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Mixture Model Averaging for Clustering

Yuhong Wei*and Paul D. McNicholas'

Abstract

In mixture model-based clustering applications, it is common to fit several models from a family and
report clustering results from only the ‘best’ one. In such circumstances, selection of this best model
is achieved using a model selection criterion, most often the Bayesian information criterion. Rather
than throw away all but the best model, we average multiple models that are in some sense close to
the best one, thereby producing a weighted average of clustering results. Two (weighted) averaging
approaches are considered: averaging the component membership probabilities and averaging models. In
both cases, Occam’s window is used to determine closeness to the best model and weights are computed
within a Bayesian model averaging paradigm. In some cases, we need to merge components before
averaging; we introduce a method for merging mixture components based on the adjusted Rand index.
The effectiveness of our model-based clustering averaging approaches is illustrated using a family of
Gaussian mixture models on real and simulated data.

1 Introduction

Model averaging approaches provide a coherent mechanism for accounting for model uncertainty through
combining parameter estimates across a set of competing models. Bayesian model averaging (BMA; cf.
Madigan and Raftery, 1994; Raftery et al., 1995) is a popular approach to model averaging that has been
applied successfully to many statistical models, including linear regression (Raftery et al., 1998), generalized
linear models (Raftery, 1996), Cox regression models (Hoeting, Raftery, and Madigan, 1999), and survival
analysis (Volinsky et al., 1997). A comprehensive review of Bayesian model averaging is given by Hoeting,
Madigan, Raftery, and Volinsky (1999). Despite its prevalence, BMA has not previously been applied in
clustering applications, where there may be different clusterings for the same data set emanating from
different models.

While BMA has not been used, other approaches for combining several clustering results to give a single
clustering have been tried. One such method, based on least-squares, was proposed by Dahl (2006) and
has been applied to Bayesian mixture models (e.g., Molitor et al., 2010). Another class of methods, called
consensus clustering, has also been proposed. Fred and Jain (2005) summarize various clusterings in a co-
association matrix, which indicates the strength of association between objects by analyzing how often each
pair of objects appears in the same cluster. The final clustering is then determined using a voting-type
algorithm. Strehl et al. (2002) propose three graph-based consensus clustering algorithms: the cluster-
based similarity partitioning algorithm (CSPA), the hyper-graph partitioning algorithm (HGPA), and the
meta-clustering algorithm (MCLA). A problem arises when the various clusterings have different numbers of
clusters, and the same problem arises in our BMA approach; we resolve it by merging mixture components
(Section 3.1).

Model-based clustering is an idiom that is often used to describe the application of a mixture model
for clustering. Dating at least as far back as Wolfe (1963), interest in model-based clustering is increasing
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steadily in application areas such as food authenticity, social networks, and microarray gene expression
analyses (e.g., Yeung et al., 2001; Wehrens et al., 2004; Krivitsky et al., 2009; McNicholas and Murphy,
2010). In model-based clustering applications, it is common to fit many mixture models within a family (cf.
Section 2) and then report clustering results based only on the best one. Such criterion-based methods of
model selection have the general feature that the smaller (or larger, as the case may be) the value of the
criterion, the stronger the ‘evidence’ for the model (i.e., the covariance structure and number of components,
as well as number of latent variables if relevant).

In this paper, we argue that criterion-based approaches that throw away all but the best model are not
necessarily optimal. One may argue, inferentially, that it should matter that many models have been fitted
when reporting clustering results. Furthermore, criterion-based approaches may be unreliable when the
difference between the best value of a criterion is close to one or more other values. The goal of this paper
is to depart from the paradigm of selecting a single best model within the mixture model family setting.
Instead, we report clustering results based on an averaging of models. While model averaging in itself is
not a novel idea, its use within the model-based clustering literature marks a significant departure from the
accepted norm. We consider two different approaches to averaging herein: averaging models to produce one
interpretable model and directly averaging a posteriori probabilities.

The remainder of this paper is outlined as follows. In Section 2, background on model-based clustering is
provided. In Section 3, we describe our model averaging schemata, including a novel approach for merging
components, before illustrating our approaches on real data (Section 4). The paper concludes with discussion
and suggestions for future work (Section 5).

