
A LASSO-Penalized BIC for Mixture Model Selection

Sakyajit Bhattacharya and Paul D. McNicholas∗

Department of Mathematics & Statistics, University of Guelph.

Abstract

The efficacy of family-based approaches to mixture model-based clustering and classification depends
on the selection of parsimonious models. Current wisdom suggests the Bayesian information criterion
(BIC) for mixture model selection. However, the BIC has well-known limitations, including a tendency
to overestimate the number of components as well as a proclivity for, often drastically, underestimating
the number of components in higher dimensions. While the former problem might be soluble through
merging components, the latter is impossible to mitigate in clustering and classification applications. In
this paper, a LASSO-penalized BIC (LPBIC) is introduced to overcome this problem. This approach is
illustrated based on applications of extensions of mixtures of factor analyzers, where the LPBIC is used
to select both the number of components and the number of latent factors. The LPBIC is shown to
match or outperform the BIC in several situations.

1 Introduction

Consider n realizations (x1,x2, ...,xn) of a p-dimensional random variable X that follows a G-component
finite Gaussian mixture model. The likelihood is given by

L(ϑ | x) =

n∏
i=1

G∑
g=1

πgφ(xi | µg,Σg), (1)

where πg > 0, with
∑G
g=1 πg = 1, are mixing proportions, φ(x | µg,Σg) is multivariate Gaussian density with

mean µg and covariance matrix Σg, and ϑ = (π1, . . . , πG,µ1, . . . ,µG,Σ1, . . . ,ΣG). A model-based clustering
approach assumes that each component or some combination of components corresponds to a cluster. When
fitting the model in (1), the main task is to decide the number of components G. Titterington et al. (1985),
McLachan and Basford (1988) and McLachan and Peel (2002) extensively reviewed mixture models, with
a focus on Gaussian mixture models. Fraley and Raftery (2002) presented a review of work on Gaussian
mixtures with a focus on clustering, discriminant analysis, and density estimation. They discuss a family
of Gaussian mixture models, which arises from the imposition of constraints upon an eigen-decomposition
of the component covariance structure. The family of mixture models they discuss, known as MCLUST, is
actually a subset of the Gaussian parsimonious clustering models (GPCMs) of Celeux and Govaert (1995).
When using the MCLUST models, one must choose the appropriate member of the family, i.e., the covariance
structure, in addition to deciding the number of components G.

Ghahramani and Hinton (1997) introduced a mixture of factor analyzers model, which was further de-
veloped by Tipping and Bishop (1999) and McLachlan and Peel (2000). Through foisting constraints on
the covariance structure, McNicholas and Murphy (2008, 2010) develop mixtures of factor analyzers into a
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family of parsimonious Gaussian mixture models (PGMMs). Now, in addition to selecting the member of
the family (i.e., the covariance structure) and the number of components, one must also select the number
of latent factors. Further complicating the model selection problem here is the fact that PGMMs are often
applied to high-dimensional data. McNicholas et al. (2010) explain why the PGMMs are particularly suited
to the analysis of high-dimensional data: amongst the most salient points is the fact that, unlike families
like MCLUST, the number of covariance parameters is linear in data dimensionality for every member of
the PGMM family.

There are a number of well-known methods to select the best mixture model but the BIC remains by
far-and-away the most popular. We have

BIC = 2 logL(ϑ̂ | x)− ρ log n, (2)

where ϑ̂ is the MLE of ϑ, L is the likelihood, ρ is the number of free parameters and n is the number of
observations. For a family of mixture models, the model having the maximum BIC is selected. The use of
BIC is theoretically justified by a number of authors, e.g., Kass and Wasserman (1995), Kass and Raftery
(1995), and Keirbin (2000). In particular, the BIC has some useful asymptotic properties, e.g., the criterion
consistently chooses the right model under an increasing number of observations (Shibata, 1986).

Nevertheless, the BIC is not without drawbacks. The criterion is derived using a Laplace approximation
and its precision is influenced by the specific form of the prior density of the parameters as well as the
correlation structure between observations. Recently, Clyde et al. (2007) have rectified the problems of
the marginal distribution of the parameter, caused by the Laplace approximation. In addition, Fraley
and Raftery (2007) proposed a Bayesian regularization for Gaussian mixtures. Their method assumes pre-
defined priors that lead to a modified version of the BIC, using posterior modes instead of the maximum
likelihood estimates (MLEs) of the parameters. The resulting method avoids degeneracies, singularities, and
the problem of flat priors. However, another more serious problem has not been addressed, i.e., the problem
of high-dimensional cases.

