goodness of fit. PhD thesis, University of Groningen 2007) can be
employed to quickly assess heterogeneity at almost no additional computational cost. One step
estimates are used to assess the magnitude of the heterogeneity. Simulation studies are conducted
to support the validity of this approach. The ASSIST dataset (Campbell et al. Lancet 371(9624):
1595–1602, 2008) is reanalyzed with the score type test, one step estimators, and a full estimation
for illustration. These tools are implemented in the RSiena package, and a brief walkthrough is
provided.
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1 Introduction
Social networks are relational structures between social actors. They evolve according to
potentially complex and dynamic rules. Behavioral variables and static characteristics, the
changing network structure itself, and environmental factors may all weigh in on how social
networks and their component relationships and actors evolve over time. Understanding this
process has become an area of increasing importance among researchers (see, e.g., the three
special issues in the Journal of Mathematical Sociology edited by Doreian and Stokman
1996, 2001, 2003, literature on the evolution of friendship networks in Pearson and Michell
2000; Burk et al. 2007, on organizational networks in Borgatti and Foster 2003; Brass et al.
2004).

Increasingly, network data is being collected over time, which gives information about rules
for network dynamics that are responsible for changes in network structure. Stochastic actor
oriented models (SAOM) proposed by Snijders (2001) and elaborated in Snijders et al.
(2010a) provide a flexible framework for statistical modeling of longitudinal network data.
Social networks are modeled as digraphs in a Markov chain evolving in continuous time.
This continuous time Markov chain (CTMC) changes from one state to the next by
modifying a single link at a time. One possible interpretation of this setup is that actors are
selected to update an outgoing link according to probabilities resulting from myopic
stochastic optimization (see the econometric literature on discrete choice modeling, e.g.,
Maddala 1983; McFadden 1973). The model is explained in detail in Sect. 2.

Analysis of longitudinal data observed over multiple time periods permits researchers to
make inference about the rules governing network evolution; however, the temporal
component of panel data may make time heterogeneity an important issue. There are at least
two plausible reasons that researchers might neglect time heterogeneity in SAOMs. First, the
prospect of including numerous parameters to capture time heterogeneity when such
heterogeneity is not a component of the research question is an onerous and time-consuming
process. To address this concern, we implement the score-type test of Schweinberger (2007).
This allows us to create statistical tests for time heterogeneity without additional
computationally intensive estimation runs. Second, it is not well studied in the literature
under what circumstances omission of such heterogeneity leads to erroneous conclusions.
This paper addresses the potential consequences of omitting time heterogeneity and provides
an approach for assessing and accounting for it.

1.1 Motivation for assessing time heterogeneity
The most important consideration in formulating a SAOM is the set of research questions
we wish to answer. Let us consider a partitioning of the statistical parameters included in the
SAOM, θ = (ψ, ν), where ψ are the parameters of interest and ν are so-called nuisance
parameters. Accordingly, ψ is formulated in such a way that it is relevant to the research
questions at hand. Keeping in mind that the correctness of inferences about ψ is the principal
motivation for considering time heterogeneity, there are at least three important reasons why
it should be assessed:

1. ψ is time heterogeneous: Simulation results given later in the article indicate that
incorrectly homogeneous specifications will result in estimates that average over
the heterogeneity. Since parameters of interest are intended to answer research
questions, detecting heterogeneity in ψ will at least be intrinsically interesting, and
sometimes may suggest that some important explanatory covariate has been
erroneously omitted. Disruptions in actor behavior may be crucial in certain
settings. For example, drawing inference on time heterogeneity will help with
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understanding periods of disrupted behavior in illicit networks, cooperation
networks for natural disasters, and planned restructuring of organizations.

2. Undetected heterogeneity may lead to bias in other parameters: It is currently
unknown in the literature whether time heterogeneity in ν can have serious
consequences for inferences about ψ. Accordingly, it is prudent to formulate
models which take into consideration time heterogeneity in all of the parameters in
the model.

3. Asymptotic degeneracy of the model: SAOMs are based on a right-continuous
process on the set of all possible networks, and the unique, limiting distribution of a
continuous-time Markov process as t → ∞ under time-homogeneous
parameterizations may be near-degenerate in the sense of placing much—
sometimes almost all—probability mass on a small number of graphs which do not
resemble real-world networks. Strauss (1986), Snijders (2002), Handcock (2003)
show that exponential random graph models can be near-degenerate, and the same
may hold for SAOMs if time runs on infinitely long (although in practice, time
usually is limited). While the limiting distribution in itself is rarely of interest, this
suggests that statistical inference can be affected when the amount of change
between consecutive observations is large.

Since it is not possible to determine a priori that these cases do not apply, the study of time
heterogeneity is motivated anywhere it could exist—namely whenever a dataset contains
more than one time period.

We proceed with a review on SAOM in Sect. 2. We then review the score type test proposed
by Schweinberger (2007) and develop a specific test for time heterogeneity in Sect. 3. A
simulation study follows to explore the validity of the score type approach for detecting time
heterogeneity in Sect. 4. The paper culminates with a case study on a dataset collected by
Audrey et al. (2004) with suspected time heterogeneity in Sect. 5. This study also provides
an opportunity to demonstrate functionality implementing the aforementioned score type test
now available in the RSiena package (see Ripley and Snijders 2009) in Sect. 5.1.

2 Stochastic actor oriented models (SAOM)
A social network composed of n actors is modeled as a directed graph (digraph), represented
by an adjacency matrix (xi j)n×n, where xi j = 1 if actor i is tied to actor j, xi j = 0 if i is not
tied to j, and xii = 0 for all i (self ties are not permitted). It is assumed here that the social
network evolves in continuous time over an interval  ⊂ ℝ1 according to a Markov process.
Accordingly, the digraph x(t) models the state of social relationships at time t ∈ . Changes
to the network called updates, occur at discrete time points defining the set  ⊂ .
Elements of the set are denoted La with consecutive natural number indices a so that L1 < L2
< ··· < , where the notation |.| is used to denote the number of elements in a set. The
network is observed at discrete time points called observations defining the set  with
elements Ma indexed similarly with consecutive natural number indices a so that M1 < M2 <
··· < . Define a set of periods with elements Wa ∈  each representing the continuous
time interval between two consecutive observations Ma and Ma+1:

By definition, | | = | | − 1. When  = , we have full information on the network
updates over the interval . We use upper case to denote random variables (e.g. X, M, L).
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There is a variety of models proposed in the literature for longitudinally observed social
networks. In this paper, we consider the approach proposed by Snijders (2001), the
stochastic actor oriented model (SAOM). Here, the stochastic process {X (t): t ∈ } with
digraphs as outcomes is modeled as a Markov process so that for any time ta ∈ , the
conditional distribution for the future {X (t): t > ta} given the past {X (t): t ≤ ta} depends
only on X (ta).

