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Abstract

Parameter estimation for model-based clustering using a finite mixture of normal inverse
Gaussian (NIG) distributions is achieved through variational Bayes approximations. Univari-
ate NIG mixtures and multivariate NIG mixtures are considered. The use of variational Bayes
approximations here is a substantial departure from the traditional EM approach and allevi-
ates some of the associated computational complexities and uncertainties. Our variational
algorithm is applied to simulated and real data. The paper concludes with discussion and
suggestions for future work.
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1 Introduction
The use of mixture models for clustering, referred to as model-based clustering, has become in-
creasingly popular since the work of Wolfe (1963). A wide variety of finite mixture models has
been studied extensively within the literature to date. Amongst these, the Gaussian mixture model
has received special attention due to its mathematical tractability and the relative computational
simplicity associated with parameter estimation. However, the Gaussian mixture model is not
without limitations; for instance, the component densities are restricted to being symmetric. Over
the past few years, there has been a notable increase in the preponderance of non-Gaussian mixture
modelling within the literature (e.g., Lin, 2009, 2010; Andrews et al., 2011; Baek and McLachlan,
2011; Steane et al., 2012; McNicholas and Subedi, 2012; Vrbik and McNicholas, 2012; Browne
et al., 2012; Morris et al., 2013; Morris and McNicholas, 2013a,b; Lee and McLachlan, 2013; Mur-
ray et al., 2013). Karlis and Santourian (2009) proposed a mixture of univariate normal inverse
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Gaussian (UNIG) distributions and a mixture of multivariate normal inverse Gaussian (MNIG) dis-
tributions; these models have the flexibility to represent both skewed and symmetric populations
as well as mixtures thereof. As is typical within the field, parameter estimation for the NIG mix-
tures has heretofore been carried out using an expectation-maximization (EM) algorithm (Baum
et al., 1970; Orchard and Woodbury, 1972; Sundberg, 1974; Dempster et al., 1977); see Karlis and
Santourian (2009) for details.

The EM algorithm is an iterative procedure used to find maximum likelihood estimates for
incomplete data. In the clustering context, the group memberships are missing and latent variables
may also be present. One major drawback to the EM approach is its dependency on starting
values. This and other problems arise because of the unpleasant nature of the likelihood surface,
which leads to a very slow rate of convergence and, in some cases, convergence to local minima
(cf. Titterington et al., 1985). As reported by Karlis and Santourian (2009), the EM algorithm
can be very slow when dealing with complicated distributions, such as the MNIG. Furthermore,
when the number of components in a mixture model is unknown, the computational cost increases
further because the EM algorithm must be used in conjunction with a model-selection criterion so
that every possible number of components is explored (e.g., Fraley and Raftery, 2002; Bouveyron
et al., 2007; McNicholas and Murphy, 2008, 2010). Beyond the increased computational cost, this
problem is further compounded by the fact that using different model selection criteria on the same
data can result in selection of a different set of models (see Andrews and McNicholas, 2011, for
examples).

Variational Bayes approximations have been explored by many researchers, including Wa-
terhouse et al. (1996), Jordan et al. (1999), Corduneanu and Bishop (2001), and McGrory and
Titterington (2007). Variational Bayes approximations are an iterative Bayesian alternative to the
EM algorithm, and their fast and deterministic nature has made the approach increasingly popular
over the past decade or so. The tractability of the variational approach allows for simultaneous
model selection and parameter estimation, thus removing the need for a model selection criterion
and reducing the associated computational overhead. The variational Bayes algorithm has been ap-
plied to Gaussian mixture models (cf. Teschendorff et al., 2005; McGrory and Titterington, 2007).
For observed data y, the joint conditional distribution of parameters θθθ and missing data w is ap-
proximated by constructing a tight lower bound on the complex data marginal likelihood using a
computationally convenient density qθθθ ,w(θθθ ,w). The approximating density qθθθ ,w(θθθ ,w) is obtained
by minimizing the Kullback-Leibler (KL) divergence between the true density h(θθθ ,w|y) and the
approximating density (Beal, 2003; McGrory and Titterington, 2007). Due to the non-negative
property of the KL divergence, minimizing the KL divergence is equivalent to maximizing the
lower bound. The algorithm is initialized with more components than expected, and estimation of
the parameters and the number of components is performed simultaneously.

In this paper, we develop a variational Bayes framework for parameter estimation for UNIG
mixtures and MNIG mixtures. Using the variational Bayes framework reduces the computational
cost associated with this complex modelling framework by simultaneously estimating the param-
eters and the number of components. We show that variational Bayes approximations can be very
effective for non-Gaussian mixture model-based clustering. The remainder of this paper is laid
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out as follows. Variational approximations are developed and illustrated for UNIG mixture models
(Section 2). They are then developed and illustrated for MNIG mixtures in Section 3. The paper
concludes with discussion and suggestions for future work (Section 4).

2 Mixture of Univariate Normal Inverse Gaussian Distribu-
tions

In this section, we introduce a variational Bayes framework for parameter estimation for the UNIG
mixture model.

2.1 The Model
A mean-variance mixture of a univariate normal distribution with the inverse Gaussian (IG) distri-
bution (Barndorff-Nielsen, 1997), i.e.,

Y | u∼ N(µ +βu,u), U ∼ IG(δ ,γ),

results in a UNIG distribution with density

f (y;θθθ) =
α

π
exp
{

δ

√
α2−β 2−β µ

}
φ(y)−

1
2 K1(δαφ(y)

1
2 )exp{βy} ,

where θθθ = (α,β ,µ,δ ) are the model parameters such that α2 = γ2+β 2, φ(y) = 1+[(y−µ)/δ ]2,
and K1(y) is the modified Bessel function of the third kind of order 1 evaluated at y (Abramowitz
and Stegun, 1972). The expected value and variance of Y are E(Y ) = µ + δβ/γ and Var(Y ) =
δα2/γ3, respectively. Here, δ is a scaling parameter, µ is a location parameter, β controls the
asymmetry, and α ± β determines the heaviness of the tails. The density of the IG distribution
with parameters δ and γ is

f (u) = (2π)−1/2
δu−3/2 exp

{
δγ− 1

2
(δ 2u−1 + γ

2u)
}
. (1)

The expected value and variance of U are E[U ] = δ/γ and Var[U ] = δ/γ3, respectively. Note that
this is different from the parameterization of the IG distribution used by Seshadri (1993), and can
be obtained as a special case of generalized inverse Gaussian distribution (Chhikara and Folks,
1989). See Barndorff-Nielsen (1997) and Karlis and Santourian (2009) for more details on the
UNIG distribution.

