Skip to main content
Log in

Spatial functional normal mixed effect approach for curve classification

  • Regular Article
  • Published:
Advances in Data Analysis and Classification Aims and scope Submit manuscript

Abstract

This paper proposes a spatial functional formulation of the normal mixed effect model for the statistical classification of spatially dependent Gaussian curves, in both parametric and state space model frameworks. Fixed effect parameters are represented in terms of a functional multiple regression model whose regression operators can change in space. Local spatial homogeneity of these operators is measured in terms of their Hilbert–Schmidt distances, leading to the classification of fixed effect curves in different groups. Assuming that the Gaussian random effect curves obey a spatial autoregressive dynamics of order one [SARH(1) dynamics], a second functional classification criterion is proposed in order to detect local spatially homogeneous patterns in the mean quadratic functional variation of Gaussian random effect curve increments. Finally, the two criteria are combined to detect local spatially homogeneous patterns in the regression operators and in the functional mean quadratic variation, under a state space approach. A real data example in the financial context is analyzed as an illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abraham C, Cornillon PA, Matzner-Løber E, Molinari N (2003) Unsupervised curve clustering using B-splines. Scand J Stat 30:581–595

  • Aach J, Church GM (2001) Alignment gene expression time series with time warping algorithms. Bioinformatics 17:495–508

    Article  Google Scholar 

  • Aguilera AM, Escabias M, Preda C, Saporta G (2010) Using basis expansion for estimating functional PLS regression. Applications with chemometric data. Chemom Intel Lab Syst 104:289–305

    Article  Google Scholar 

  • Aguilera-Morillo MC, Aguilera AM, Escabias M, Valderrama MJ (2013) Penalized spline approaches for functional logit regression. TEST 22:251–277

    Article  MATH  MathSciNet  Google Scholar 

  • Alonso AM, Casado D, Romo J (2012) Supervised classification for functional data: a weighted distance approach. Comput Stat Data Anal 56:2334–2346

    Article  MATH  MathSciNet  Google Scholar 

  • Angelini C, De Canditiis D, Leblanc F (2003) Wavelet regression estimation in nonparametric mixed effect models. J Multivar Anal 85:267–291

    Article  MATH  Google Scholar 

  • Baíllo A, Cuevas A (2008) Supervised classification for functional data: a theoretical remark and some numerical comparisons. In: Dabo-Niang S, Ferraty F (eds) Functional and operatorial statistics. Physica-Verlag, Heidelberg, pp 43–46

  • Baladandayuthapani V, Mallick B, Hong M, Lupton J, Turner N, Caroll R (2008) Bayesian hierarchical spatially correlated functional data analysis with application to colon carcinoginesis. Biometrics 64: 64–73

  • Basse M, Diop A, Dabo-Niang S (2008) Mean square properties of a class of kernel density estimates for spatial functional random variables. Annales De L’I.S.U.P. Publications de l’Institut de Statistique de l’Université de Paris

  • Berlinet A, Biau G, Rouviére L (2008) Functional supervised classification with wavelets. Ann lISUP 52:61–80

    Google Scholar 

  • Biau G, Bunea F, Wegkamp MH (2003) Functional classification in Hilbert spaces. IEEE Trans Inf Theor 1:1–8

    Google Scholar 

  • Booth L, Aivazian V, Demirguç-Kunt L, Maksimovic V (2001) Capital structures in developing countries. J Fin 56:87–130

    Article  Google Scholar 

  • Cuesta-Albertos JA, Fraiman R (2007) Impartial trimmed k-means for functional data. Comput Stat Data Anal 51:4864–4877

    Article  MATH  MathSciNet  Google Scholar 

  • Chiou J-M, Li P-L (2007) Functional clustering and identifying substructures of longitudinal data. J R Stat Soc Ser B 69:679–699

    Article  MathSciNet  Google Scholar 

  • Chiou J-M, Li P-L (2008a) Correlation-based functional clustering via subspace projection. J Am Stat Assoc 103:1684–1692

    Article  MATH  MathSciNet  Google Scholar 

  • Chiou J-M, Li P-L (2008b) Functional clustering of longitudinal data. In: Dabo-Niang S, Ferraty F (eds) Functional and operatorial statistics. Physica-Verlag, Heidelberg, pp 103–107

    Chapter  Google Scholar 

  • Daubechies I (1992) Ten lectures on wavelets. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Dautray R, Lions JL (1985) Mathematical analysis and numerical. Methods for science and technology. Spectral theory and applications, vol 3. Springer, New York

    Google Scholar 

  • Delaigle A, Hall P (2012a) Achieving near perfect classification for functional data. J R Stat Soc Ser B 74:267–286

    Article  MathSciNet  Google Scholar 

  • Delaigle A, Hall P (2012b) Methodology and theory for partial least squares applied to functional data. Ann Stat 40:322–352