2 Model-Based Clustering

2.1 Gaussian Parsimonious Clustering Models

A p-dimensional random vector X arises from a parametric finite mixture distribution if its density can be
written f(x | 9) = 25:1 g fg(x | 84), where G is the number of components, 7, are mixing proportions

(mg > O,Zngl mg = 1), and ¥ denotes the model parameters, i.e., ¥ = (m1,...,7¢,01,...,0g). Until
very recently, Gaussian mixtures have dominated the model-based clustering literature. The likelihood for
p-dimensional x3,...,x, from a Gaussian mixture model is

n G
‘C(ﬂ) = HZW9¢(Xi | Mgazg)v (1)

i=1g=1

where ¢(x; | p,, By) is the density of a p-dimensional multivariate Gaussian distribution with mean g, and
covariance matrix 34, and 9 once again denotes the model parameters.

The density in (1) has a total of (G—1)+Gp+ Gp(p+1)/2 free parameters and so it is usually necessary
to introduce parsimony. A total of Gp(p + 1)/2 of these parameters are in the component covariances, so
imposing the isotropic constraint on the component covariances, i.e., X, = 041, is a very simple way to
reduce the number of parameters from quadratic to linear in p. Of course, this constraint — implying
spherical components with different volumes — will not be practical for most applications and so less
restrictive constraints are needed. Several such approaches have been tried, usually based on imposing
constraints upon a decomposed component covariance structure. The most famous such approach is based
on an eigen-decomposition of the component covariance matrices (Banfield and Raftery, 1993), ie., ¥, =
)\ngAgD;, where Dy is the orthogonal matrix of eigenvectors of X, A, is a diagonal matrix, with [A4| = 1,
containing elements proportional to the eigenvalues of 3/, and A4 is the associated constant. Celeux and
Govaert (1995) impose constraints on A4, Dg, and A, to obtain a family of 14 Gaussian parsimonious
clustering models (GPCMs; Table 1). The mixture package (Browne and McNicholas, 2013) for the R
software (R Core Team, 2013) provides an implementation of all 14 members of the GPCM family. Parameter



estimation for 12 of the members of the GPCM family is carried out using the expectation-maximization
(EM) algorithm (Dempster et al., 1977) and details are given by Celeux and Govaert (1995). An MM
algorithm (cf. Hunter and Lange, 2004) is used for the other two models (EVE and VEE), and extensive
details are provided by Browne and McNicholas (2014).

Table 1: Nomenclature, covariance structure, and number of covariance parameters for each member of the
GPCM family.

Volume  Shape Orientation pIM Free cov. paras.
EII Equal Equal NA A 1
VII Variable Equal NA Al G
EEI Equal Equal Cord. Axes AA D
VEI Variable Equal Cord. Axes AgA p+G—-1
EVI Equal Variable Cord. Axes AA, Gp—G+1
VVI | Variable Variable Cord. Axes AgAyg Gp
EEE | Equal Equal Equal ADAD’ p(p+1)/2
EEV | Equal Equal Variable ADy,AD; Gp(p+1)/2—(G—-1)p
VEV | Variable Equal Variable ADgAD; Gplp+1)/2—(G-1)(p—1)
VVV | Variable Variable Variable A¢DgA Dy Gp(p+1)/2
EVE | Equal Variable Equal ADA /D’ plp+1)/2+(G-1)(p—1)
VVE | Variable Variable Equal A¢DA /D’ plp+1)/2+(G—-1)p
VEE | Variable Equal Equal ADAD’ p(p+1)/2+(G—-1)
EVV | Equal Variable Variable ADyA /Dy Gplp+1)—(G—-1)

A typical application of the GPCM family of models consists of running each of the models (Table 1) for
a range of values of G. Then, the best of these models is selected using some criterion and the associated
classifications are reported. The most popular criterion for this purpose is the Bayesian information criterion
(BIC; Schwarz, 1978), i.e.,
BIC = —2I(x,9) + plogn,

where 9 is the maximum likelihood estimate of ¥, I(x, ,[9) is the maximized log-likelihood, and p is the number
of free parameters. Leroux (1992) and Keribin (2000) give theoretical results that, under certain regularity
conditions, support the use of the BIC for choosing the number of components in a mixture model. In
addition, model selection has been based on the BIC in a wide range of model-based clustering applications
(recent examples include Bouveyron et al., 2007, McNicholas and Murphy, 2008, Andrews and McNicholas,
2011, and Vrbik and McNicholas, 2014). Nonetheless, the model with the smallest BIC does not necessarily
give the best predicted classifications or the ‘correct’” number of components (see Biernacki et al., 2000, for
discussion).