2.2 Parameter Estimation
From Karlis and Lillestol (2004), the joint probability density is given by f (y,u) = f (u) f (y|u),
where

f (y|u) = (2π)−1/2u−1/2 exp
{
− 1

2u
(y− (µ +βu))2

}
,
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and f (u) is as defined in (1). Therefore,

f (y,u) ∝ δ exp{δγ−β µ}u−2 exp
{

βy+µ
y
u
− 1

2
(β 2 + γ

2)u− 1
2
(µ2 +δ

2)u−1
}
.

The likelihood of the complete UNIG data, i.e. the observed y and the latent u such that (y,u) =
(y1, . . . ,yn,u1, . . . ,un), has the form

L(θθθ) = r(θθθ)n

[
n

∏
i=1

h(yi,ui)

]
exp

{
4

∑
j=1

Φ j(θθθ)t j(y,u)

}
,

which is within the exponential family. Here, r(θθθ) is the normalization constant that depends on
θθθ , h(y,u) is a continuous function of (y,u), Φ j(θθθ) is the jth natural parameter, and t j(y,u) is the
jth sufficient statistic with u = (u1, . . . ,un). For the UNIG model: Φ1 = β , Φ2 = µ , Φ3 = β 2+γ2,
and Φ4 = µ2 + δ 2; and t1(y,u) = ∑

n
i=1 yi, t2(y,u) = ∑

n
i=1 yiui, t3(y,u) = 1

2 ∑
n
i=1 ui, and t4(y,u) =

1
2 ∑

n
i=1 u−1

i . If the conjugate prior distribution of θθθ is of the form

h(θθθ) ∝ r(θθθ)a0 exp

{
4

∑
j=1

Φ j(θθθ)a j

}
,

then the posterior distribution is of the form

h(θθθ | y) ∝ r(θθθ)(a0+n) exp

{
4

∑
j=1

Φ j(θθθ)
(
a j + t j(y,u)

)}
.

Because (µ,β ) is independent of (δ ,γ), a bivariate prior normal distribution can be assigned to
(µ,β ), a gamma prior distribution can be assigned to δ 2, and a truncated normal prior conditional
on δ can be assigned to γ (Karlis and Lillestol, 2004). The values a j will be discussed shortly, in
the mixture context.

Now consider n independent random variables Y1, . . . ,Yn from a G-component mixture of UNIG
distributions. The likelihood of the observed data y = (y1, . . . ,yn) from this mixture will have the
form

L(θθθ) =
n

∏
i=1

G

∑
g=1

πg f (yi;θθθ g),

where πg > 0 such that ∑
G
g=1 πg = 1, θθθ = (θθθ 1, . . . ,θθθ g), and f (y;θθθ g) is the gth component density

given by a UNIG distribution with parameters θθθ g = (αg,βg,µg,δg). Note that π1, . . . ,πG are called
mixing proportions.

Define a component indicator variable Zig such that zig = 1 if the observation i belongs to
component g and zig = 0 otherwise. The complete-data, i.e., the observed yi, the latent uig, and the
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missing zig, likelihood of a G-component mixture of UNIG distributions can be written

Lc(θθθ) =
G

∏
g=1

n

∏
i=1

[πg f (yi|uig; µg,βg) f (uig;δg,γg)]
zig

=
G

∏
g=1

[
r(θθθ g)

∑
n
i=1 zig

(
n

∏
i=1

h(yi,uig)

)
exp

{
4

∑
j=1

Φ j(θθθ g)t j(y,ug)

}]
,

where ug = (u1g, . . . ,ung). If the conjugate prior distribution of θθθ g = (πg,µg,βg,δg,γg) is of the
form

h(θθθ g) ∝ r(θθθ g)
a(0)g,0 exp

{
4

∑
j=1

Φ j(θθθ g)a
(0)
g, j

}
,

with hyperparameters taking initial values (a(0)g,0,a
(0)
g,1, . . . ,a

(0)
g,4), then the posterior distribution is of

the form

h(θθθ g | y) ∝ r(θθθ g)
(a(0)g,0+∑

n
i=1 zig) exp

{
4

∑
j=1

Φ j(θθθ g)
(

a(0)g, j + t j(y,ug)
)}

,

where

ag,0 = a(0)g,0 +∑
n
i=1 zig, ag,1 = a(0)g,1 +

n

∑
i=1

zigyi,

ag,2 = a(0)g,2 +∑
n
i=1 zigu−1

ig yi, ag,3 = a(0)g,3 +0.5
n

∑
i=1

ziguig,

ag,4 = a(0)g,4 +0.5∑
n
i=1 zigu−1

ig .

The approximating density in the variational Bayes framework is restricted to a factorized
form for computational convenience, so that qθθθ ,w(θθθ ,w) = qθθθ (θθθ)qw(w). For the mixture of UNIG
distributions, the missing data are w = (z,u), where z = (z1, . . . ,zn) with zi = (zi1, . . . ,ziG), and u
is defined similarly. Therefore, the approximating density is qθθθ ,w(θθθ ,w) = qθθθ (θθθ)qz,u(z,u). Upon
choosing a conjugate prior, the appropriate hyperparameters for the approximating density qθθθ (θθθ)
for data from an exponential-family model can easily be obtained.

A Dirichlet prior with initial hyperparameters (a(0)1,0, . . . ,a
(0)
G,0) is assigned to the mixing com-

ponents πππ = (π1, . . . ,πg) and results in a Dirichlet posterior distribution with hyperparameters
(a1,0, . . . ,aG,0). A bivariate normal prior distribution is assigned to (µg,βg) such that

(
µg
βg

)
∼ N

( µ̄
(0)
g

β̄
(0)
g

)
,

 σ
(0) 2
µg ρ

(0)
g σ

(0)
µg σ

(0)
βg

ρ
(0)
g σ

(0)
µg σ

(0)
βg

, σ
(0) 2
βg

 ,
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where

ρ
(0)
g =− a(0)g,0

2
√

a(0)g,3a(0)g,4

, µ̄
(0)
g =

1

2(1−ρ
(0) 2
g )a(0)g,4

a(0)g,2−
a(0)g,0a(0)g,1

2a(0)g,3

 ,

σ
(0) 2
µg = 1

2(1−ρ
(0) 2
g )a(0)g,4

, β̄
(0)
g =

1

2(1−ρ
(0) 2
g )a(0)g,3

a(0)g,1−
a(0)g,0a(0)g,2

2a(0)g,4

 ,

σ
(0) 2
βg

= 1
2(1−ρ

(0) 2
g )a(0)g,3

.