From the general theory of continuous-time Markov chains (Norris 1997) follows the
existence of the intensity matrix that describes the rate at which X (t) = x tends to transition
into X̃(t + dt) = x ̃as dt → 0:

(1)

where x ̃∈ . The SAOM supposes that a digraph update consists of exactly one tie variable
change. Such a change is referred to as a ministep. This property can be expressed as

(2)

where abs(.) denotes the absolute value. Therefore we can use the notation

(3)

SAOMs consider two principal concepts in constructing the intensity matrix: how often
actors update their tie variables and what motivates their choice of which tie variable to
update. This is expressed by the formulation

(4)

The interpretation is that actor i gets opportunities to make an update in her/his outgoing tie
at a rate of λi (x) (which might, but does not need to, depend on the current network); if such
an opportunity occurs, the probability that i selects xi j as the tie variable to change is given
by pi j (x). The actors are not required to make a change when an opportunity occurs, which
is reflected by the requirement Σ j pi j (x) ≤ 1, without the need for this to be equal to 1. The
probabilities pi j (x) are dependent on the so-called evaluation function, as described below.

2.1 Rate function
The rate function describes the rate at which an actor i updates tie variables. Waiting times
between opportunities for actor i to make an update to the digraph are exponentially
distributed with rate parameter λi (x), and it follows that waiting times between any two
opportunities for updates across all actors are exponentially distributed with rate parameter

(5)
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It is possible to specify any number of functional forms for λi (x) as long as λi (x) is positive,
to include combinations of actor-level covariates and structural properties of the current
state of the network x; however, in many applications, rate functions are modeled as
constant terms.

2.2 Evaluation function
Once an actor i is selected for an update, the actor must select a tie variable xi j to change.
Define x(i ⇝ j) ∈  as the digraph resulting from actor i modifying his tie variable with j
during a given time period t so that xi j (i ⇝ j) = 1 − xi j, and formally define x(i ⇝ i) = x.

The SAOM assumes that the probabilities pi j (x) depend on the evaluation function that
gives an evaluation of the attraction toward each possible next state of the network, denoted
here by fi j (x). This attraction is conveniently modeled as a linear combination of the
relevant features of each potential change i ⇝ j:

(6)

where si is a vector-valued function containing structural features of the digraph as seen
from the point of view of actor i, and β is a statistical parameter. Snijders (2001), following
the the econometric literature on discrete choice (see e.g., Maddala 1983; McFadden 1973),
models the choice of i ⇝ j as a myopic, stochastic optimization of a conditional logit. This
amounts to choosing the greatest value fi j (x) + εi j, where εi j is a Gumbel distributed error
term. This leads to the conditional choice probabilities pi j (x) that actor i chooses to change
tie variable i ⇝ j given the current digraph x:

(7)

In accordance with the formal definition x(i ⇝ i) = x, the choice j = i is interpreted as
keeping the current digraph as it is, without making a change. For a thorough menu of what
kinds of statistics si are appropriate for actor oriented models (see Ripley and Snijders 2009;
Snijders et al. 2010a). We will present here three fundamental structural statistics which are
used throughout this paper: outdegree (density), reciprocity, and transitive triplet effects:

1. Outdegree (density) effect, defined by the number of outgoing ties that an actor has:

(8)

2. Reciprocity effect, defined by the number of outgoing ties that are matched (or
reciprocated) by a corresponding incoming tie:

(9)

3. Transitive Triplet, defined by the number of patterns matching the following Fig. 1:

(10)
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These three features are considered fundamental to social network dynamics, but
more features may also be formulated. One possibility is to include exogenous
actor-level covariates c ∈ ℝn. In Sect. 5, a simple covariate statistic is used:

4. Same covariate defined by the number of actors j tied to actor i sharing the same
value of c:

(11)

where we define the covariate equivalence function

(12)

5. Covariate similarity defined by the number of actors j tied to actor i having a
similar value of c:

(13)

where we define the covariate similarity function

(14)

See also Snijders (2001), Snijders et al. (2007), Snijders (2009), Snijders et al. (2010a) for
thorough developments of possible statistics and extensions to models which consider the
coevolution of network and endogenous behavioral characteristics.

2.3 Estimation
A key feature of (7) is the convenient form of its log odds ratios between any two potential
next networks x(i ⇝ j) and x(i ⇝ k):

(15)

This is the characteristically simple property that makes estimation in classical discrete
choices quite straightforward (see e.g., Greene 2007), and is also the basis for the SAOM. If
the network updates  are all observed so that we have full information (i.e.  = ), and if
the rate parameters are independent of the parameters of the objective function (as is usually
the case), a convenient partial likelihood is available for the statistical parameters of the
objective function. We use the notation x(a) = x(Ma) = x(La) for the ath network observed in
the dataset.

Define a vector of binary variables d such that
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(16)

which denotes whether actor i selected variable  to update. Note that  for all
a. The partial log likelihood for the objective function parameters is

(17)

Under regularity conditions, a solution β ̂ML to

where

is a maximum likelihood estimate for β.

