Skip to main content
Log in

Functional fuzzy clusterwise regression analysis

  • Regular Article
  • Published:
Advances in Data Analysis and Classification Aims and scope Submit manuscript

Abstract

We propose a functional extension of fuzzy clusterwise regression, which estimates fuzzy memberships of clusters and regression coefficient functions for each cluster simultaneously. The proposed method permits dependent and/or predictor variables to be functional, varying over time, space, and other continua. The fuzzy memberships and clusterwise regression coefficient functions are estimated by minimizing an objective function that adopts a basis function expansion approach to approximating functional data. An alternating least squares algorithm is developed to minimize the objective function. We conduct simulation studies to demonstrate the superior performance of the proposed method compared to its non-functional counterpart and to examine the performance of various cluster validity measures for selecting the optimal number of clusters. We apply the proposed method to real datasets to illustrate the empirical usefulness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alva K, Romo J, Ruiz E (2009) Modelling intra-daily volatility by functional data analysis: an empirical application to the Spanish stock market. Statistics and Econometrics Series, vol 9. Universidad Carlos III de Madrid, Madrid

  • Bezdek JC (1974) Cluster validity with fuzzy sets. J Cybern 3:58–72

    MathSciNet  Google Scholar 

  • Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York

    Book  MATH  Google Scholar 

  • Coppi R, Gil MA, Kiers HAL (2006) The fuzzy approach to statistical analysis. Comput Stat Data Anal 51(1):1–14

    Article  MathSciNet  MATH  Google Scholar 

  • de Leeuw J, Young FW, Takane Y (1976) Additive structure in qualitative data: An alternating least squares method with optimal scaling features. Psychometrika 41:471–503

    Article  MATH  Google Scholar 

  • DeSarbo WS, Cron WL (1988) A maximum likelihood methodology for clusterwise linear regression. J Classif 5(2):249–282

    Article  MathSciNet  MATH  Google Scholar 

  • DeSarbo WD, Jedidi K, Sinha I (2001) Customer value analysis in a heterogeneous market. Strateg Manag J 22:845–857

    Article  Google Scholar 

  • D’Urso P, Massari R, Santoro A (2010) A class of fuzzy clusterwise regression models. Inf Sci 180(24):4737–4762

    Article  MathSciNet  MATH  Google Scholar 

  • D’Urso P, Santoro A (2006) Fuzzy clusterwise linear regression analysis with symmetrical fuzzy output variable. Comput Stat Data Anal 51(1):287–313

    Article  MathSciNet  MATH  Google Scholar 

  • Fadili MJ, Ruan S, Bloyet D, Mazoyer B (2001) On the number of clusters and the fuzziness index for unsupervised FCA application to BOLD fMRI time series. Med Image Anal 5(1):55–67

    Article  Google Scholar 

  • Gordon AD (1999) Classification. Chapman and Hall/CRC, London

    MATH  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  • Hathaway RJ, Bezdek JC (1993) Switching regression models and fuzzy clustering. IEEE Trans Fuzzy Syst 1:195–204

    Article  Google Scholar 

  • Heiser WJ, Groenen PJF (1997) Cluster differences scaling with a within-cluster loss component and a fuzzy successive approximation strategy to avoid local minima. Psychometrika 62:63–83

    Article  MathSciNet  MATH  Google Scholar 

  • Hennig C (2000) Identifiability of models for clusterwise linear regression. J Classif 17:273–296

    Article  MathSciNet  MATH  Google Scholar 

  • Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1):55–67

    Article  MathSciNet  MATH  Google Scholar 

  • Hosmer DW (1974) Maximum likelihood estimates of the parameters of a mixture of two regression lines. Commun Stat 3:995–1006

    MATH  Google Scholar 

  • Hruschka H (1986) Market definition and segmentation using fuzzy clustering methods. Int J Res Mark 3:117–134

    Article  Google Scholar 

  • Hwang H, Jung K, Takane Y, Woodward TS (2012) Functional multiple-set canonical correlation analysis. Psychometrika 77:48–64