The penalty term in the BIC is ρ log n, cf. (2). Therefore, in a high-dimensional setting, where p � n,
the penalty term dominates the likelihood and so the BIC is prone to under fitting. Parametric estimation
for high-dimensional cases has been studied by a number of authors, mostly within the linear regression
set-up. The celebrated LASSO method (Tibshirani, 1996) is perhaps the most popular among them. This
method minimizes the residual sum of squares under the constraint that the sum of the absolute values of the
regression coefficients is less than some constant, leading to sparse solutions of the coefficients and thus an
interpretable model. In the following years, different variations of the LASSO have been proposed depending
on the nature of regression and asymptotic behaviour. Some of them are the adaptive LASSO (Zou, 2006),
the fused LASSO (Tibshirani et al., 2005), and the graphical LASSO (Friedman et al., 2008). Fan and Li
(2001) provided a theoretical discussion of variable selection via a non-concave penalized likelihood procedure
where the LASSO is a special case. They also proposed that a good penalized estimation should satisfy the
oracle properties, i.e., it should be consistent and the estimates should be asymptotically Gaussian.

Following the idea of Fan and Li (2001), Khalili and Chen (2007) were the first to propose the use of the
penalized likelihood in finite mixture of regression models, where the penalty is non-concave LASSO being
a special case. They also devised a method of selecting the tuning parameter as well as conditions under
which the estimation procedure would satisfy the oracle properties. Their method is especially suitable for
finite mixtures of regression models, though no new model selection criterion was proposed. It should also
be noted that the theoretical results regarding the asymptotic properties were somehow strange, because
the authors used the same tuning parameter comparing two different estimates for a fixed cluster. Chen
and Chen (2008) proposed an extended BIC for regression in high-dimensional setting. The extended BIC
assumes a prior inversely proportional to the size of the assumed model instead of a flat prior. The criterion
is consistent and computationally cheap. Interestingly, the authors did not propose any penalized likelihood
here, instead they maximized the natural likelihood, thus using the conventional estimation procedure. The
above estimation procedures, though interesting and useful, are mainly for regression-type problems, and
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not applicable to mixture model-based clustering and classification. Also, as the authors rightly pointed out,
the approach is computationally infeasible if p� n. Nevertheless, useful extensions can be possible. Herein,
we draw upon some mathematical results from Fan and Li (2001) and Khalili and Chen (2007), especially
on the issues of the choice of penalty and consistency.

The use of penalized likelihood in mixture model-based clustering has been proposed by Pan and Shen
(2007), where a LASSO-type penalty is applied to the likelihood. From there, they went on to propose
a modified BIC which would be well-suited for high-dimensional settings. The limitation of that method
is that this criterion works only for a common, diagonal component covariance matrix. Furthermore, the
authors did not study the asymptotic properties, which are important in the sense that the classical LASSO
method can be inconsistent (cf. Zou, 2006). An ideal criterion should be analytically derivable from the
penalized likelihood, work well for an arbitrary model, and have some good asymptotic properties. The
work presented herein attempts to address these requirements by proposing LASSO-penalized BIC (LPBIC)
for model selection within high-dimensional setting for the PGMM family.

While deriving the MLE of the unknown parameters, we use a penalized likelihood approach. In partic-
ular, instead of maximizing the likelihood L(ϑ | x), we maximize the penalized log-likelihood

logL(ϑ | x)−
G∑
g=1

πg

p∑
j=1

ϕ(µgj).

We use a LASSO-like penalty for ϕ(µgj). In particular, ϕ(µgj) = nλn|µgj |, where µgj is the jth element in
µg and λn is the tuning parameter that depends on n. Though a LASSO penalty is used here, other types of
non-concave penalties can also be suitable. For example, one might use the HARD penalty ϕ(µgj) = [λ2n −
(
√
nµgj − λn)

2
I (
√
nµgj < λn)] or the SCAD penalty, as discussed by Fan and Li (2001). One problem with

using such an L1-norm penalty is that the oracle properties might not be satisfied fully: the estimation can be
consistent but not asymptotically normal. HARD or SCAD penalties satisfy both these properties and these
issues are discussed in more detail in Section 3. Still, however, we prefer the LASSO-type penalty because
it is computationally easier due to its convexity. From this penalized likelihood, we derive a model selection
criterion. We use a modified AECM algorithm (McLachan and Peel, 2002) to estimate the parameters in
the PGMM models. We show that in high-dimensional settings, our LPBIC generally outperforms the BIC
for the PGMM family.