Unfortunately, complete information on each network update is extremely rare, and a
likelihood function as in (17) is not readily available if some transitions are unobserved.
Even when tie creation is observed in continuous time, it is not often that observations
concerning termination of ties are also available. It is far more often the case that the data
observed will be in the form of panel data, where typically | | ≪ | |. Accordingly, the
method of moments as proposed by Snijders (2001) can be used as an alternative method for
obtaining reasonable estimates. Consider the estimating function

(18)

which is simply the sum of deviations between the expected value of the statistics for the
random (simulated) networks and the observed networks; zn simply means all of the
available data, and θ is a vector of parameters for the objective and rate functions described
earlier. u(x) is a function that corresponds to appropriately chosen statistics calculated from
the digraph for the parameters θ (based on the statistics in 2.2). It is helpful to note that Eθ
{gn(θ; zn)} does not depend on zn, so it is not random. The method of moments involves
finding the moment estimate θ̂ solving the moment equation

(19)
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The specific details of fitting moment estimates are rather involved, and entail simulating
networks X(a) many times to achieve a reliable result for the expectation in (19).1 This
simulation is very straightforward. Take an initial network x(l1) and proceed as follows for
each update la ∈ :

1. Set la = la−1 + Expon(λ+)

2.
Select actor i with probability .

3. Select actor j with probability pi j (la−1).

4. If i ≠ j, set xi j (la) = 1 − xi j (la−1).

5. Repeat until some specified conditions (e.g. number of updates | | or some holding
time (  − la) is exceeded) are satisfied.

See Snijders (2001), Snijders et al. (2010a) for guidelines on the selection of appropriate
statistics for u(X (t)) and information on how to estimate the root of gn(zn, θ), and
Schweinberger and Snijders (2007) for the estimation of the derivative matrix, covariance
matrix, and standard errors.

2.4 Estimator (β̂) properties
The properties of parameter estimates β ̂ in SAOM have yet to receive a great deal of
attention in the literature. Understanding the conditions under which desirable estimator
properties (i.e. approximate unbiasedness, consistency, and efficiency) exist is an important
feature for non-experimental studies with social networks, since erroneous conclusions
could be drawn from the results. In the classical discrete choice literature, early attempts at
uncovering the relationship between omitted variables and biased estimates in multinomial/
conditional logit models include Amemiya and Nold (1975), Lee (1982), Ruud (1983),
Yatchew and Griliches (1985), Wooldridge (2002), but fail to uncover an analytical form for
bias in general. It is desirable to investigate similar properties for the estimators of SAOM,
especially the form of any omitted variable biases. Unfortunately, closed forms for estimates
of β and of var(β ̂) are unavailable for all but the most simple SAOMs (see Snijders 2005;
Van De Bunt et al. 1999). Compounded with the lack of analytical results for even classical
discrete choice models, straightforward analysis of SAOM estimates is very difficult.
Accordingly, we utilize simulation study to uncover some basic results on bias and
efficiency under model misspecifications in Sect. 4.

3 Assessing time heterogeneity with the score type test
Consider a SAOM formulated as in (6) with some set of effects  included. We initially
assume that β does not vary over time, yielding a restricted model. Our data contains | | ≪
| | observations, so we estimate the restricted model by the method of moments mentioned
in Sect. 2.3. For reasons introduced in Sect. 1.1, we wish to test whether the restricted model
is misspecified with respect to time heterogeneity. An unrestricted model which allows for
time heterogeneity in all of the effects is considered as a modification of (6):

(20)

1That this can take a considerable amount of time per estimation motivates the use of the score-type test in the next section.
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where  is called the time dummy interacted effect parameter for effect k and period a.

Define also the vectors  and δ = (δ1, …, ). Equation (20) applies for

updates occurring during the period Wa. By convention,  for all k ∈  so that the first
period is called the base period; therefore, the vector of time dummy interacted effect
parameters δ has length (| | − 1)| |.2 One way to formulate the testing problem of
assessing time heterogeneity is the following omnibus test:

(21)

If we consider the unrestricted model parameters for (20) as θ1 = (β, δ), and the restricted
model parameters for (6) as θ0 = (β, 0), there are three broad routes in likelihood-based
inference for testing H0: θ0 = 0: the likelihood ratio test, the Wald test, and the score test.
Each of these routes requires different estimates to be calculated.

A likelihood ratio test statistic would take the form

(22)

To construct ηL, we estimate the unrestricted model parameters θ ̂1, the restricted model
parameters θ ̂0, and evaluate the likelihoods for the restricted and unrestricted models. There
is a major difficulty with using this approach for a SAOM: when  ≠ , the likelihood for
SAOM parameters is not available in closed form, although Snijders et al. (2010b) consider
a maximum likelihood estimation approach for SAOM using data augmentation methods.
As we will see, pursuing the likelihood ratio testing route will be the most computationally
expensive among those asymptotic approaches considered here. Note three important
features of evaluating ηL: (1) both the restricted and unrestricted model parameters must be
estimated, (2) we must evaluate the likelihood functions at these estimates, and (3) finding
maximum likelihood estimates is more computationally expensive than finding method of
moments estimates.

We might also consider a Wald test statistic of the form

(23)

where i(θ ̂1) is the expected (Fisher) information matrix and [i−1 (θ ̂1)]δδ refers to the block
corresponding to δ.3 Unlike ηL, the Wald statistic ηW does not require estimation of θ0;
however, since we must know θ ̂1, we still must estimate the unrestricted model.

The score test statistic is defined by

2Because  is fixed, it is implicitly omitted from δk and δ throughout the notation.
3The Fisher information matrix is the second derivative of minus the log likelihood function l(θ) with respect to θ. Formally, i(θ) = Eθ

(−∇∇T l(θ) where . Often, the observed Fisher information matrix j(θ ̂1) is used, which is simply the sample-
based version of the Fisher information matrix.
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(24)

where we only require the expected information matrix i(θ ̂0) and the score function U(θ ̂0).4
An advantage here is that the score test statistic ηU only requires a score function and the
expected information matrix, and these ingredients do not require estimates for the
unrestricted model. For a review of the classic asymptotic approaches to approximate
inference presented above (see e.g. Cox and Hinkley 1974; Cox 2006; Lehmann and
Romano 2005).

These three tests are classical tests for inference based on maximum likelihood estimation.
However, for the SAOM, the maximum likelihood estimators recently developed by
Snijders et al. (2010b) are computationally so demanding that in practice the more easily
calculated method of moment estimators of Snijders (2001) and Schweinberger and Snijders
(2007) are used. This type of inference is also called inference based on estimating functions
or M-estimation. For inference using the method of moments, generalizations of the Wald
test and score test are available, as proposed for the score test by Rao and Poti (1946), Rao
(1948), Neyman (1959), Basawa (1985, 1991), and reviewed by Rippon and Rayner (2010).