The resulting posterior distribution for (µg,βg) is(
µg
βg

)
∼ N

[(
µ̄g
β̄g

)
,

(
σ2

µg
ρgσµgσβg

ρgσµgσβg , σ2
βg

)]
,

where

ρg =− ag,0
2√ag,3ag,4

, µ̄g =
1

2(1−ρ2
g )ag,4

(
ag,2−

ag,0ag,1

2ag,3

)
,

σ
2
µg

= 1
2(1−ρ2

g )ag,4
, β̄g =

1
2(1−ρ2

g )ag,3

(
ag,1−

ag,0ag,2

2ag,4

)
,

σ
2
βg

= 1
2(1−ρ2

g )ag,3
.

A gamma prior distribution is assigned to δ 2 and a truncated normal prior distribution condi-
tional on δg is assigned to γg, i.e.,

δ
2
g ∼ Gamma

a(0)g,0

2
+1,a(0)g,4−

a(0) 2
g,0

4a(0)g,3


and

γg | δg ∼ N

a(0)g,0δg

2a(0)g,3

,
1

2a(0)g,3

 I(γg > 0).

The resulting posterior distribution for (δg,γg) is given by

δ
2
g ∼ Gamma

(
ag,0

2
+1,ag,4−

a2
g,0

4ag,3

)
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and

γg | δg ∼ N
(

ag,0δg

2ag,3
,

1
2ag,3

)
I(γg > 0).

For the variational approximation, h(θθθ ,w | y) is taken to have a factorized form, qθθθ ,w(θθθ ,w) =
qθθθ (θθθ)qw(w)= qθθθ (θθθ)qz,u(z,u). Following Beal (2003), qzg,ug(zg = 1,ug) for the conjugate-exponential
models can be obtained as

qzg,ug(zg = 1,ug) =
n

∏
i=1

qzig,uig(zig = 1,uig)

and

qzig,uig(zig = 1,uig) =
1

Zzig,uig

exp
{∫

θ

log p(yi,zig = 1,uig|θθθ g)qθθθ (θθθ g)dθθθ g

}
=

1
Zzig,uig

exp
{
E[log p(yi,zig = 1,uig|θθθ g)]qθθθ (θθθ g)

}
,

where Zzig,uig is a constant.
The log of the mixture density given the parameters θθθ g is

log p(yi,zig = 1,uig|θθθ g) = log(πg)− log(2π)−2log(uig)+ log(δg)

+δgγg +(yi−µg)βg−
1
2
[(

δ
2
g +(yi−µg)

2)u−1 +
(
γ

2
g +β

2
g
)

u
]
.

Setting Aig = δ 2
g +(yi−µg)

2, Bg = γ2
g +β 2

g and Cig = δgγg +(yi−µg)βg, we can write

log p(yi,zig = 1,uig|θθθ) = log(πg)− log(2π)−2log(uig)+ log(δg)+Cig

− 1
2

[
Aigu−1

ig +Bguig

]
.

Hence,

E[log p(yi,zig = 1,uig|θθθ)] = E[log(πg)]− log(2π)−2log(uig)+E[log(δg)]+E[Cig]

− 1
2

[
E[Aig]u−1

ig +E[Bg]uig

]
.

Therefore,

qzig,uig(zig = 1,uig) ∝ exp
{
E[log(πg)]− log(2π)−2log(uig)+E[log(δg)]+E[Cig]

}
+ exp

{
−1

2

[
E[Aig]u−1

ig +E[Bg]uig

]}
= (2π)−1 exp

{
E[log(πg)]+E[log(δg)]+E[Cig]

}
u−2

ig exp
{
−1

2

[
E[Aig]u−1

ig +E[Bg]uig

]}
= (2π)−1 exp

{
E[log(πg)]+

1
2
E[log(δ 2

g )]+E[Cig]

}
GIG

(
uig

∣∣∣∣ −1,
√
E[Aig],

√
E[Bg]

)
.
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Here, GIG(·) is the probability density function of generalized inverse Gaussian distribution (Jørgensen,
1982) and

E[log(πg)] = Ψ(ag,0)−Ψ(n),

E[log(δ 2
g )] = Ψ

(
(ag,0/2)+1

)
− log

(
ag,4− (a2

g,0/4ag,3)
)
,

E[Aig] = E[δ 2
g ]+E[(yi−µg)

2] =
(ag,0/2)+1

ag,4− (a2
g,0/4ag,3)

+ y2
i −2yiE[µg]+E[µ2

g ],

E[Bg] = E[γ2
g ]+E[β 2

g ] = (E[γ2
g ])

2 +Var(γg)+(E[β 2
g ])

2 +Var(βg),

E[Cig] = E[δgγg]+E[(yi−µg)βg] = E[δgγg]+ yiE[βg]− (E[µg]E[βg]+Cov(µg,βg)) ,

where Ψ(·) is the digamma function.
The approximating density qzig(zig = 1) is

qzig(zig = 1) =
∫

uig

qzig,uig(zig = 1,uig)duig

∝

∫
uig

(2π)−1 exp
{
E[log(πg)]+

1
2
E[log(δ 2

g )]+E[Cig]

}
×GIG

(
uig

∣∣∣∣ −1,
√
E[Aig],

√
E[Bg]

)
duig

= (2π)−1 exp
{
E[log(πg)]+

1
2
E[log(δ 2

g )]+E[Cig]

}
×2
(
E[Aig]

E[Bg]

)−1/2

K−1

(√
E[Aig]E[Bg]

)
.

Using the approximating density qzig(zig = 1), the probability that observation i belongs to compo-
nent g is

ẑig =
qzig(zig = 1)

∑
G
g=1 qzig(zig = 1)

.