The remainder of this paper is laid out as follows. In Section 2, we discuss parameter estimation under
the penalized likelihood approach and derive an LPBIC. The asymptotic properties of LPBIC are discussed
(Section 3) and we illustrate our approach on real and simulated data (Section 4). The real data considered
exhibit the ‘small n, large p’ property and our data analysis results are compared with the BIC. The paper
concludes with a discussion (Section 5), while the mathematical derivation of LPBIC as well as its asymptotic
properties are discussed in appendices.

2 Method

Again, suppose we observe x = (x1,x2, ...,xn) with f(x | ϑ) =
∑G
g=1 πgφ(x | µg,Σg), where φ(x | µg,Σg)

is multivariate Gaussian density with mean µg and covariance matrix Σg. Now, instead of maximizing the
likelihood L(ϑ | x), we maximize the penalized log-likelihood

logLpen(ϑ | x) = logL(ϑ | x)− nλn
G∑
g=1

πg

p∑
j=1

|µgj |, (3)

3



where µk and λn are defined as before. Hereafter, we denote ϕ(µ) =
∑G
g=1 πg

∑p
j=1 ϕ(µgj) and so

logLpen(ϑ | x) = logL(ϑ | x)− nλn
G∑
g=1

πg

p∑
j=1

ϕ(µgj) = logL(ϑ | x)− nλnϕ(µ).

Before going into details of parameter estimation, we make two assumptions. Firstly, as we can observe,
the penalty function is non-concave and singular at the origin; it does not have second derivative at 0. We
locally approximate the penalty by a quadratic function as suggested by Fan and Li (2001). The parameters
are estimated by successive iterations. Suppose µ(m) is the estimate of of µ after m iterations. The penalty
can be locally approximated as

ϕ(µ) ≈ nλn

G∑
g=1

πg

pg∑
j=1

| µ(m)
gj | +

1

2

sign{µ(m)
gj }

µ
(m)
gj

(µ2
gj − µ(m)2

gj), (4)

where pg is the number of non-zero elements in µg. We assume that the marginal distribution of the mixing
proportions (π1, π2, ..., πg) is uniform on the simplex and that µg ∼ N (µ̂g, I(µ̂g)

−1), for g = 1, 2, ..., G,
where µ̂g is the MLE derived by maximizing the penalized likelihood Lpen and I(µ̂g) is the unit information
matrix at µ̂g.

To estimate the parameters, we use the Alternating Expectation Conditional Maximization (AECM)
algorithm. There are two stages of the algorithm. At the first stage of the algorithm, when estimating πg
and µg, we define zi = (zi1, . . . , ziG) to be indicator variables showing the component membership of the
ith observation so that zig = 1 if xi belongs to the gth component and zig = 0 otherwise. zi is treated as
the missing data at the first stage. Hence the expected complete data log-likelihood is

Q(π,µ) =

n∑
i=1

G∑
g=1

ẑig log πg +

n∑
i=1

G∑
g=1

ẑig log
{
φ
(
xi | µg,Σg

)}
− ϕ(µ),

where ẑig = π̂gφ(xi | µ̂g, Σ̂g)/
∑G
j=1 π̂jφ(xi | µ̂g, Σ̂g). The M-step maximizes Q to update the parameter

estimates πg and µg. The estimation of πg is complicated and has a complex analytic form. However, we
have observed that in practical applications, the analytical estimate is equivalent to the estimate derived by
the EM algorithm. Hence, in our analyses (Section 4), πg can be estimated via

π̂g =

∑n
i=1 ẑig
n

.

For the mean parameters,

∂Q

∂µg
= Σ̂−1g

n∑
i=1

ẑig(xi − µ̂g)− nλnπ̂gsign(µ̂g).