Because δ has length (| | − 1)| |, estimating it with method of moments is infeasible for
even modest numbers of periods and effects. For example, given a modestly sized model
containing 8 effects and a dataset with 5 periods, 40 parameters must be estimated (8 base
effects β and 32 time dummy interaction effect parameters δ). Estimations of this size can
begin to become unstable and computationally costly (particularly with larger numbers of
actors, e.g. n > 150). We therefore take the forward-selecting approach to model selection,
where we start by estimating only the base effects and add time dummy interaction effects
only when there is empirical evidence or when there is some theoretical reason. The score-
type test manifests naturally in such an approach. For the SAOM, it was proposed by
Snijders (2001) to test parameters by a test which can be regarded as the analogue of the
Wald test for estimates obtained by the method of moments. The generalization of the score
test based on moment estimators for the SAOM was elaborated by Schweinberger (2007)
following methods proposed by Basawa (1985, 1991). This requires analogues of U() and i()
as used in (24), which are derived in the following way.

By Δ(θ) we denote the Jacobian,

We partition the estimating function gn(θ ̂0; zn), the covariance matrix of the estimating
functions Σ(θ ̂0), and the Jacobian Δ(θ ̂0),

(25)

4The score function is the first derivative of the likelihood function, so that U(θ) = ∇l(θ).
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(26)

(27)

so that subscript 1 corresponds to the restricted model and subscript 2 corresponds to the
additional terms of the unrestricted model (i.e. the time dummy interacted effect
parameters). We orthogonalize the moment function g2(θ ̂0; zn) of the nuisance parameters in
g1(θ ̂0; zn) to yield:

(28)

where

We now calculate Ξ (θ ̂0), the asymptotic covariance matrix for bn(θ ̂0; zn):

(29)

giving rise to the test statistic

(30)

with an asymptotic χ2 distribution with degrees of freedom equal to the number of terms in
bn(θ ̂0; Zn). We will make use of this test statistic in assessing null hypotheses for time
dummy interacted effect parameters.

So long as gn(θ ̂0; zn) is differentiable at θ ̂0, the same Taylor-series approximation used to
calculate the covariance matrix Ξ(θ ̂0) (the delta method) can be manipulated to solve for a
one-step estimator, which is a “quick and dirty” estimator that does not require the use of
likelihood or moment equations (see e.g., Schweinberger (2007)):

(31)

We will test the effectiveness of the one-step estimator thoroughly in Sect. 4.

After SAOM parameters are estimated, we typically simulate the network evolution
according to the estimated parameters thousands of times so that we can estimate standard
errors. Using these simulations, we estimate the expected values for the estimating functions
in (18) using the simulated and observed statistics. Conveniently, the simulations are
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conducted independently for each period in , so that we also have the estimating functions
in (18) for the time dummy interacted effects.

3.1 Guidelines on selecting a decision procedure and constructing test statistics
There is an array of hypothesis tests which are available from these ingredients, which
permit a number of procedural approaches to assessing time heterogeneity and ultimately
refining the model. We present an iterative, forward-selecting procedure below. This
decision procedure is informal, but in the absence of a universally superior rule, it is a
reasonable approach to refining model selection. We also note here that outdegree effects
will be given a privileged position in the selection of time dummy terms. The reason is that
the outdegree is highly correlated with most other effects.

The decision procedure proceeds as follows:

1. Estimate the parameters  of some arbitrary restricted model using the method of
moments. We refer to this model as restricted with respect to the set of time
dummy interacted effect parameters, because many or all of these are assumed to
be zero in the model. Denote by δ† the vector of time dummy interacted parameters
which are zero in the restricted model and which the researcher would like to test.

2. Test the composite hypothesis

(32)

Evaluate bn(zn, θ ̂0) and Ξ by including all δ† terms in those ingredients of (25),
(26), and (27) with subscript 2. Follow the procedure outlined above for
orthogonalizing the testing function (28) of the nuisance parameters θ† and
estimating Ξ in (29). Construct the test statistic

(33)

which is asymptotically distributed χ2 with degrees of freedom equal to the number
of elements in δ†. If we fail to reject , stop.

3. If  is rejected, select one  to include in the model by considering two
quantities. First, evaluate

(34)

for each a, k combination. Each  is a test statistic for

(35)

and is distributed standard normal. In interpreting this array of test results, one
should take into account that each test is directed at the overall null hypothesis ,
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and it is possible that the test based on  yields a significant result not because of

 itself, but because some other  is non-zero.

4. Evaluate the one step estimators θ ̂* to see which  has the greatest magnitude.

5. Select one  using the hypothesis test results and the one step estimators for
inclusion. Because of what was mentioned in Step 3, the results for all k, a should
be considered simultaneously, and substantive background knowledge and the
researchers judgment will be important in making this choice. We highly
recommend that outdegree heterogeneity is given a privileged position in this
selection.

6. Set , i.e. remove  from the vector δ†.

7. Set , i.e. add  to the restricted model.

8. Return to Step 1.

This model selection process is ended when we fail to reject . An advantage to this
approach is that all of the evidence for time heterogeneity is assessed near the current

estimate , and we iteratively update it in an attempt to keep the local approximations valid.
A disadvantage is that we must make one successively more computationally costly
estimation for each time dummy term that is included.

4 Simulation study
The simulation study is conducted to achieve three purposes: (1) to better understand the
properties of β ̂ and its standard errors when a model is improperly specified with respect to
time heterogeneity, (2) to investigate the validity and relative efficiency of one step
estimates as a tool for assessing time heterogeneity, and (3) to analyze the type I and II
errors of the various available hypothesis tests from the score-type approach. The same
simulation setup is used to address each of these research questions. A | | = 2-period
dynamic network of n = 50 actors is generated with parameters for outdegree β11 = −1.25,
reciprocity β12 = 2, and transitivity β13 = 0.25 at period w1, and rate parameters λ = 1.5 for
both periods, values which are in line with many observed datasets (see e.g., Snijders 2001;
Snijders et al. 2010a).

We create a basis for comparison by simulating a base model SAOM with no time
heterogeneity using the aforementioned setup. The parameters for the restricted
specification, which correspond to the outdegree, reciprocity, and transitive triplets effects
(i.e. no time dummy interactions), are estimated in a time homogeneous restricted
estimation. The series of score-type tests and one step estimators described in Sect. 3 are
then carried out using the results from the restricted estimation.