The approximating density quig(uig | zig = 1) is

quig(uig | zig = 1) ∝ (2π)−1 exp
{
E[log(πg)]+

1
2
E[log(δ 2

g )]+E[Cig]

}
× 2

(
E[Aig]

E[Bg]

)−1/2

K−1

(√
E[Aig]E[Bg]

)
,
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and so Uig | (zig = 1)v GIG(−1,
√

E[Aig],
√
E[Bg]). Therefore,

E[Uig | zig = 1]quig(uig|zig=1) =

(
E[Aig]

E[Bg]

)1/2 K0(
√
E[Aig]E[Bg])

K−1(
√

E[Aig]E[Bg])
,

E[U−1
ig | zig = 1]quig(uig|zig=1) =

(
E[Aig]

E[Bg]

)−1/2 K−2(
√
E[Aig]E[Bg])

K−1(
√

E[Aig]E[Bg])
.

The variational Bayes algorithm proceeds in the following manner:

• For the observed data y = (y1,y2, . . . ,yn), the algorithm is initialized with more components
than expected, say G. The ẑig can be initialized by either randomly assigning the observations
to one of the G components or by using the results from another clustering method (e.g., k-
means clustering).

• Using the initialized values of ẑig, the parameters from the gth component are initialized as
follows:

– The component’s sample mean is used to initialize the parameter µg,

– βg is set to 0, and

– γ and δ are set to 1.

• Using these values of the parameters, the expected values of U−1
ig and Uig are initialized.

• The hyperparameters of the prior distributions are initialized to give a flat distribution over
the possible values of the parameters. In our case, we chose a(0)g, j = 10−8, for j = 0, . . . ,4;
see Section 2.3.3 for a simulation study that investigates sensitivity to our choice of 10−8.

1. Using the ẑig and the expected values of U−1
ig and Uig, the hyperparameters of the ap-

proximating density qθθθ (θθθ) are updated. Using these updated hyperparameters, the
expected values E[logr(θθθ)] and E[φ j(θθθ)] are updated.

2. Using these updated E[logr(θθθ)] and E[φ j(θθθ)], the ẑig, E[U−1
ig |zig = 1], and E[Uig|zig =

1] are updated.

3. Components with too few observations are eliminated. Specifically, for each compo-
nent g′ we do the following. If the estimated number of observations in component
g′, i.e., ∑

n
i=1 ẑig′ , is sufficiently small (less than one in our case), then component g′ is

eliminated.

Steps 1, 2, and 3 are repeated until convergence.

Once convergence is achieved, the observations are assigned to clusters using maximum a
posteriori probability (MAP), such that MAP(ẑig) = 1 if maxg(ẑig) occurs in component g and
MAP(ẑig) = 0 otherwise. If the true class is known, as in our analysis, the performance of the
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algorithm can be assessed using the adjusted Rand index (ARI; Hubert and Arabie, 1985). The ARI
is based on the pairwise agreement between the predicted and true classifications after adjusting
for agreement by chance: a value of ‘1’ indicates a perfect classification and a value of ‘0’ would
be expected under random classification.

2.3 Simulated Data
2.3.1 Simulation Study 1

We simulated one-hundred data sets from a UNIG mixture with two components (n1 = 150 and
n2 = 150). We chose the parameters so that the components are well separated. We ran our
variational Bayes algorithm starting off with G = 10 components. In all one-hundred cases, our
approach gave a two-component model and classification was excellent (mean ARI = 0.99 with
std. dev. = 0.01). Looking at the predicted density for ten of the simulated data sets (Figure 1), it
is clear that the fitted densities are capturing the data very well.
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Figure 1: Histograms with fitted densities for ten data sets from Simulation 1.

2.3.2 Simulation Study 2

We simulated another one-hundred data sets from a UNIG mixture with two components (n1 =
150 and n2 = 155). In this case, the components were not as well separated. We again ran our
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variational Bayes algorithm starting off with G = 10 components. Out of the one-hundred data
sets, a two-component model was selected on 92 occasions and the mean ARI over all one-hundred
data sets is 0.92 (with standard deviation 0.03). Figure 2 shows the fitted densities for ten of the
simulated data sets; again, the fitted densities are capturing the data very well.
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Figure 2: Histograms with fitted densities for ten data sets from Simulation 2.

2.3.3 Simulation Study 3

Recall that we initialize hyperparameters for θθθ g =(πg,µg,βg,δg,γg) so that the prior distribution of
θθθ g is relatively flat. To evaluate the effect of the choice of initial values for these hyperparameters,
we ran our algorithm on simulated data using 10 different initializations for these hyperparameters.
Specifically, we used initial values

a0g = a1g = a2g = a3g = a4g ∈ {10−6,10−7, . . . ,10−15},

for g = 1, . . . ,G. For each of the ten runs, the data and the initial ẑig were the same so that only
the initial values of the hyperparameters differed. The classification results obtained from all ten
different initial values for the hyperparameters are identical (ARI = 0.99), and the fitted densities
for all ten runs are virtually identical (Figure 3).
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Figure 3: Histograms with fitted densities for the ten data sets from Simulation 3, where the label
of each x-axis reflects the initial values for the hyperparameters.

2.4 Enzyme Data Set
We considered the enzyme data set, which is a benchmark data set for a mixture of univariate
distributions with a skewed component (Bechtel et al., 1993; Karlis and Santourian, 2009). The
data consist of measurements of the activity of an enzyme in the blood of 245 individuals. These
data were used by Karlis and Santourian (2009) to illustrate fitting of the UNIG models within an
EM algorithm framework. Their EM algorithm, in conjunction with a model selection criterion,
resulted in the selection of a two-component UNIG model. We used our variational Bayes approach
to fit the UNIG models, initializing at G = 5 components. Akin to Karlis and Santourian (2009),
we obtained a two-component model that clearly gives a good fit to the data (Figure 4).