Hence

µ̂gj =

sign(µ̃gj)

[
|µ̃gj | − λn

(
Σ̂g1

)
j

]
+

if
(
Σ̂g1

)
j
> 0,

µ̃gj otherwise.

where µ̃gj =
∑n
i=1 ẑigxig/

∑n
i=1 ẑig is the update of µgj if no penalty term were involved, 1 is the vector

with every element equal to 1, and for any α, α+ = α if α > 0 and α+ = 0 otherwise. µ̂gj is a shrunken

estimate of µgj in the sense that µ̂gj = 0 if (Σ̂g1)j ≥ 0 and λn > µ̃gj/(Σ̂g1)j . Otherwise, µ̂gj is obtained by

shrinking the usual EM estimate µ̃gj by the amount λn(Σ̂g1)j towards 0.
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At the second stage of the AECM algorithm, we take the missing data as the group labels zi and
the unobserved latent factors u to estimate the variance-covariance matrix under the PGMM set-up. The
component covariance matrices Σ1, . . . ,ΣG are updated as usual, depending on the family of models used;
see McNicholas and Murphy (2008, 2010) for details in the case of the PGMM family. The first stage, where
the µg and πg are estimated based on the complete data (x, z), and the second stage, where the constituent
parts of the Σg are estimated based on the complete data (x, z,u), are iterated until convergence. Extensive
details on an AECM algorithm for fitting the members of the PGMM family are given by McLachlan and
Peel (2000) and McNicholas et al. (2010).

To derive a model selection criterion from the penalized log-likelihood, we maximize (3). Using (4), the
second term of (3) becomes

λn
G

G∑
g=1

pg∑
j=1

[
|µ̂gj |+

1

2

sign(µ̂gj)

µ̂gj
(µ2
gj − µ̂2

gj)

]
,

where pg is the number of non-zero mean components in class g. Here we make an assumption that for a given
model, the mixture components are chosen independently so that the parameters for any two clusters are
independent. Hence, using the Weak Law of large Numbers with the BIC-type approximation to logL(ϑ | x),
the penalized BIC is

LPBIC = 2 logL(ϑ̂ | x)− ρ̃ log n− 2nλn
G

G∑
g=1

pg∑
j=1

[
|µ̂gj |+

(
I(µ̂g)

−1)
jj

|µ̂gj |
− sign (µ̂gj)

]
, (5)

where ρ̃ is the number of estimated parameters which are non-zero. Intuitively, the LPBIC further penalizes
the traditional BIC by both aboslute mean and absolute coefficient of variation of the parameters. The
derivation is discussed in detail in Appendix A.

3 Asymptotic Properties

3.1 Properties

The consistency of a model selection criterion is closely related to the asymptotic identifiability of the
model. In general, a model G with the the parameter set ϑ is called identifiable if, for any two different sets
of parameters ϑ1 and ϑ2,

G (ϑ1) = G (ϑ2) =⇒ ϑ1 = ϑ2.

We assume that our model satisfies the asymptotic identifiability condition. In the context of mixture models,
a criterion is consistent if it can correctly select the number of components and the true set of parameters.
If the true parameter set ϑ0 is decomposed as (ϑ01,ϑ02) such that ϑ02 contains only the zero elements, and

if any estimated parameter ϑ̂ that is sufficiently close to ϑ0 is likewise decomposed as (ϑ̂1, ϑ̂2), then in order

to satisfy consistency, we should have P(ϑ̂2 = 0) −→ 1 as n −→ ∞ and ϑ̂1 −→ ϑ01 in probability. Thus,
the criterion should choose as it would if the true number of clusters and the true parameters were known.
Based on this idea, we study the consistency of LPBIC with the help of the following assumptions:

I Let p = O (nα) and λn = o (log n/n). Define an estimate ϑ̂ of ϑ be such that || ϑ̂ − ϑ0 ||= O (nκ) for
κ > −∞.

II Let ϑ = (θ1, θ2, ..., θν). Then there exist finite real numbers M1 and M2 (possibly depending on κ) such
that

sup
j

∣∣∣∣∂ logL(ϑ | x)

∂θj

∣∣∣∣ ≤M1(x) and sup
j,k

∣∣∣∣∂2 logL(ϑ | x)

∂θj∂θk

∣∣∣∣ ≤M2(x).
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III I(ϑ) is positive-definite for all ϑ.

Then, under assumptions I to III, and assuming that the asymptotic identifiability condition is satisfied, we
state the following theorem. The proof is given in Appendix B.