Next, a series of nine perturbed models are considered. At period w2, some level of
perturbation is introduced to one of the effects during generation (there are three levels).
Since the restricted specification is improper for a perturbed model, we can compare the
results from the base model by conducting a restricted estimation to see how the improperly
specified parameter estimates behave. The score-type tests and one step estimators are
obtained from the ingredients in the restricted estimation results. Finally, a properly
specified set of parameters (i.e. the unrestricted specification) is estimated in an unrestricted
estimation so that we can compare the relative efficiency of the one step estimate with the
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traditional method of moments estimate.5 Using the results from these simulations, we treat
each research purpose in turn:

4.1 Validity of the method of moments estimators
We investigate the performance of these estimators here by the Monte Carlo simulations
detailed above. Let [β ̂k]i be the ith from a set of N estimates from independently simulated
data with identical effect parameter vectors. We use a one sample t test to investigate bias.

Assuming that  is asymptotically distributed , we test H0: bias
= 0 by evaluating the t statistic

for each parameter. Table 1 contains the results of this hypothesis test: outdegree, transitive
triplet, and rate parameters indicate a statistically significant bias. However, the magnitude
of this bias is very small and of no concern; the method of moments estimators for properly
specified SAOMs are approximately unbiased and have appropriate standard errors.

Restricted estimations of the perturbed models indicate that restricted estimators for
unperturbed effects (e.g. the estimated parameter for reciprocity effect in a restricted
specification when outdegree is perturbed) are also approximately unbiased with appropriate
standard errors. Further, the distributions of the method of moments estimates are almost
identical to the restricted estimates for the unperturbed effects. Figures 2 and 3 illustrate
these findings (refer to the black, dotted lines centered on the vertical reference line). The
figures for outdegree effect are similar, but omitted for brevity.

This finding is surprising, as we might expect some difficulty in estimating parameters and
standard errors in a misspecified model. This robustness might be due in part to the rather
simple specification of the models used in the study, but it is an encouraging indication that
method of moments estimation is resilient to time heterogeneity when a model is improperly
specified. Along the same lines, we find that the expected value for the restricted estimates
of perturbed effect parameters is wβ1k + (1 − w)β2k where w ≈ 0.5—which may be due to
the constant rate parameters across periods. Figures 4 and 5 illustrate these findings; the
black density plots in the left column correspond to the restricted estimates and lie centered
between β1k and β2k. Again, the figures for outdegree effect are similar, but omitted for
brevity.

Also evident from these figures is the approximate unbiasedness of the method of moments
estimates of effect parameters with simulated time heterogeneity as expected from the base
model results (i.e. proper specifications correspond with approximately unbiased parameter
estimates).

4.2 Approximate validity and relative efficiency of one step estimates
Restricted estimations of the perturbed models indicate that one step estimates using the
ingredients from restricted estimators for unperturbed effects (e.g. the one step estimates for

5Each model was generated and estimated using the R package RSiena v1.10. For estimation, a conditional approach was used, which
simulates periods until the number of changes in the observed network matches the number of changes in the simulated network. For
details on this approach, see Snijders (2001). Five phase 2 subphases and 1,500 phase 3 iterations were used for each restricted/
unrestricted estimation. For more information on what these quantities mean, see the RSiena Manual (Ripley and Snijders 2009). Each
perturbed model and the base model are generated 1,000 times for a total of 10,000 iterations.
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reciprocity effect and its time dummy interaction in a restricted specification when
outdegree is perturbed) are approximately unbiased. Referring to the dotted density plots in
Figs. 2 and 3 the reader may visually confirm this finding. The one step estimators for time
dummy interacted effect parameters are, however, less effective at detecting time
homogeneity than method of moments estimates as evidenced by their relatively flat density
plots. In other words, when time heterogeneity does not exist, one step estimates will have
wider dispersion than method of moments estimates, illustrating their “quick and dirty”
nature.

The one step estimates for the perturbed effects (i.e. in the case with time heterogeneity in
the simulated effect) are likewise approximately unbiased. Surprisingly, the one step
estimates for perturbed reciprocity and transitive triplet effect parameters are at least as
efficient as their method of moments counterparts. The dotted density plots of Figs. 4 and 5
illustrate these results. The outdegree results are mixed; nonetheless, the estimators perform
well on balance. Figures of outdegree results are omitted for brevity.

In short, the one step estimators are approximately valid in that they are unbiased (i.e. their
expected values correspond to the true model under both time heterogeneous and
homogeneous parameterizations). This simulation study indicates that the one step
estimators are less efficient under homogeneous conditions, since method of moments
estimates have less variance. When there is time heterogeneity in the effects, however, one
step estimates perform as well as their method of moments counterparts. To further
synthesize the relationship between the one step and method of moments estimates, we
report Pearson correlation coefficients in Table 2. There is a clear, positive correlation
between the two estimates, which further supports the approximate validity of the one step
estimates as a tool to detect time heterogeneity.

4.3 Effectiveness of the score-type test
There are two important properties of the score-type test which we consider here: type I
error and power. The approach for evaluating the type I error is to first validate that the
distributions used to evaluate the hypotheses of Sect. 3 are valid. We conduct the score-type
tests for both joint significance and individual significance using χ2 distributions with the
appropriate d.f., yielding p values. These p values are assembled into receiver operating
characteristic (ROC) curves, which represent the probability of rejection of the test as a
function of its nominal significance level (i.e. α or type I error level). These should resemble
the cumulative density function for a uniform distribution Unif (0, 1) when the null
hypothesis is true (i.e. there is time homogeneity in the effect parameters).6 Figure 6
illustrates that the score-type test meets this criterion.

When H0 is false, the ROC curves indicate the power on the vertical axis for varying type I
error rates on the horizontal axis. It is desired that power is as high as possible for all type I
error rates.

While it is straightforward to validate the type I error indicated by the score-type test, there
is no objective basis over which to evaluate the power of these tests. Nonetheless, there are
some key features available from the results. As expected, greater heterogeneity in the effect
parameter leads to greater power in detecting the heterogeneity. Additionally, these results
enrich the previous findings by illustrating that perturbations of {+0.6, +0.9} on the
outdegree effect parameter correspond to the most powerful of the score-type tests (while
{+0.3} is the least powerful).