    Article  MATH  MathSciNet  Google Scholar 

  • Delaigle A, Hall P, Bathia N (2012) Componentwise classification and clustering of functional data. Biometrika 99:299–313

  • Degryse H, De Goeij P, Kappert K (2012) The impact of firm and industry characteristics on small firms’ capital structure. Small Bus Econ 38:431–447

    Article  Google Scholar 

  • Delicado P, Giraldo R, Comas C, Mateu J (2010) Statistics for spatial functional data: some recent contributions. Environmetrics 21:224–239

    Article  MathSciNet  Google Scholar 

  • Donoho DL (1993) Unconditional bases are optimal bases for data compression and for statistical estimation. J Appl Comput Harmon Anal 1:100–115

    Article  MATH  MathSciNet  Google Scholar 

  • Escabias M, Aguilera AM, Valderrama MJ (2004) Principal component estimation of functional logistic regression: discussion of two different approaches. J Nonparametr Stat 16:365–384

    Article  MATH  MathSciNet  Google Scholar 

  • Escabias M, Aguilera AM, Valderrama MJ (2007) Functional PLS logit regression model. Computat Stat Data Anal 51:4891–4902

    Article  MATH  MathSciNet  Google Scholar 

  • Ferraty F, Vieu P (2003) Curves discrimination: a nonparametric functional approach. Comput Stat Data Anal 44:161–173

    Article  MATH  MathSciNet  Google Scholar 

  • Ferraty F, Vieu P (2006) Nonparametric functional data analysis. Springer, New York

    MATH  Google Scholar 

  • Ferraty F, Vieu P (2009) Additive prediction and boosting for functional data. Comput Stat Data Anal 53:1400–1413

    Article  MATH  MathSciNet  Google Scholar 

  • Friedman NA (1970) Introduction to ergodic theory. Van Nostrand Reinhold mathematical studies, No 29. Van Nostrand Reinhold Co., New York

  • Fujikoshi Y, Satoh K (1997) Modified AIC and Cp in multivariate linear regression. Biometrika 84:707–716

    Article  MATH  MathSciNet  Google Scholar 

  • Giacofci M, Lambert-Lacroix S, Marot G, Picard F (2013) Wavelet-based clustering for mixed-effects functional models in high dimensions. Biometrics 69:31–40

    Article  MATH  MathSciNet  Google Scholar 

  • Giraldo R, Delicado P, Comas C, Mateu J (2010) Hierarchical clustering of spatially correlated functional data. Statistica Neerlandica. doi:10.1111/j.1467-9574.2012.00522.x

  • Giraldo R, Delicado P, Mateu J (2010b) Continuous time-varying kriging for spatial prediction of functional data: an environmental application. J Agric Biol Environ Stat 15:66–82

    Article  MathSciNet  Google Scholar 

  • Guillas S, Lai MJ (2010) Bivariate splines for spatial functional regression models. J R Stat Soc Ser B 22:477–497

    MATH  MathSciNet  Google Scholar 

  • Hall P, Poskitt D, Presnell B (2001) A functional data-analytic approach to signal discrimination. Technometrics 43:1–9

    Article  MATH  MathSciNet  Google Scholar 

  • Harten A (1993) Discrete multiresolution analysis and generalized wavelets. J Appl Numer Math 12: 153–193

  • James GM, Hastie TJ (2001) Functional linear discriminant analysis for irregular sampled curves. J R Stat Soc Ser B 63:533–550

    Article  MATH  MathSciNet  Google Scholar 

  • James GM, Sugar CA (2003) Clustering for sparsely sampled functional data. J Am Stat Soc 98:397–408

    Article  MATH  MathSciNet  Google Scholar 

  • Kumar BVR, Mehra M (2005) Wavelet based preconditioners for sparse linear systems. Appl Math Comput 171:203–224

    Article  MATH  MathSciNet  Google Scholar 

  • Leng X, Müller HG (2006) Time ordering of gene coexpression. Biostatistics 7:569–584

    Article  MATH  Google Scholar 

  • Li PL, Chiou JM (2011) Identifying cluster number for subspace projected functional data clustering original. Comput Stat Data Anal 55:2090–2103

    Article  MathSciNet  Google Scholar 

  • Liu XL, Müller HG (2003) Modes and clustering for time-warped gene expression profile data. Bioinformatics 19:1937–1944

    Article  Google Scholar 

  • Li B, Yu Q (2008) Classification of functional data: a segmentation approach. Comput Stat Data Anal 52:4790–4800

    Article  MATH  Google Scholar 

  • López-Pintado S, Romo J (2006) Depth-based classification for functional data. In: Liu R, Serfling R, Souvaine DL (eds) Data depth: robust multivariate analysis, computational geometry and applications. DIMACS series, vol 72, pp 103–121

  • Monestiez P, Nerini D (2008) A cokriging method for spatial functional data with applications in oceanology. Functional and operational statistics. Contrib Stat 36:237–242