Theorem If κ < min [0, (α− 1)/2], then the LPBIC chooses the number of components and set of pa-
rameters as it would choose if ϑ0 were known as n −→ ∞. In other words, under the condition κ <
min (0, α− 1/2), if there exists an estimate ϑ̃ such that ||ϑ̃−ϑ0|| = O (nκ) and LPBIC(ϑ̃) ≥ LPBIC(ϑ) for
all ϑ such that ||ϑ− ϑ0|| = O (nκ), then

Part a P(ϑ̃2 = 0) −→ 1 as n −→∞, and

Part b ϑ̃1 −→ ϑ01 in probability as n −→∞.

We prove only Part a with some of the arguments proposed by Khalili and Chen (2007) for an FMR
setting. The method is modified for mixture models with high-dimensional set-up. Part b of the theorem can
be proved exactly by the method described in Fan and Li (2001). To prove Part b, we need

√
nλn → 0, as

n→∞ which is satisfied by Assumption I. This is particularly important because LASSO-type penalties do
not satisfy the oracle property, i.e., they do not ensure that a

√
n-consistent MLE of θ exists which satisfies

Part a and Part b. This is because the existence of a
√
n-consistent MLE requires that

√
nλn −→ ∞ and

the consistency of ϑ̂1 needs that
√
nλn −→ 0. Hence, under a tighter assumption, we show that if such an

estimator exists, then it satisfies consistency. Other non-concave penalties like SCAD or HARD, however,
can satisfy the oracle property with a proper choice of the tuning parameter.

3.2 Choice of λn

Generally the tuning parameters are chosen by cross-validation (Stone, 1974) or generalized cross-validation
(Craven and Wahaba, 1979). We should remember that λn depends on n. To satisfy the asymptotic
properties, we require λ = o (log n/n). Khalili and Chen (2007) derived a component-wise deviance-based
GCV with the above conditions in order to estimate λ. The method, though originally used in regression,
also serves well for mixture models. The present paper takes the working sequence λn = 1/p and studies
the behaviour of the LPBIC. The methods proposed by Khalili and Chen (2007), modified for a mixture
model, are also considered and provide a range for the values of λn. It is observed that for moderately large
n (n ≥ 50), λn = 1/p falls into that range. For our data analysis (Section 4), we studied the behaviour of
LPBIC for different values of λn within that range. For illustration, though, a single λn is chosen because
the behaviour of the LPBIC is uniform over different λn values within that range.

4 Data Analysis

4.1 Overview

We analyze two data sets and compare the results using the PBIC to those with the BIC for the PGMM
family. The first one is a high-dimensional simulated data set and the second one is a real high-dimensional
data set. Although run as cluster analyses, the true group memberships are known in each case and we use
the adjusted Rand index (ARI: Rand, 1971; Hubert and Arabie, 1985) to reflect classification agreement. A
value of 1 indicates perfect agreement and a value of 0 would be expected under random classification.

4.2 Simulated Data

We generate a simulated p-dimensional Gaussian data set consisting of three groups. We set µ1 = −5.51, Σ1

isotropic; µ2 = 21, Σ2 diagonal; and µ3 = 31, Σ3 full, with n1 = 40, n2 = 30, n3 = 30. We ran simulations
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for p ∈ {100, 250, 500}. LPBIC values are observed for each member of the PGMM family for G = 1, . . . , 4
and q = 1, 2, 3. The results (Table 1) show that the PBIC consistently chooses G = 3 as p gets larger but
that the BIC fails in higher dimensions, choosing a G = 2 component model. The associated ARI values
(Table 1) confirm that the models selected by the PBIC capture the underlying group structure better than
those chosen by the BIC, especially in higher dimensions.

Table 1: Best model chosen by PBIC and BIC for high-dimensional simulated data.
LPBIC BIC

G q Model ARI G q Model ARI
p = 100 3 3 CUC 0.88 3 3 CUC 0.86
p = 250 3 2 CUC 0.82 2 1 CCC 0.62
p = 500 3 3 CUC 0.97 2 1 CCC 0.49

The effect of increasing dimension on the performance of the BIC is clear: the BIC chooses fewer mixture
components and latent factors, as well as a more parsimonious covariance structure. The LPBIC, however,
chooses the same number of components and the same covariance structure each time, and the number of
factors does not decrease with p.

