Skip to main content

Advertisement

Log in

Classification of brain activation via spatial Bayesian variable selection in fMRI regression

  • Regular Article
  • Published:
Advances in Data Analysis and Classification Aims and scope Submit manuscript

Abstract

Functional magnetic resonance imaging (fMRI) is the most popular technique in human brain mapping, with statistical parametric mapping (SPM) as a classical benchmark tool for detecting brain activity. Smith and Fahrmeir (J Am Stat Assoc 102(478):417–431, 2007) proposed a competing method based on a spatial Bayesian variable selection in voxelwise linear regressions, with an Ising prior for latent activation indicators. In this article, we alternatively link activation probabilities to two types of latent Gaussian Markov random fields (GMRFs) via a probit model. Statistical inference in resulting high-dimensional hierarchical models is based on Markov chain Monte Carlo approaches, providing posterior estimates of activation probabilities and enhancing formation of activation clusters. Three algorithms are proposed depending on GMRF type and update scheme. An application to an active acoustic oddball experiment and a simulation study show a substantial increase in sensitivity compared to existing fMRI activation detection methods like classical SPM and the Ising model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen E, Bai Z, Bischof C, Blackford LS, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Hammarling S, McKenney A, Sorensen D (1999) LAPACK users’ guide, 3rd edn. SIAM, Philadelphia

    Book  Google Scholar 

  • Barbieri MM, Berger JO (2004) Optimal predictive model selection. Ann Stat 32(3):870–897

    Article  MATH  MathSciNet  Google Scholar 

  • Blackford LS, Demmel J, Dongarra J, Duff IS, Hammarling S, Henry G, Kaufman L, Lumsdaine A, Petitet A, Pozo R, Remington K, Whaley RC (2002) An updated set of basic linear algebra subprograms (BLAS). ACM Trans Math Softw 28(2):135–151

    Article  Google Scholar 

  • Brezger A, Fahrmeir L, Hennerfeind A (2007) Adaptive Gaussian Markov random fields with applications in human brain mapping. J R Stat Soc C Appl Stat 56(3):327–345

    Article  MathSciNet  Google Scholar 

  • Davis TA, Hager WW (1999) Modifying a sparse Cholesky factorization. SIAM J Matrix Anal Appl 20(3):606–627

    Article  MATH  MathSciNet  Google Scholar 

  • Friston KJ, Holmes AP, Poline JB, Grasby P, Williams S, Frackowiak RSJ, Turner R (1995) Analysis of fMRI time-series revisited. NeuroImage 2(1):45–53

    Article  Google Scholar 

  • Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE, Penny WD (2008) Statistical parametric mapping—the analysis of functional brain images. Academic Press, New York

    Google Scholar 

  • George EI, McCulloch RE (1997) Approaches for Bayesian variable selection. Stat Sin 7(2):339–373

    MATH  Google Scholar 

  • Henson R, Rugg MD, Friston KJ (2001) The choice of basis functions in event-related fMRI. NeuroImage 13(6):149

    Article  Google Scholar 

  • Josephs O, Turner R, Friston KJ (1997) Event-related fMRI. Hum Brain Mapp 5:243–248

    Article  Google Scholar 

  • Kalus S (2012) Biostatistical modeling and analysis of combined fMRI and EEG measurements. Phd thesis, Ludwig-Maximilians University, Munich

  • Kiehl KA, Stevens MC, Laurens KR, Pearlson G, Calhoun VD, Liddle PF (2005) An adaptive reflexive processing model of neurocognitive function: supporting evidence from a large scale (n = 100) fMRI study of an auditory oddball task. NeuroImage 25(3):899–915

    Article  Google Scholar 

  • Lang S, Brezger A (2004) Bayesian P-Splines. J Comput Graph Stat 13(1):183–212

    Article  MathSciNet  Google Scholar 

  • Mohar B (2004) Graph Laplacians. In: Beineke LW, Wilson RJ (eds) Topics in algebraic graph theory. Cambridge University Press, Cambridge, pp 113–136

    Google Scholar 

  • Müller P, Parmigiani G, Robert C, Rousseau J (2004) Optimal sample size for multiple testing. J Am Stat Assoc 99(468):990–1001

    Article  MATH  Google Scholar 

  • Müller P, Parmigiani G, Rice K (2006) FDR and Bayesian multiple comparisons rules, http://biostats.bepress.com/jhubiostat/paper115/

  • Newton Ma, Noueiry A, Sarkar D, Ahlquist P (2004) Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics 5(2):155–176

    Article  MATH  Google Scholar 

  • Pettitt AN, Weir IS, Hart AG (2002) A conditional autoregressive Gaussian process for irregularly spaced multivariate data with application to modelling large sets of binary data. Stat Comput 12:353–367

    Article  MathSciNet  Google Scholar 

  • Rue H (2001) Fast sampling of Gaussian Markov random fields. J R Stat Soc B 63(2):325–338

    Article  MATH  MathSciNet  Google Scholar 

  • Rue H, Held L (2005) Gaussian Markov random fields: theory and applications. Chapman and Hall, London

    Book  Google Scholar 

  • Smith D, Smith M (2006) Estimation of binary Markov random fields using Markov chain Monte Carlo. J Comput Graph Stat 15(1):207–227

    Article  Google Scholar 

  • Smith M, Fahrmeir L (2007) Spatial Bayesian variable selection with application to functional magnetic resonance imaging. J Am Stat Assoc 102(478):417–431

    Article  MATH  MathSciNet  Google Scholar 

  • Smith M, Kohn R (1996) Nonparametric regression using Bayesian variable selection. J Econom 75(2):317–343

    Article  MATH  Google Scholar 

  • Smith M, Pütz B, Auer DP, Fahrmeir L (2003) Assessing brain activity through spatial bayesian variable selection. NeuroImage 20(2):802–815

    Article  Google Scholar 

  • Weir IS, Pettitt AN (2000) Binary probability maps using a hidden conditional autoregressive Gaussian process with an application to Finnish common toad data. J R Stat Soc C Appl Stat 49(4):473–484

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are grateful to Sara A. Kiem for supporting data acquisition of the acoustic oddball paradigm and Michael Czisch for a critical discussion of the activation results. Remarks by the editorial board and two anonymous referees were extremely helpful in revising an earlier draft. This research has been funded by the German Science Foundation, Grant FA 128/6-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Kalus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalus, S., Sämann, P.G. & Fahrmeir, L. Classification of brain activation via spatial Bayesian variable selection in fMRI regression. Adv Data Anal Classif 8, 63–83 (2014). https://doi.org/10.1007/s11634-013-0142-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11634-013-0142-6

Keywords

Mathematics Subject Classification

Navigation