2.2 A Posteriori Merging of Components

In Gaussian model-based clustering, clusters are often taken as synonymous with mixture components.
However, a cluster might itself be well modelled by a mixture of Gaussian distributions. In such cases,
mixture components can be a posteriori merged to obtain clusters, and different approaches have been
considered to do this, e.g., Baudry et al. (2010) and Hennig (2010). Baudry et al. (2010) proposed finding
the number of clusters with a hierarchical merging procedure that minimizes the entropy of the clustering
solution obtained by fitting the MCLUST family to the data — the MCLUST family is a subset of 10 of
the GPCM models (cf. Fraley and Raftery, 2002). Hennig (2010) followed a similar hierarchical merging
procedure, where some aggregation criteria are proposed based on either modality (i.e., merging components
that produce a unimodal distribution) or on misclassification probabilities (i.e., merging components to
minimize misclassification probabilities). In our merging procedure, we maximize the adjusted Rand index
(ARI; Hubert and Arabie, 1985) with a reference model.



Recent work using non-Gaussian mixture models for clustering has brought into sharp relief the fact
that, although it can work very well in some cases, merging Gaussian components is not a “get out of
jail free card” (McNicholas and Browne, 2013). The method of Baudry et al. (2010), and accompanying
software, is discussed by Vrbik and McNicholas (2014), who compare the a posteriori merging approach of
Baudry et al. (2010) with results from fitting mixtures of skew-normal distributions and mixtures of skew-t
distributions. In these experiments, the merging approach gave inferior results to fitting mixtures with more
flexible component densities. Similar results around the inferiority of merging components over fitting non-
Gaussian mixtures have been reported by others, including Murray et al. (2014) and Franczak et al. (2014).
While not considered herein, our averaging approaches could be used to average non-Gaussian mixtures or
a posteriori probabilities arising therefrom. Of course, great care would need to be taken when averaging
mixtures of skewed distributions, especially in cases where each component has its own skewness parameter.

2.3 Bayesian Model Averaging

Statistical inference with families of mixture models typically involves selection of a model using some crite-
ria and then proceeding as if the selected model has generated the data, without considering the additional
uncertainty introduced by ignoring all other models. Difficulties arise with this approach because it is
practically impossible to decide what to do when the difference between the values of the criteria for two dif-
ferent models is ‘small’. Model averaging, including frequentist model averaging (e.g., Hjort and Claeskens,
2003) and BMA, takes model uncertainty into consideration by combining parameter estimates across dif-
ferent models. Bayesian model averaging is a popular technique for model averaging, cf. Hoeting, Madigan,
Raftery, and Volinsky (1999). Borrowing their notation, suppose we have models M1, Ms, ..., Mk, and A
is the quantity of interest. The posterior distribution of A given data D is

K
pr(A | D) =) pr(A | My, D)pr(M; | D), (2)

i=1

where pr(A | M;, D) is the posterior distribution of A under model M;, pr(M; | D) is the posterior
probability for model M, i.e.,

pr(D | M;)pr(My)
S pr(D | Mi)pr(M;)]

pr(M; | D) = 3)

and

pr(D | Mi) = [ pr(D ] 0. M)pr(8, | M.)db.. ()

where 0; is the vector of parameters of model M;, pr(0; | M;) is the prior for 8; under model M;, and
pr(M,) is the prior probability of model M;.

Madigan and Raftery (1994) show that BMA can give better predictive performance than any single
model; however, BMA has two major implementation difficulties. One is that the number of models in the
summation in (2) can be prohibitively large. Another is that the posterior model probabilities are hard to
compute because they involve very high-dimensional integrals. To overcome the former problem, Madigan
and Raftery (1994) proposed using Occam’s window to choose a set of models. The idea is that if a given
model is a far worse fit to the data than the best model, then it is discarded and no longer considered. More
formally, models not in Occam’s window

{Mi  max; {pr(M; | D)} < c}
pr(M; | D)
are discarded, where c is some positive number. Madigan and Raftery (1994) use ¢ = 20 in their analyses,

drawing an analogy to a p-value of 0.05, and we use the same value in our analyses to determine which
models to average (Section 4).