3 Mixture of Multivariate Normal Inverse Gaussian Distribu-
tions

3.1 The Model
A mean-variance mixture of a d-dimensional multivariate normal distribution with the inverse
Gaussian distribution, i.e.,

Y | w∼ N(µµµ +wβββ∆∆∆,w∆∆∆), W ∼ IG(δ ,γ)
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Figure 4: Histogram with fitted density for the enzyme data.

results in a MNIG distribution with density

f (y;θ) =
δ

2
d−1

2
exp
{

δγ +(y−µµµ)βββ ′
}[ α

πq(y)

] d+1
2

Kd+1
2
(αq(y)),

where α2 = γ2 +βββ∆∆∆βββ
′, q(y)2 = δ 2 +(y−µµµ)∆∆∆−1(y−µµµ)′, and Kr(y) is the modified Bessel func-

tion of the third kind of order r evaluated at y. Similar to the univariate case, the parameters
contribute to the different shapes the MNIG can have. Here, ∆∆∆ is a d × d symmetric positive
definite matrix that relates to the covariance matrix via

Cov(Y) =
δ

γ3 (γ
2
∆∆∆+∆∆∆βββ

′
βββ∆∆∆),

and the restriction |∆∆∆|= 1 is needed to ensure identifiability. Conjugate priors are unavailable for
∆∆∆ with this restriction (|∆∆∆| = 1). An alternative re-parameterization, as discussed in Karlis and
Santourian (2009), arises from

Y | u∼ N(µ̃µµ +uβ̃ββ ,uΣ̃ΣΣ), U ∼ IG(1, γ̃),

where µ̃µµ = µµµ , γ̃ = γδ , Σ̃ΣΣ = δ 2∆∆∆, and β̃ββ = βββ Σ̃ΣΣ. Here, Σ̃ΣΣ is not restricted and conjugate priors exist
for all of the model parameters.
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3.2 Parameter Estimation
The joint probability density is f (y,u) = f (u) f (y|u), where

f (y|u) = (2π)−1/2u−d/2|Σ̃ΣΣ|−d/2 exp
{
−1
2u

(y− µ̃µµ− β̃ββu)′Σ̃ΣΣ−1
(y− µ̃µµ− β̃ββu)

}
and

f (u) = (2π)−1/2u−3/2 exp
{

γ̃− 1
2
(2u−1 + γ̃

2u)
}
.

Therefore,

f (y,u) ∝ u−
d+3

2 |Σ̃ΣΣ|−d/2 exp
{
− 1

2u
(y− µ̃µµ− β̃ββu)′Σ̃ΣΣ−1

(y− µ̃µµ + β̃ββu)
}

× exp
{
−1

2
(2u−1 + γ̃

2u−2γ̃)

}
.

If θθθ = (µ̃µµ, Σ̃ΣΣ, β̃ββ , γ̃), then the likelihood of the complete MNIG data, i.e. the observed y and the
latent u such that (y,u) = (y1, . . . ,yn,u1, . . . ,un), has the form

L(θθθ) = r(θθθ)n

(
n

∏
i=1

h(yi,ui)

)
exp

{
4

∑
j=1

Φ j(θθθ)t j(y,u)

}
,

which is within the exponential family. Note that, as before, u = (u1, . . . ,un). Here, r(θθθ) is the
normalization constant that depends on θθθ , h(y,u) is a continuous function of (y,u), Φ j(θθθ) is the
jth natural parameter, and t j(y,u) is the jth sufficient statistic.

Now, consider n independent observations y1, . . . ,yn from a G-component mixture of MNIG
distributions. The likelihood is given by

L(θθθ) =
n

∏
i=1

G

∑
g=1

πg f (y; Σ̃ΣΣg, β̃ββ g, µ̃µµg, γ̃g),

where f (y; ·) is the density of the MNIG distribution and the πg > 0, such that ∑
G
i=1 πg = 1, are the

mixing proportions. In this case, (µ̃µµg, β̃ββ g) is independent of γ̃g.
The complete-data likelihood for a G-component mixture of MNIG distributions can be written

L(θθθ) =
G

∏
g=1

n

∏
i=1

[
πg f (yi|uig; µ̃µµg, β̃ββ g, Σ̃ΣΣg) f (uig;1, γ̃g)

]zig

=
G

∏
g=1

[
r(θθθ g)

(∑n
i=1 zig)

(
n

∏
i=1

h(yi,uig)

)
exp

{
4

∑
j=1

Φ j(θθθ g)t j(y,ug)

}]
,
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where ug = (u1g, . . . ,ung). If the conjugate prior distribution of θθθ g = (πg, µ̃µµg, Σ̃g, β̃ββ g, γ̃g) is of the
form

h(θθθ g) ∝ r(θθθ g)
a(0)g,0 exp

{
4

∑
j=1

Φ j(θθθ g)a
(0)
g, j

}
,

with initial hyperparameters {a(0)g,0,a
(0)
g,1,a

(0)
g,2,a

(0)
g,3,a

(0)
g,4}, then the posterior distribution is of the form

h(θθθ g | y) ∝ r(θθθ g)
(a(0)g,0+∑

n
i=1 zig) exp

{
4

∑
j=1

Φ j(θθθ g)
(

a(0)g, j + t j(y,ug)
)}

,

where the hyperparameters of the posterior distributions of the mixtures of MNIG models are

ag,0 = a(0)g,0 +∑
n
i=1 zig, ag,1 = a(0)g,1 +

n

∑
i=1

zigyi,

ag,2 = a(0)g,2 +∑
n
i=1 zigu−1

ig yi, ag,3 = a(0)g,3 +
n

∑
i=1

ziguig,

ag,4 = a(0)g,4 +∑
n
i=1 zigu−1

ig .

Note that a(0)g, j and ag, j for j = 1,2 are vectors, and a(0)g, j and ag, j for j ∈ {0,3,4} are scalars. When

referring to a value j ∈ {0,1,2,3,4}, we write a(0)g, j and ag, j.

A Dirichlet prior with initial hyperparameters (a(0)1,0, . . . ,a
(0)
G,0) is assigned to the mixing propor-

tions and results in a Dirichlet posterior distribution with hyperparameters (a1,0, . . . ,aG,0).
A Wishart prior was assigned to the precision matrix of the gth component, i.e., Σ̃ΣΣ

−1
g vWishart (ag,0,V

(0)
g ),

resulting in a Wishart posterior Σ̃ΣΣ
−1
g v Wishart (ag,0,V′g) with

Vg = V(0)
g +

n

∑
i=1

ẑigu−1
ig y′y−a′g,2µ̃µµ− µ̃µµ

′ag,2 +ag,4µ̃µµ
′
µ̃µµ− β̃ββ

′
ag,1 +ag,0β̃ββ

′
µ̃µµ−a′g,1β̃ββ

+ ag,0µ̃µµ
′
β̃ββ +ag,3β̃ββ

′
β̃ββ .