    Article  MathSciNet  MATH  Google Scholar 

  • Jackson I, Sirois S (2009) Infant cognition: going full factorial with pupil dilation. Dev Sci 12:670–679

    Article  Google Scholar 

  • Maharaj EA, D’Urso P (2011) Fuzzy clustering of time series in frequency domain. Inf Sci 181:1187–1211

    Article  MATH  Google Scholar 

  • McBratney AB, Moore AW (1985) Application of fuzzy sets to climatic classification. Agric Forest Meteorol 35:165–185

    Article  Google Scholar 

  • Moffitt TE (1993) Adolescent-limited and life-course-persistent antisocial behavior: a developmental taxonomy. Psychol Rev 100:674–701

    Article  Google Scholar 

  • Ozkan I, Turksen IB (2007) Upper and lower values for the level of fuzziness in FCM. Inf Sci 177(23):5143–5152

    Article  MATH  Google Scholar 

  • Pal NR, Bezdek JC (1995) On cluster validity for the fuzzy c-means model. IEEE Trans Fuzzy Syst 3(3):370–379

    Article  Google Scholar 

  • Preda C, Saporta G (2005) Clusterwise PLS regression on a stochastic process. Comput Stat Data Anal 49:99–108

    Article  MathSciNet  MATH  Google Scholar 

  • Quandt RE, Ramsey JB (1978) Estimating mixtures of normal distributions and switching regressions. J Am Stat Assoc 73:730–738

    Article  MathSciNet  MATH  Google Scholar 

  • Ramsay JO, Ramsey JB (2001) Functional data analysis of the dynamics of the monthly index of non durable goods production. J Econ 107:327–344

    MathSciNet  Google Scholar 

  • Ramsay JO, Silverman BW (2005) Functional data analysis. Springer, New York

    Google Scholar 

  • Roubens M (1982) Fuzzy clustering algorithms and their cluster validity. Eur J Oper Res 10:294–301

    Article  MathSciNet  MATH  Google Scholar 

  • Späth H (1979) Algorithm 39: clusterwise linear regression. Computing 22:367–373

    Article  MathSciNet  MATH  Google Scholar 

  • Späth H (1981) Correction to algorithm 39: clusterwise linear regression. Computing 26:275

    Article  MathSciNet  MATH  Google Scholar 

  • Späth H (1982) Algorithm 48: a fast algorithm for clusterwise linear regression. Computing 29:175–181

    Article  MATH  Google Scholar 

  • Späth H (1985) Cluster dissection and analysis. Wiley, New York

    MATH  Google Scholar 

  • Suk HW, Hwang H (2010) Regularized fuzzy clusterwise ridge regression. Adv Data Anal Classif 4:35–51

    Article  MathSciNet  Google Scholar 

  • Tian TS (2010) Functional data analysis in brain imaging studies. Front Quant Psychol Meas 1(Article 35): 1–11

    Google Scholar 

  • Tokushige S, Yadohisa H, Inada K (2007) Crisp and fuzzy k-means clustering algorithms for multivariate functional data. Comput Stat 22:1–16

    Article  MathSciNet  Google Scholar 

  • Wedel M, Steenkamp J-BEM (1989) Fuzzy clusterwise regression approach to benefit segmentation. J Res Mark 6:241–258

    Article  Google Scholar 

  • Wedel M, Steenkamp J-BEM (1991) A clusterwise regression method for simultaneous fuzzy market structuring and benefit segmentation. J Mark Res 28:385–396

    Article  Google Scholar 

  • Xie XL, Beni G (1991) A validity measures for fuzzy clustering. IEEE Trans Pattern Anal Mach Intell 13(8):841–847

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianyu Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, T., Suk, H.W., Hwang, H. et al. Functional fuzzy clusterwise regression analysis. Adv Data Anal Classif 7, 57–82 (2013). https://doi.org/10.1007/s11634-013-0126-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11634-013-0126-6

Keywords

Mathematics Subject Classification

Navigation