Next, we generate 25 simulations of the p = 500 dimensional data and study the behaviour of BIC and
LPBIC for selecting G and for clustering performance (i.e., ARI). The results (Figure 1) show that LPBIC
correctly chooses the number of components (G = 3) 23 times but the BIC only selects G = 3 four times
out of 25. As expected, the BIC tends to choose too few components. The ARIs for models selected using
the LPBIC are higher than those selected using the BIC. Out of 25 simulations, the ARI with the LPBIC is
higher than that for the BIC in 21 cases, illustrating generally superior clustering performance.
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Figure 1: Plot of the performance of LPBIC and BIC for 25 simulations. The left-hand plot shows the
selection of number of components by the BIC and LPBIC. The right-hand plot shows the ARIs of the
models selected by LPBIC and BIC.
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4.3 Leukaemia data

Golub (1999) presented data on two forms of acute leukaemia: acute lymphoblastic leukaemia (ALL) and
acute myeloid leukaemia (AML). Affymetrix arrays were used to collect measurements for 7,129 genes on 72
tissues. There were a total of 47 ALL tissues and 25 with AML. McLachlan et al. (2002) reduced the data
set as follows:

1. Genes with expression falling outside the interval (100, 16000) are removed.

2. Genes with expression satisfying max/min ≤ 5 or max-min ≤ 500 are removed.

McNicholas and Murphy (2010) further reduced the number of genes to 2,030 by applying the select-genes
software (cf. McLachlan et al., 2002). We analyze these 2,030 genes using 20 different random starts for the
initial ẑig. We run our approach for G ∈ {1, 2} and q = 1, . . . , 6.

Table 2: Comparison of the performance of LPBIC and BIC for PGMM model selection for the leukaemia
data.

Value G q Model ARI
BIC −400394 1 2 CCU 0.29
LPBIC −391023 2 1 CUC 0.47

Summaries of the models selected by the LPBIC and the BIC, respectively, are given in Table 2. The
BIC chooses a CCU model with G = 1 component and q = 2 factors. The LPBIC chooses a CUC model
with G = 2 components and q = 1 factors. The ARI of the model chosen using LPBIC (0.47) is greater than
that for the model chosen using the BIC (0.29). The model selected using the LPBIC misclassifies eleven of
the 72 samples (Table 3).

Table 3: Classification table of the best model chosen by LPBIC.
1 2

ALL 39 3
AML 8 22

5 Discussion

The paper proposes a LPBIC through a penalized likelihood-based approach in the context of parsimonious
Gaussian mixture model selection. The approach is mainly intended for the high-dimensional setting, where
the BIC has some unattractive problems due to an ‘exploding’ penalty term for high-dimensional data. Our
LPBIC approach does not use the total number of independent parameters to be estimated in its penalty
term but, rather, the total number of independent non-zero parameters to be estimated. This has some
advantages. Because the likelihood is penalized by a tuning parameter, many of the mean components
become 0, thereby reducing the number of independent estimable parameters. The loss of information due
to penalizing the likelihood is somehow compensated for by both absolute mean and absolute coefficient of
variation of the mean parameters.

The choice of tuning parameters is an important aspect in this scenario because no theoretical result exists
which specifies the best choice. Recently, Wang et al. (2007, 2009) proposed some interesting mathematical
methods of choosing the tuning parameters without requiring cross-validation. However, their method is
most suitable in low-dimensional settings. Herein, we followed an approach close to the one proposed by
Fan and Li (2001), though careful modifications have been taken to preserve the asymptotic properties,
accounting for the nature of the data.
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Our method seems consistent in choosing the right number of clusters for high-dimensional data, as shown
through the analysis of real and simulated data. Our analyses suggest that the LPBIC is an improvement
over the BIC in the high-dimensional setting. What we lose is the oracle property, because the LASSO
may fail to satisfy the consistency, sparsity and asymptotic normality all at the same time. But the LASSO
has some computational advantages because of convexity and hence it is preferred over other non-concave
penalties.

Of course, the LPBIC is not without its issues. One problem arises by locally approximating the penalty
function: if an estimator is shrunken, it stays at 0. Another arises if the initial domain of the estimates
does not contain the posterior mode, or even if the posterior mode lies at the boundary of the domain. This
second problem, which will lead to failure, is a general problem with the EM algorithm.