6For more information on ROC curves (see Fawcett 2006; Zweig and Campbell 1993).
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The score tests of the different parameters will be correlated to an a priori unknown extent.

When computing test statistics for individual parameters , a very rough approximation is

possible based on the covariance matrix Ξ in (29): the scores of all other  are
included in g1(zn, θ ̂0) of (25) in addition to the parameters θ† which have been estimated by
the method of moments. This approximation is valid only in the close vicinity of the overall
null hypothesis , and it may not hold for parameter values away from this null hypothesis.
Table 3 shows that for the case of various levels of simulated outdegree time heterogeneity,
the individual test statistics are strongly correlated.

The practical significance of this result is the following: when  is false, all of the
individual tests have a tendency to show evidence for time heterogeneity—even those effect
parameters which are time homogeneous. This complicates procedures such as the one given
in Sect. 3.1, since the selection of how to iteratively update θ† is based in part on these
individual test statistics.7 Using the approximate orthogonalization above, dependence may
be substantially reduced in some limited situations. Table 3 shows that both reciprocity and
transitive triplets time heterogeneity parameters are only weakly correlated after performing
the approximate orthogonalization. The rough approximation may be valid in the present
circumstances due to the sparsity of effect parameters and to the small magnitude of overall
time heterogeneity in the parameters; however, the validity of this procedure needs further
investigation before it can be applied generally.

5 Application: Bristol and Cardiff’s ASSIST data
Campbell et al. (2008) conducted a study funded by the UK Medical Research Council
which involved peer-nominated students aged 12–14. These individuals underwent intensive
training on how to discourage their peers from smoking. The complete data-set contains data
on over 10,000 students.8 Smoking behavior, friendship nomination, sex, age, parental
smoking habits, family affluence, and nominal information on classroom membership are all
features of the dataset. There are a number of interesting research questions supported by
this study. In the following analysis, we wish to find whether an ego’s smoking behavior
affects nomination of alters on the basis of the alter’s smoking behavior (i.e. selection).9

Because the dataset was collected over a three year period where adolescents are likely to
modify social behavior, any assumptions of time homogeneity are suspect. Additionally,
Steglich et al. (2010) notes that the ASSIST dataset contains substantial time heterogeneity
in some important parameters of interest. Ultimately, they chose to mitigate the
heterogeneity by estimating period 1 → 2 separately from 2 → 3, effectively dummying all
of the effect parameters.

Due to potential convergence issues in estimation with models containing large numbers of
parameters (and for illustrative purposes), we first specify a restricted model with period-
wise independence for the rate parameters only. We specify as network effects the
following: basic first and second order structural dependencies (outdegree, reciprocity, and
transitive triplets), smoking similarity, same form (a control for the classroom to which the

7We advised giving outdegree a privileged position in part for this reason.
8For the purposes of this study, we select the 236 students in one of the 59 schools observed every year for 3 years. This particular
school is in a relatively affluent area, geographically located in south Wales.
9In the full study, smoking behavior is treated as an endogenous variable, so that we can also investigate whether an ego’s smoking
behavior is affected by alter smoking behavior (i.e. influence). The addition of smoking behavior to the model is beyond the scope of
this simple example, which seeks to simply identify heterogeneity in the network effects.
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student is assigned), age similarity, and same sex effects (refer to Sect. 2.2 for an
explanation of these effects).

We then estimated the restricted model using RSiena (Ripley and Snijders 2009). All of the
effects achieved good convergence, as indicated by near-zero convergence t statistics.
Results from this estimation are contained in Table 4. The rest of the terms support our
intuition: age, smoking, sex, and classroom similarity increase the probability that an actor
chooses an alter. Basic first and second order dependencies in reciprocity and transitive
triplets also make links more attractive.

Using the tools developed in Sect. 3, we conduct score type test for time heterogeneity. The
analysis of power from Fig. 6 illustrates that α levels that are too low have very little power
to detect heterogeneity. Over the ranges studied in Sect. 4, α ≈ 0.05 gives reasonable power
(near 0.5, e.g., for outdegree) for modest levels of heterogeneity. Following the decision
procedure from the previous section, we might elect to include dummy terms for those
effects with score type tests yielding p values of 0.05 or less: transitive triplets and same
form. We note that these results coincide with the findings of Steglich et al. (2010); even
without introducing smoking behavior as a dependent variable or use of the full dataset, we
find heterogeneity in transitive ties and in same classroom through the use of one-step
estimates. We then further confirm the heterogeneity in same classroom and in transitive ties
through an updated model containing time dummy terms for transitive ties and same
classroom.

Using the iterative approach of the decision procedure given in the last section, we estimate
an updated model with a time dummy interacted same form effect. Evidence for transitive
triplets time heterogeneity is still present, so we update the model again and re-estimate. At
this point, the joint test statistic of  does not indicate further time heterogeneity.
Estimation of this updated model supports the indications of heterogeneity detected by the
one step estimates: transitive ties has a very mild heterogeneity, but same form is highly
heterogeneous and becomes almost insignificant in the second period. These results are
presented in Table 5. It is interesting that same form is a prominent feature of actor behavior
during period one, and the dummy completely negates the effect during period two. It
appears that membership within the same classroom only encourages creation of ties during
the lower age range, and that this effect diminishes when pupils get older. The transitive
triplets time dummy interaction is statistically insignificant in the method of moments
estimates, potentially a result of controlling for the strong effect of same form. All of the
estimates from the updated model are stable in comparison to the restricted model,
indicating good convergence of the estimates.

In summary, we were able to reproduce heterogeneity in both the one step estimates and the
estimates from the unrestricted models. Even though Steglich et al. (2010) may have found
greater heterogeneity in the transitive ties effect, we have only used a small subset of the
data and we have not accounted for smoking behavior as an endogenous variable. This
application has generally supported the use of the score type test to assess time
heterogeneity.

5.1 A brief sketch of RSiena
RSiena has an extensive manual (Ripley and Snijders 2009). This section gives a concise
walkthrough of how to operate RSiena v1.10 to produce the results of the foregoing
example.