A correlated multivariate Gaussian prior distirbution conditional on the precision matrix was
assigned to (µ̃µµg, β̃ββ g) such that

(
µ̃µµg
β̃ββ g

)∣∣∣∣∣Σ̃ΣΣ−1 ∼ N

( µ̄µµg
β̄ββ g

)
,

(
Σ̃ΣΣ
−1
µg

Σ̃ΣΣ
−1
µgβg

Σ̃ΣΣ
−1
µgβg

, Σ̃ΣΣ
−1
βg

)−1
 ,
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where

Σ̃ΣΣ
−1
µg

= a(0)g,4Σ̃ΣΣ
−1
g , µ̄µµg =

a(0)g,3

(a(0)g,3a(0)g,4−a(0) 2
g,0 )

a(0)g,2−
a(0)g,1a(0)g,0

a(0)g,3

 ,

Σ̃ΣΣ
−1
βg

= a(0)g,3Σ̃ΣΣ
−1
g , β̄ββ g =

a(0)g,4

(a(0)g,3a(0)g,4−a(0) 2
g,0 )

a(0)g,1−
a(0)g,2a(0)g,0

a(0)g,4

 ,

Σ̃ΣΣ
−1
µgβg

= a(0)g,0Σ̃ΣΣ
−1
g .

The resulting posterior distribution for (µ̃µµg, β̃ββ g) is given by

(
µ̃µµg
β̃ββ g

)∣∣∣∣∣Σ̃ΣΣ−1 ∼ N

( µ̄µµg
β̄ββ g

)
,

(
Σ̃ΣΣ
−1
µg

Σ̃ΣΣ
−1
µgβg

Σ̃ΣΣ
−1
µgβg

, Σ̃ΣΣ
−1
βg

)−1
 ,

where

Σ̃ΣΣ
−1
µg

= ag,4Σ̃ΣΣ
−1
g , µ̄µµg =

ag,3

(ag,3ag,4−a2
g,0)

(
ag,2−

ag,1ag,0

ag,3

)
,

Σ̃ΣΣ
−1
βg

= ag,3Σ̃ΣΣ
−1
g , β̄ββ g =

ag,4

(ag,3ag,4−a2
g,0)

(
ag,1−

ag,2ag,0

ag,4

)
,

Σ̃ΣΣ
−1
µgβg

= ag,0Σ̃ΣΣ
−1
g .

A truncated normal prior distribution was assigned to γ̃g such that

γ̃g ∼ N(a(0)g,0/a(0)g,3,1/2a(0)g,3)I(γ̃g > 0),

and so the posterior distribution for γ̃g is given by

γ̃g ∼ N(ag,0/ag,3,1/2ag,3)I(γ̃g > 0).

For the MNIG model,

E[log p(yi,zig = 1,uig | θθθ)]qθθθ (θθθ)
= E[log(πg)]−

d +1
2

log(2π)− d +3
2

log(uig)

+
1
2
E[log |Σ̃ΣΣ−1

g |)]+E[γ̃g]−
1
2

[
E[Aig]u−1

ig +E[Bg]uig

]
,

where Aig = 1+(yi− µ̃µµg)
′Σ̃ΣΣ
−1
g (yi− µ̃µµg), Bg = γ̃2

g + β̃ββ gΣ̃ΣΣ
−1
g β̃ββ

′
g, and Cig = γ̃g +(yi− µ̃µµg)

′Σ̃ΣΣ
−1
g β̃ββ g.
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Following Beal (2003), the approximating joint density of missing variables (zig,uig) for the
conjugate-exponential models can be obtained as

qzig,uig(zig = 1,uig) ∝exp
{
E[log(πg)]−

d +1
2

log(2π)− d +3
2

log(uig)+
1
2
E[log |Σ̃ΣΣ−1

g |)]

+ E[Cig]−
1
2

[
E[Aig]u−1

ig +E[Bg]uig

]}
= (2π)−

d+1
2 exp

{
E[log(πg)]+

1
2
E[log |Σ̃ΣΣ−1

g |)]+E[Cig]

}
×u
− d+3

2
ig exp

{
−1

2

[
E[Aig]u−1

ig +E[Bg]uig

]}
= (2π)−

d+1
2 exp

{
E[log(πg)]+

1
2
E[log |Σ̃ΣΣ−1

g |)]+E[Cig]

}
×GIG

(
uig

∣∣∣∣ − d +1
2

,
√

E[Aig],
√
E[Bg]

)
.

Here, GIG(·) is the probability density function of the generalized inverse Gaussian distribution
and

E[log(πg)] = Ψ(ag,0)−Ψ(n),

E[log |Σ̃ΣΣ−1
g |] =

d

∑
s=1

Ψ

(
ag,0 +1− s

2

)
+d log(2)− log |Vg|,

E[Aig] = E[1+(yi− µ̃µµg)
′
Σ̃ΣΣ
−1
g (yi− µ̃µµg)]

= 1+(yi−E[µ̃µµg])
′E[Σ̃ΣΣ−1

g ](yi−E[µ̃µµg])+ tr
{
E[Σ̃ΣΣ−1

g ]Var(µ̃µµg)
}
,

E[Bg] = E[γ̃2
g + β̃ββ gΣ̃ΣΣ

−1
g β̃ββ

′
g]

= (E[γ̃g])
2 +Var(γ̃g)+E[β̃ββ g]E[Σ̃ΣΣ

−1
g ]E[β̃ββ g]+ tr

{
E[Σ̃ΣΣ−1

]Var(β̃ββ g)
}
,

E[Cig] = E[γ̃g +(yi− µ̃µµg)
′
Σ̃ΣΣ
−1
g β̃ββ g]

= E[γ̃g]+yiE[Σ̃ΣΣ
−1
g ]E[β̃ββ g]−E[µ̃µµ ′g]E[Σ̃ΣΣ

−1
g ]E[β̃ββ g]+ tr

{
E[Σ̃ΣΣ−1

]Cov(µ̃µµg, β̃ββ g)
}
,

where Ψ(·) is the digamma function.
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The approximating density qzig(zig = 1) is

qzig(zig = 1) =
∫

uig

qzig,uig(zig = 1,uig)duig

∝

∫
uig

(2π)−
d+1

2 exp
{
E[log(πg)]+

1
2
E[log |Σ̃ΣΣ−1

g |]+E[Cig]

}
×GIG

(
uig

∣∣∣∣ − d +1
2

,
√
E[Aig],

√
E[Bg]

)
duig

= (2π)−
d+1

2 exp
{
E[log(πg)]+

1
2
E[log |Σ̃ΣΣ−1

g |]+E[Cig]

}
×2
(
E[Aig]

E[Bg]

)− d+1
2

K− d+1
2

(√
E[Aig]E[Bg]

)
.