Future work will focus on the use of penalties that lead to consistent model selection criteria. We are in
particular interested in the adaptive LASSO which leads to the oracle properties. We shall also study the
penalization of the variance parameters as it will generate greater parsimony.
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A Derivation of LPBIC

To derive the LPBIC, we closely follow the derivation of the usual BIC. We have to maximize (3). Using
(4), the second term becomes

nλn

G∑
g=1

∫
πg

p∑
j=1

|µgj |dπg = n
λn
G

G∑
g=1

pg∑
j=1

[
|µ̂gj |+

1

2

sign(µ̂gj)

µ̂gj
(µ2
gj − µ̂2

gj)

]
,

where pg is the number of non-zero mean components in class g. Under the assumption made in Section 2,

µg is at most pg dependent, and the Weak Law of Large Numbers holds. In a large-p setting,
∑G
g=1 pg is

a large number and so
∑G
g=1

∑pg
j=1

(
µ2
gj − µ̂2

gj

)
/
∑G
g=1 pg

P−→
∑G
g=1

∑pg
j=1

(
I(µ̂g)

−1)
jj
/
∑G
g=1 pg. Thus the

second term becomes

nλ

G

G∑
k=1

pg∑
j=1

(
|µ̂gj |+

(
I(µ̂g)

−1)
jj

|µ̂gj |

)
.

The first term, using Taylor’s expansion, is∫
exp [logL(ϑ | x)G(ϑ)] dΘ

=

∫
exp

[
logL(ϑ̂ | x)G(ϑ̂) + (ϑ− ϑ̂)

∂ logL(ϑ)G(ϑ)

∂ϑ
− 1

2
(ϑ− ϑ̂)THϑ̂(ϑ− ϑ̂)

]
dϑ,

where H is the second derivative matrix of logL(ϑ)G(ϑ). Because ϑ̂ is derived maximizing the penalized

likelihood, the second term within the integral becomes (ϑ − ϑ̂)∂ϕn(µ)/∂ϑ, where ϕn(µ) is the LASSO

penalty function. Using (4), the mean-value theorem and the fact that the ϑ values are close to ϑ̂, the

second term within the integral is nλn/G
∑G
g=1

∑pg
j=1 sign(µgj).

The third term within the integral similarly becomes 1/2(ϑ̃− ˆ̃
ϑ)′Hˆ̃

ϑ
(ϑ̃− ˆ̃

ϑ), where ϑ̃ is the set of non-zero

parameters and
ˆ̃
ϑ is their estimate. Using Laplace approximation on H and applying the Weak Law of Large

Numbers, as in the usual BIC, we arrive at logL(ϑ̂ | x) − 1/2ρ̃ log n, where ρ̃ = dim(
ˆ̃
ϑ). This, combined

with the second term of (3), gives (5).
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B Proof of the Asymptotic Property of LPBIC

First, suppose the true number of clusters G is known with the corresponding parameter ϑ. Let the true
parameter be ϑ0. Let ϑ̂ be an arbitrary estimate of ϑ. Let ρ̃0 and ρ̃1 be the corresponding number of

non-zero parameters and λ
(0)
n and λ

(1)
n be the corresponding tuning parameters. We first prove that, for an

arbitrary estimate ϑ̂ satisfying || ϑ̂ − ϑ0 ||= O (nκ), LPBIC(ϑ̂1, ϑ̂2) − LPBIC(ϑ̂1,0) ≤ 0 as n −→ ∞. We
note that

LPBIC(ϑ̂1, ϑ̂2)− LPBIC(ϑ̂1,0) = 2l(ϑ̂1, ϑ̂2 | x)− 2l(ϑ̂1,0 | x)−
[
Λ(ϑ̂1, ϑ̂2)− Λ(ϑ̂1,0)

]
,

where l = logL and Λ is the penalty part of LPBIC. Using the mean-value theorem,

l(ϑ̂1, ϑ̂2 | x)− l(ϑ̂1,0 | x) =

[
∂l(ϑ̂1, ξ)

∂ϑ2

]′
ϑ̂2,

where || ξ ||≤|| ϑ̂2 ||= O (nκ) . Also,∣∣∣∣∣
∣∣∣∣∣∂l(ϑ̂1, ξ)

∂ϑ2
− ∂l (ϑ0,0)

∂ϑ2

∣∣∣∣∣
∣∣∣∣∣ ≤
∣∣∣∣∣
∣∣∣∣∣∂l(ϑ̂1, ξ)