The assist63 dataset is compiled from Campbell et al. (2008) and is loaded in the usual
way.10 To load the RSiena package, type the following:
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library(RSiena)

To access information on the dataset, issue the command ?assist631. Setting up the data
can be done a number of ways. Perhaps the simplest method is to create the objects in batch
mode:

nets<–sienaNet(array(c(assist631, assist632, assist633), dim= c(236, 236, 
3)))
fas<–varCovar(assist63fas)
form<–varCovar(assist63form)
ps<–varCovar(assist63ps)
sex<–coCovar(assist63sa[, 1])
age<–coCovar(assist63sa[, 2])
dat<–sienaDataCreate(nets, fas, form, ps, sex, age)
eff<–getEffects(dat)

The sienaNet function sets up the dependent variables, while the varCovar and coCovar
functions set up the time varying and constant covariates. sienaData Create joins all of
the dependent variables and covariates into a single data object, and getEffects generates
an effects object containing all of the potential interactions and effects we might want to
include. The effects objet contains the model specification by a column which, for each
available effect, indicates whether this effect is included in the model. For those conversant
in R, eff is a data frame which may be accessed and modified in the normal way.
Otherwise, the effects to be included may be specified by typing

fix(eff)

and using the graphical user interface and thereby manipulating the effects object. Effects to
be included are turned on by setting include = TRUE. For more information on the many
fields available and the details of this operation, see Ripley and Snijders (2009). To run the
estimation, the following may be used:

estimate<–sienaModelCreate(fn= simstats0c)
results.1<–siena07(estimate, data= dat, effects= eff, batch= FALSE)

The results. 1 object now contains a wealth of information about the estimation. It is a
list of various data objects which may be accessed individually, or issuing the command
summary(results.1) will display much of the important convergence and parameter
information. Further, an output file, containing a large body of important diagnostic
information, is generated in the current working directory (which is given by getwd()).

Two features have been added to assess and fix time heterogeneity. To run the score type
test and display the results, the following code may be used:

timetest.1<–sienaTimeTest(results.1)

10A simulated version of this dataset is distributed with the RSiena package as of v1.10.
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summary(timetest.1)
plot(timetest.1, effects= c(1, 2, 4))

Plots of the one step estimates and approximate standard errors are presented along side the
diagnostic test results. Type ? sienaTimeTest for more information on how to use these
tools.

If it is determined that time dummied interaction terms should be included, the column
timeDummy of the effects object eff may be employed to automatically generate the time
dummy interaction term. For example, for the reciprocity effect this can be done by the
command

eff$timeDummy[eff$shortName== ‘recip’ & eff$type== ‘eval’] = “2”

or the convenience function

eff<–includeTimeDummy(eff, recip, timeDummy= “all”)

and the updated model may be estimated in the usual way, with the modified effects object:

results.2<–siena07(estimate, data= dat, effects= eff, batch= FALSE)

Using the iterative approach suggested in Sect. 3.1, we may again test the remaining
unestimated time dummy terms, e.g.,

timetest.2<–sienaTimeTest(results.2)
summary(timetest.2)
plot(timetest.2, effects= c(1, 4))

until we are satisfied with the model fit.

It is possible to produce individual test statistics with the approximate orthogonalization
discussed in Sect. 4.3 by specifying

timetest.1.orthog<–sienaTimeTest(results.1, condition= TRUE)

so that if results.1$theta is close to the true parameter θ, the individual test statistics
may be less dependent.

6 Conclusion
Social networks evolve in potentially complicated ways, and relational dependencies cause
difficulties in statistical modeling. Longitudinal social network data be used to model the
rules that drive the changes in network structure. Stochastic actor oriented models (SAOM)
are a flexible family of statistical models that are designed to draw inference about these
network dynamics through the use of longitudinal data.

Lospinoso et al. Page 19

Adv Data Anal Classif. Author manuscript; available in PMC 2012 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Because SAOMs model network dynamics over time, there is a potential for effects to be
time heterogeneous. The ramifications of omitting variables in the conditional logit models
are not currently well understood, but we submit three motivations for testing time
heterogeneity in datasets with more than two time periods: (1) if a parameter of interest has
time heterogeneity, it is intrinsically interesting, (2) if a nuisance parameter has time
heterogeneity and is not properly specified, it is possible that the estimators for the
parameters of interest could take on undesirable properties like inconsistency and poor
efficiency, and (3) SAOMs may be asymptotically degenerate, and introducing
heterogeneity in the model can help to alleviate this problem.

We have presented the stochastic actor based model and two estimation procedures
(maximum likelihood for complete continuous-time data and method of moments for panel
data) which may be employed under different circumstances. After laying out the testing
problem for time heterogeneity through the use of time dummy terms, we illustrated why
here the score test approach is preferable to the likelihood ratio and Wald test approaches.
We then reviewed the score type test of Schweinberger (2007) and applied it to tests for time
heterogeneity and resulting one step estimators. This is based on deviations between
observed and expected statistics, and on approximating the former by simulated values.
Because the algorithm used for calculating the method of moments estimate generates the
deviations between simulated and observed values period by period, calculating these
deviations comes for free, making the score type approach computationally cheap compared
with estimating an unrestricted model.

A simulation study indicates approximate unbiasedness of the one step estimators, the
validity of the statistical tests, and acceptable levels of power for the perturbations studied.
With the simple model used for the study, improper specification of a time heterogeneous
effect did not cause important amounts of bias or inefficiency in the other effect parameters.
This unexpected result deserves exploration in future work. The method of moments
estimates under a misspecified model behaved nicely; estimates for the time homogeneous
specification had expected values roughly equal to an affine combination over the time
heterogeneous effect parameter values for the two time periods.

An example application to Bristol and Cardiff’s ASSIST Data was supplied for illustrative
purposes. The test, as implemented in the R package RSiena, was demonstrated briefly.

Applying the work of Schweinberger (2007) to time heterogeneity, we have shown that time
heterogeneity of a SAOM can be tested with properly formulated score-type tests. A natural
extension to this paper’s goodness of fit for time heterogeneity is to develop a score-type test
of actor homogeneity assumptions. The same machinery in Sects. 2 and 3 can be applied to
create new tools to allow researchers to assess their model specification.