The probability that zig = 1 is

ẑig =
qzig(zig = 1)

∑
G
g=1 qzig(zig = 1)

.

The density quig(uig | zig = 1) is

quig(uig | zig = 1) ∝ (2π)−
d+1

2 exp
{
E[log(πg)]+

1
2
E[log |Σ̃ΣΣ−1

g |]+E[Cig]

}
×2
(
E[Aig]

E[Bg]

)−(d+1)/2

K− d+1
2

(√
E[Aig]E[Bg]

)
,

and so Uig | (zig = 1)v GIG(−d+1
2 ,
√
E[Aig],

√
E[Bg]). Therefore,

E[Uig|zig = 1]quig(uig|zig=1) =

(
E[Aig]

E[Bg]

) d+1
2 K− d−1

2
(
√

E[Aig]E[Bg])

K− d+1
2
(
√

E[Aig]E[Bg])
,

E[U−1
ig |zig = 1]quig(uig|zig=1) =

(
E[Aig]

E[Bg]

)− d+1
2 K− d+3

2
(
√
E[Aig]E[Bg])

K− d+1
2
(
√
E[Aig]E[Bg])

.

Similar to the univariate approach, the variational Bayes algorithm proceeds in the following
manner:

• For the observed data y = (y1,y2, . . . ,yn), the algorithm is initialized with more components
than expected, say G. The ẑig can be initialized by either randomly assigning the observations
to one of the G components or by using the results from another clustering method (e.g., k-
means clustering).

• Using the initialized values of ẑig, the parameter of the gth component is initialized as fol-
lows:

18



– The component’s sample mean is used to initialize the parameter µµµg,

– the component’s sample covariance is used to initialize ΣΣΣg,

– βββ is set to 0, and

– γ is set to 1.

• Using these values of the parameters, the expected values of U−1
ig and Uig are initialized.

• The hyperparameters of the prior distribution are initialized to have a flat distribution over
the possible values of the parameters.

1. Using the ẑig and expected values of U−1
ig and Uig, the hyperparameters of the approxi-

mating density qθ (θθθ) are updated. Using these updated hyperparameters, the expected
values E[logr(θθθ)] and E[φ j(θθθ)] are updated.

2. Using these updated E[logr(θθθ)] and E[φ j(θθθ)], the ẑig, E[U−1
ig |zig = 1], and E[Uig|zig =

1] are updated.

3. Components with too few observations are eliminated. Specifically, for each compo-
nent g′ we do the following. If the estimated number of observations in component
g′, i.e., ∑

n
i=1 ẑig′ , is sufficiently small (less than one in our case), then component g′ is

eliminated.

Steps 1, 2, and 3 are repeated until convergence.

As in the univariate case, after convergence is achieved, the observations are assigned to com-
ponents using the MAP.

3.3 Simulated Data
3.3.1 Simulation Study 4

To demonstrate the recovery of underlying parameters, our variational Bayes algorithm was applied
to a simulated two-dimensional data set (Figure 5) with two symmetric components (n1 = 150 and
n2 = 200). Our algorithm was initialized with G= 5 components and, after running to convergence,
gave a two-component model with one misclassified observation (ARI = 0.99). The estimated
parameters are very close to the true values, as can be seen in Table 1 and below:

Σ̃ΣΣ1 =

(
1.2 0
0 1.2

)
, ˆ̃

ΣΣΣ1 =

(
0.75 0.05
0.05 0.68

)
; Σ̃ΣΣ2 =

(
1 0.4

0.4 1

)
, ˆ̃

ΣΣΣ2 =

(
1.32 −0.35
−0.35 1.28

)
.
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Table 1: Estimated and true values for the parameters of the MNIG model in Simulation Study 4.
β̃ββ γ̃ µ̃µµ

Component 1
True (0.1,0.2) 1.2 (−2,−10)
Estimated (0.17,0.49) 1.63 (−2.39,−10.35)

Component 2
True (0.2,0.75) 0.8 (−10,−12)
Estimated (0.53,1.00) 0.69 (−10.00,−11.89)

Our model clearly fits the data very well, with the contours capturing the shape of the two
components (Figure 5). The parameter estimates must be considered in context with the actual
fit of the model (Figure 5) because it is known that different parameter sets can give very similar
densities for these models (Lillestol, 2000).
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Figure 5: Scatter plot highlighting the true labels for the simulated data from Simulation Study 4
(left) and a contour plot showing the predicted classifications (right).

3.3.2 Simulation Study 5

To present a more challenging and higher dimensional example, we generated a ten-dimensional
data set with two components (n1 = 150 and n2 = 200) that are not well separated (Figure 6).
The variational Bayes algorithm was run starting with G = 10 components, resulting in a two-
component model with perfect classification (ARI = 1).
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Figure 6: Pairs plot showing the true classifications for the data from Simulation 5.

3.4 Old Faithful Data
The Old Faithful data are available in the R package MASS (Venables and Ripley, 2002). These data
comprise the waiting time between and the duration of 272 eruptions of the Old Faithful geyser in
Yellowstone National Park, Wyoming, USA. These data do not contain true labels; however, upon
visual inspection, the data seem to have two classes: shorter, more frequent eruptions and longer,
less frequent eruptions. We ran our variational Bayes algorithm on the Old Faithful data starting
with G = 7 components. The resulting G = 2 component model fits the data very well (Figure 7).

Several others have used non-Gaussian model-based clustering on these data, via variants of
the EM algorithm, and obtained similar results (e.g., Franczak et al., 2012; Vrbik and McNicholas,
2012).