    Article  MathSciNet  Google Scholar 

  • Müller HG, Stadtmüller U (2005) Generalized functional linear models. Ann Stat 33:774–805

    Article  MATH  Google Scholar 

  • Nerini D, Monestiez P, Manté C (2010) Cokriging for spatial functional data. J Multivar Anal 101:409–418

    Article  MATH  Google Scholar 

  • Nerini D, Ghattas B (2007) Classifying densities using functional regression trees: applications in oceanology. Comput Stat Data Anal 51:4984–4993

    Article  MATH  MathSciNet  Google Scholar 

  • Preda C, Saporta G (2005a) Clusterwise PLS regression on a stochastic process. Comput Stat Data Anal 49:991–2008

    Article  MathSciNet  Google Scholar 

  • Preda C, Saporta G (2005b) PLS regression on a stochastic process. Comput Stat Data Anal 48:149–158

    Article  MATH  MathSciNet  Google Scholar 

  • Ramsay JO, Silverman BW (2005) Functional data analysis, 2nd edn. Springer, New York

    Google Scholar 

  • Rincón M, Ruiz-Medina MD (2012) Local wavelet-vaguelette-based functional classification of gene expression data. Biometr J 54:75–93

    Article  MATH  Google Scholar 

  • Romano E, Balzanella A, Verde R (2010) Clustering spatio-functional data: a model-based approach. Studies in classification, data analysis, and knowledge organization. Springer, New York

    Google Scholar 

  • Romano E, Verde R (2011) Clustering geostatistical functional data. In: Di Ciaccio A, Coli M, Angulo JM (eds) Advanced statistical methods for the analysis of large data-sets. Studies in theoretical and applied statistics. Springer, Berlin, pp 23–31

  • Romano E, Balzanella A, Verde R (2013) A regionalization method for spatial functional data based on variogram models: an application on environmental data. In: Advances in theoretical and applied statistics, Springer, Berlin, Heidelberg

  • Rossi F, Villa N (2006) Support vector machine for functional data classification. Neurocomputing 69:730–742

  • Ruiz-Medina MD (2011) Spatial autoregressive and moving average Hilbertian processes. J Multivar Anal 102:292–305

    Article  MATH  MathSciNet  Google Scholar 

  • Ruiz-Medina MD (2012a) Spatial functional prediction from spatial autoregressive Hilbertian processes. Environmetrics 23:119–128

    Article  MathSciNet  Google Scholar 

  • Ruiz-Medina MD, Anh VV, Espejo RM, Frías MP (2013) Heterogeneous spatial dynamical regression in a Hilbert-valued context. Stoch Anal Appl 31:509–527

    Article  MATH  MathSciNet  Google Scholar 

  • Ruiz-Medina MD, Espejo RM (2012b) Spatial autoregressive functional plug-in prediction of ocean surface temperature. Stoch Environ Res Risk A 26:335–344

    Article  Google Scholar 

  • Schölkopf B, Smola A (2002) Learning with kernels. MIT Press, Cambridge

    Google Scholar 

  • Spitzner D, Marron JS, Essick GK (2002) Mixed-model functional ANOVA for studying human tactile perception. Behav Brain Res 135:43–49

    Article  Google Scholar 

  • Stein ML (1999) Interpolation of spatial data: some theory for kriging. Springer, New York

    Book  MATH  Google Scholar 

  • Stein ML (2009) Spatial interpolation of high-frequency monitoring data. Ann Appl Stat 3:272–291

    Article  MATH  MathSciNet  Google Scholar 

  • Tarpey T, Kinateder KKJ (2003) Clustering functional data. J Classif 20:93–114

    Article  MATH  MathSciNet  Google Scholar 

  • Yang JY, Peng ZL, Yu Z, Zhang RJ, Anh V, Wang D (2009a) Prediction of protein structural classes by recurrence quantification analysis based on chaos game representation. J Theor Biol 257:618–626

    Article  Google Scholar 

  • Yang JY, Yu Z, Anh V (2009b) Clustering structures of large proteins using multifractal analyses based on a 6-letter model and hydrophobicity scale of amino acids. Chaos Solitons Fractals 40:607–620

    Article  Google Scholar 

  • Zhang Z, Müller HG (2011) Functional density synchronization. Comput Stat Data Anal 55:2234–2249

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported in part by projects MTM2012-32674 (co-funded with FEDER) of the DGI, MEC, and P09-FQM-5052 of the Andalousian CICE, Spain. We would like to thank to Professor M.J. Palacín-Sánchez from the Department of Financial Economics and Operations Management of Sevilla University, Spain for her helpful comments and assessment, as well as for facilitating the financial data set.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria D. Ruiz-Medina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Medina, M.D., Espejo, R.M. & Romano, E. Spatial functional normal mixed effect approach for curve classification. Adv Data Anal Classif 8, 257–285 (2014). https://doi.org/10.1007/s11634-014-0174-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11634-014-0174-6

Keywords

Mathematics Subject Classification

Navigation