∂ϑ2
− ∂l(ϑ̂1,0)

∂ϑ2

∣∣∣∣∣
∣∣∣∣∣+

∣∣∣∣∣
∣∣∣∣∣∂l(ϑ̂1,0)

∂ϑ2
− ∂l (ϑ0,0)

∂ϑ2

∣∣∣∣∣
∣∣∣∣∣

≤
n∑
i=1

M2(zi)
[
||ξ||+

∣∣∣∣∣∣ϑ̂1 − ϑ0

∣∣∣∣∣∣] =
[
||ξ||+

∣∣∣∣∣∣ϑ̂1 − ϑ0

∣∣∣∣∣∣]O (n) = O
(
nκ+1

) (6)

from Assumption II. Also, from the last part of the first line of (6), which is of order O
(
nκ+1

)
, we can con-

clude that ∂l (ϑ0,0) /∂ϑ2 is of order O
(
nκ+1

)
, as is ∂l(ϑ̂1, ξ)/∂ϑ2. Therefore, from these order assessments,

we conclude that

l
(
ϑ̃1, ϑ̃2

)
− l
(
ϑ̃1,0

)
= O

(
nκ+1

) G∑
g=1

p∑
j=pg+1

µ̂gj ,

where pg is defined as in (4).

For the part Λ(ϑ̂1,ϑ2)− Λ(ϑ̂1,0), note that

2nλn
G

G∑
g=1

pk∑
j=1

[
|µ̂gj |+

(
I(µ̂g)

−1)
jj

|µ̂gj |
− sign (µ̃gj)

]
= O

(
nα+1

)
λn

because the summation part is some constant times p = O (nα), using Assumption I. We also have (ρ̃1 −
ρ̃0) log n =

∑G
g=1 (p− pg) log n = O (nα) log n. Hence,

LPBIC(ϑ̂1, ϑ̂2)− LPBIC(ϑ̂1,0) = O(nκ+1)

G∑
g=1

p∑
j=pg+1

µ̂gj −O(nα) log n− (λ(1)n − λ(0)n )O(nα+1).

The first term of the above expression is O
(
nκ+1

)∑G
g=1

∑p
j=pg+1 µ̂gj = O

(
n2κ+1

)
. Using Assumption I,

i.e., that λn = o (log n/n), and by order comparison, we can conclude that the leading terms in the above

expression are O
(
n2κ+1

)
and O (nα) log n. Because α > 2κ + 1, LPBIC

(
ϑ̂1, ϑ̂2

)
− LPBIC

(
ϑ̂1,0

)
≤ 0 as

n −→∞.
Now, let ϑ̃ =

(
ϑ̃1, ϑ̃2

)
be an estimate of ϑ such that (ϑ̃1,0) is a maximizer of LPBIC(ϑ1,0) satisfying

|| ϑ̃ − ϑ0 ||= O (nκ). It suffices to show that in the neighbourhood || ϑ − ϑ0 ||= O (nκ), LPBIC (ϑ1,ϑ2) −
LPBIC

(
ϑ̃1,0

)
< 0 with probability tending to 1 as n→∞. We note that

LPBIC(ϑ1,ϑ2)− LPBIC(ϑ̃1,0) = [LPBIC(ϑ1,ϑ2)− LPBIC(ϑ1,0)] + [LPBIC(ϑ1,0)− LPBIC(ϑ̃1,0)],
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where LPBIC(ϑ1,ϑ2) − LPBIC(ϑ1,0) ≤ 0 with probability tending to 1 (by the previous result) and
LPBIC(ϑ1,0)−LPBIC(ϑ̃1,0) ≤ 0 with probability tending to 1 since (ϑ̃1,0) is a maximizer of LPBIC(ϑ1,0).
Thus (ϑ̃1,0) maximizes LPBIC(ϑ1,ϑ2) with probability tending to 1 as n → ∞. Hence we conclude that

P
(
ϑ̃2 = 0

)
−→ 1 as n→∞. Hence the proof.

The case of unknown clusters can be similarly proved. If the estimated number of components is G1 and
the true number is G, then the estimated parameter corresponding to G1 is, say, ϑ̂. We can again decompose
ϑ̂ as (ϑ̂1, ϑ̂2) and similarly show that ϑ̂2 −→ 0 in probability. Here ϑ̂1 comprises of the clusters belonging
to ϑ0.
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