3.5 Crabs data
The crabs data, available in the R package MASS (Venables and Ripley, 2002), contain morpholog-
ical measurements of 50 male and 50 female crabs (Leptograpsus variegatus) in each of the two
colour forms: blue and orange. The measured morphological variables are frontal lobe size (FL),
rear width (RW), carapace length (CL), carapace width (CW), and body depth (BD), all measured
in mm. We ran our variational Bayes algorithm on the crab data starting with G = 10 components.
This resulted in a G = 4 component model with an associated ARI of 0.79 (Table 2). The variables
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Figure 7: Contour plot of the Old Faithful data using the fitted two-component mixture model.

in these data are highly correlated and so visualizing classification performance is easier in the
principal component space (Figure 8).

Table 2: The new merged “true” classification and the estimated classification.
True \ Estimates 1 2 3 4
Blue&Male 41 9
Blue&Female 1 48 1
Orange&Male 50
Orange&Female 6 44

Because the variables in these data are so highly correlated, they are very difficult to cluster. In
fact, they are notoriously difficult to cluster and our variational Bayes MNIG performs very well
when compared to many other approaches. To find methods in the literature that produce a higher
ARI than 0.79, one needs to look at families of mixture models (e.g., McNicholas et al., 2010;
Andrews and McNicholas, 2012; Vrbik and McNicholas, ress) or methods that combine variable
selection and clustering (e.g., Morris et al., 2013). Of course, if our variational Bayes MNIG
approach was extended to incorporate a family of models, an ARI above 0.79 might be achieved
(cf. Section 4).
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Figure 8: Pairs plots showing estimated classifications for the crabs data using the variables (left)
and the principal component (right), respectively.

3.6 Fish Catch Data
The fish catch data, available in the R package rrcov (Todorov and Filzmoser, 2009), contain dif-
ferent measurements on the body size and weight of seven different fish species (bream, whitewish,
roach, parkki, smelt, pike, and perch). The variable Weight gives the weight of the fish in grams,
Length1 is the length from the nose to the beginning of the tail, Length2 is the length from the
nose to the notch of the tail, Length3 is the length from the nose to the end of the tail, Height is
the maximal height as a percentage of Length3, and Width is maximal width as a percentage of
Length3.

As expected, all of the length measurements are very highly correlated with each other (corre-
lation > 0.99) and with the weight measurements (correlation > 0.91), cf. Figure 9. Therefore, the
highly correlated variables Length1, Length2, and Weight were dropped from further analysis.
These data were explored by Karlis and Santourian (2009), who dropped Length1, Length2, and
Height before their analysis.

We ran our variational Bayes algorithm on the resulting three-dimensional data set, starting
with G = 10 components. This resulted in a G = 4 component model with the classifications
shown in Figure 10. By inspection of Figure 10, we can see that a four-component solution is not
unreasonable based on the three variables used (Length2, Height, and Weight). Classification
results for our four-component model (Table 3) correspond exactly to a merging of Species 2, 3,
and 7 (whitewish, roach, and perch), and Species 1 and 4 (bream and parkki). Karlis and Santourian
(2009) who used different variables — Length3, Weight, and Width — in an EM framework,
obtained a seven-component model using the Akaike information criterion (AIC; Akaike, 1973)
for model selection and a four-component model using the Bayesian information criterion (BIC;
Schwarz, 1978).
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Figure 9: Matrix scatter plot of all variables in the fish catch data set, where different colours
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Length2

15 20 25 30 35 40 45

10
20

30
40

50
60

15
20

25
30

35
40

45

Height

10 20 30 40 50 60 10 12 14 16 18 20

10
12

14
16

18
20

Width

Length2

15 20 25 30 35 40 45

10
20

30
40

50
60

15
20

25
30

35
40

45

Height

10 20 30 40 50 60 10 12 14 16 18 20

10
12

14
16

18
20

Width

Figure 10: True (left) and estimated (right) classifications for the fish catch data based on the
variables Length2, Height, and Width.
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Table 3: Cross-tabulation of true versus predicted classifications for the fish catch data.
True\ Estimates 1 2 3 4
Bream 34
Parkki 11
Whitewish 6
Roach 20
Perch 56
Smelt 14
Pike 17

4 Conclusion
Variational Bayes approximations are presented as an effective alternative to the EM algorithm for
parameter estimation for UNIG and MNIG mixtures. They have been used for Gaussian mixture
models in the past; however, this is their first application for non-Gaussian models. Furthermore,
it is the first time variational approximations have been used for non-symmetric distributions. Al-
though we illustrated our variational Bayes approach through model-based clustering, it could be
applied to model-based classification (e.g., McNicholas, 2010) or discriminant analysis (Hastie
and Tibshirani, 1996) in an analogous fashion. In this paper, we illustrate that variational Bayes
approximations can be very effective for non-Gaussian mixture model-based clustering, classifi-
cation, and discriminant analysis. Accordingly, this paper may well be the forerunner to several
others detailing the application of variational Bayes approximations in the complex modelling sit-
uations that can arise in non-Gaussian model-based clustering.

As reported by Karlis and Santourian (2009), the EM algorithm for MNIG takes a very long
time to converge. Therefore, running multiple EM algorithms to cover a range of values for G,
which is needed when the true number of components is unknown, adds to an already heavy com-
putational burden. Variational Bayes approximations, on the other hand, start off with more com-
ponents than expected, and once the number of observations in a component becomes sufficiently
small, it is removed. This allows for simultaneous parameter estimation and estimation of the
number of components, and is far more computationally efficient than running an EM algorithm
for each of several possible values of G.

We demonstrated the efficacy of our approach by clustering real and simulated data for both the
UNIG and MNIG mixtures. Some possible avenues for further research include extending these
models, and the associated parameter estimation approach, to achieve parsimony. The could be
carried out via imposing constraints upon an eigen-decomposition of the component scale matrices
by analogy with the work of Celeux and Govaert (1995) on Gaussian mixtures. Our variational
approximations could be extended to mixtures of factor analyzers (Ghahramani and Hinton, 1997;
McLachlan and Peel, 2000), or a variatiants thereof (McNicholas and Murphy, 2008, 2010; Baek
et al., 2010; Murray et al., 2013), where it may be possible to select the number of latent factors
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in addition to the number of components. Applications aimed at longitudinal data analysis (e.g.
McNicholas and Murphy, 2010; McNicholas and Subedi, 2012) and contaminated mixtures (Punzo
and McNicholas, 2013) will also be considered within a variational framework.
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