Assessing time heterogeneity is an important aspect of studying longitudinal data. Until
now, this has taken the form of a time consuming process involving estimation of the
unrestricted model and performing a Wald type test on the estimated time dummy interacted
effect parameters. With the score type test now applied to time heterogeneity, researchers
can rapidly assess and respecify proper models. Quick tests for SAOM misspecification can
be helpful for researchers as easily applied methods guarding against an important type of
model misspecification. This test for time heterogeneity is one of many potential future
applications that can help us better untangle the complex dynamics of social networks.
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Fig. 1.
The transitive triplet
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Fig. 2.
Omitting reciprocity time heterogeneity: density plots illustrating approximate unbiasedness
of estimates for time homogeneous parameters in the presence of simulated reciprocity time
heterogeneity. The two solid curves correspond to the distributions of the one step estimates
β ̂* and β ̂* +δ̂* (i.e. the base period parameter—in gray—and the base period plus time
heterogeneity term—in black, slightly broader than the base period). The two
(indistinguishable) dotted curves correspond to the method of moments estimates for β
under the unrestricted and restricted models (i.e. estimated with and without the time
heterogeneity parameter included for reciprocity). The vertical reference lines correspond
with the population generating quantities for each effect parameter
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Fig. 3.
Omitting transitive triplets time heterogeneity: Density plots illustrating approximate
unbiasedness of estimates for time homogeneous parameters in the presence of simulated
transitive triplets time heterogeneity. The two solid curves correspond to the distributions of
the one step estimates β ̂* and β ̂* + δ̂* (i.e. the base period parameter—in gray—and the base
period plus time heterogeneity term—in black, slightly broader than the base period). The
two (indistinguishable) dotted curves correspond to the method of moments estimates for β
under the unrestricted and restricted models (i.e. estimated with and without the time
heterogeneity parameter included for transitive triplets). The vertical reference lines
correspond with the population generating quantities for each effect parameter
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Fig. 4.
Performance of the reciprocity effect parameter one step estimators: this figure plots
parameter estimates in the left column. For these figures, the fine, black density plot (the
tallest among the plots) represents the restricted estimate. To either side of this restricted
parameter density plot are the period-wise estimates for the unrestricted model. The dotted
density plot represents the one step estimates, and the bold density plots represent the
method of moments estimators. The true period-wise values are given by vertical reference
lines. On the right, estimates of the parameter estimate variances are shown. The black plots
represent the variance estimators from the restricted estimation and the gray plot represents
the variance of the unrestricted estimates. Vertical lines represent the sample variances
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Fig. 5.
Performance of the transitive triplet effect parameter one step estimators: this figure plots
parameter estimates in the left column. For these figures, the fine, black density plot (the
tallest among the plots) represents the restricted estimate. To either side of this restricted
parameter density plot are the period-wise estimates for the unrestricted model. The dotted
density plot represents the one step estimates, and the bold density plots represent the
method of moments estimators. The true period-wise values are given by vertical reference
lines. On the right, estimates of the parameter estimate variances are shown. The black plots
represent the variance estimators from the restricted estimation and the gray plot represents
the variance of the unrestricted estimates. Vertical lines represent the sample variances
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Fig. 6.
Charts for statistical tests: receiver operating characteristic (ROC) curves. Dotted gray
curves correspond to individual tests for the effect indicated by the plot’s title when  is
true. For three levels of time heterogeneity, the solid gray and solid black curves plot the
results of the individual and joint tests, respectively. Uniformly more powerful curves
correspond with greater levels of time heterogeneity
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Table 1

This table provides a comparison of observed and population parameters for a properly specified SAOM from
N = 1,000 independent Monte Carlo simulations with an independent, one sample t test

Effect Bias μ ̂k σ ̂k

Outdegree (density) 0.012 −1.24 0.163 2.24

Reciprocity 0.005 2.00 0.250 0.57

Transitive triplets −0.013 0.24 0.105 −3.86

Rate 1 0.010 1.51 0.213 1.48

Rate 2 0.019 1.52 0.210 2.83
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Table 2

Correlations among the one step estimates and the method of moments estimates: this table presents the
Pearson correlation coefficient between the one step estimates and the method of moments estimates for the
unrestricted model parameters for each treatment group indicated by row title

Effectk βk

Outdegree (+0.3) 0.79 0.91

Outdegree (+0.6) 0.87 0.90

Outdegree (+0.9) 0.85 0.82

Reciprocity (+0.25) 0.92 0.96

Reciprocity (+0.5) 0.93 0.96

Reciprocity (+0.75) 0.94 0.97

Transitive triplets (+0.1) 0.85 0.93

Transitive triplets (+0.2) 0.85 0.93

Transitive triplets (+0.3) 0.67 0.94

The level of simulated time heterogeneity is provided in parenthesis

Correlations close to one indicate that the one step estimates and the method of moments estimates tend to agree on the direction of the
heterogeneity
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Table 3

Pearson correlation coefficients between t statistics for individual time heterogeneity parameter significance
tests in the presence of simulated outdegree time heterogeneity

ta tb cor(ta, tb)

Outdegree (+0.0) Reciprocity 0.06 0.46

Outdegree (+0.3) Reciprocity 0.05 0.43

Outdegree (+0.6) Reciprocity 0.05 0.44

Outdegree (+0.9) Reciprocity 0.06 0.49

Outdegree (+0.0) Transitive triplets −0.06 0.64

Outdegree (+0.3) Transitive triplets −0.10 0.62

Outdegree (+0.6) Transitive triplets −0.09 0.69

Outdegree (+0.9) Transitive triplets −0.13 0.67

The magnitude of the heterogeneity is given in parenthesis.

Test statistics treated with approximate orthogonalization based on Ξ in (29) are denoted with a superscript ⊥
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Table 5

Estimates obtained by conditional method of moments for a refined, unrestricted SIENA model to the Cardiff
ASSIST data (Campbell et al. 2008)

Effect name θ ̂ se(θ ̂)

Rate (1) 15.278 1.010

Rate (2) 11.103 0.766

Outdegree −2.895 0.029

Reciprocity 1.947 0.062

Transitive triplets 0.421 0.015

 (2) −0.042 0.024

Age similarity 0.303 0.152

Smoking sim. 0.547 0.115

Same sex 0.778 0.254

Same form 0.507 0.045

 (2) −0.503 0.077
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