(5)



In the case of mixture models, the BIC can be used to approximate the integral in (4) (Kass and Raftery,
1995; Dasgupta and Raftery, 1998). Specifically, the BIC approximation can be used to compute pr(D | M)
via

pr(D | M;) = exp {—;BICZ} ,

where BIC; is the BIC value for model M;. Therefore, under equal prior probabilities, pr(M; | D) can be
computed based on (3), i.e.,
1
exp 1 —5BIC;
pr(M; | D) = 174 { 2 1 7} )
>imy exp {—5BICk}

(6)
and Occam’s window (5) is equivalent to

{M; : BIC; — mlin{BICl} < 2logc}. (7)

Herein, we use (6) to compute the weights for our averaging approaches and we use Occam’s window (7)

to decide which models to average. Before describing our averaging approaches, we need to consider how to

merge mixture components; this will be necessary when models in Occam’s window have different numbers
of components and we want to use all of the models.

3 Methodology

3.1 Merging Mixture Components

In this section, we introduce a procedure for merging mixture components. Suppose we have a G-component
mixture model and we want to merge components to produce an H-component mixture, where H < G. The
density of the resulting mixture is just another representation of the original model, which can be denoted

H G
PO =D w7 () =) med(x| g, D), (8)

j=1 g=1
where each 77 is equivalent to one of or the sum of some of the mixing proportions 71, ..., 7, and each
f7(x) is given by one of or a mixture of some of the component densities ¢(x | py,%1),...,0(x | pg, Xa).

For example, suppose that G = 3 and H = 2; then, f;(x) could be a convex combination of the first
two Gaussian components, in which case f3(x) would equal the third one. This gives us a straightforward
method of thinking about merged components but does not tell us which components should be merged with
one another, e.g., when we considered the example with G = 3 and H = 2, we looked at only one of three
possible merging outcomes.

We develop a mixture model component merging criterion based on the ARI, which is the Rand index
(Rand, 1971) corrected for chance agreement. The Rand index compares two data partitions based on
pairwise agreement and is given by the number of pairwise agreements divided by the total number of pairs.
The correction leading to the ARI is performed to account for the fact that some cases will be correctly
classified by chance if classification is performed randomly. An ARI value of 1 corresponds to perfect class
agreement and the expected value of the ARI under random classification is 0. Some properties of the ARI
are discussed by Steinley (2004).

Herein, we use the ARI to merge components based on a ‘reference model’. The purpose of merging
components is that models in Occam’s window have the same number of components as the reference model
so that we can use them all if desired. Two cases are considered.

e In Case I, the model with the smallest BIC is the reference model. Merging is performed for models
in Occam’s window with more components than the reference model; however, models in Occam’s
window with fewer components than the reference model are discarded.



e In Case II, the model with the fewest components is the reference model and merging is performed on
other models in Occam’s window, as needed, to give the same number of components.

Of course, Case I and Case II are equivalent when the model with the smallest BIC also has the fewest
components. Note that in Case I we are effectively assuming that the BIC will only overestimate the number
of components; however, we take a more flexible position in this regard in Case II.

Our merging process is best illustrated with an example. Suppose that one model inside Occam’s window
has seven components and that the reference model is a four-component model. The partition corresponding
to the reference model is used as the underlying ‘true’ classification in the merging process and is called the
‘reference partition’. In what follows here, to avoid confusion, we use {1,2,...,7} to denote components
of the seven-component model and {a,b, ¢, d} to denote components in the reference model. The following
steps illustrate how our merging strategy works.

1. A combination matrix A of size 35 x 4 is generated. Note that (Z) = 35, where each row represents
a partial clustering, e.g., if the 22nd row of A is ass = (2,3,4,6), then component 2 goes into new
component a, component 3 goes into new component b, component 4 goes into new component ¢, and
component 6 goes into new component d.

2. For each row in A, we must deal with the remaining components, e.g., {1,5,7} in the case of row 22
with respect to the components a, b, ¢, d introduced above. A permutation matrix B (64 x 3) is created
to include all possibilities. One sample row is b; = (a, a,d), which puts component 1 into component
a, component 5 into component a, and component 7 into component d, so the model after merging has
the new components {a,b,c,d} = {1U2U5,3,4,6 U T}.

3. The ARIs between the reference partition and all partitions arising from the model after merging are
calculated and recorded in the 35 x 64 matrix C. For example, in step 1, ags = (2, 3,4, 6) is the 22nd
row in matrix A, in step 2, b; = (a,a,d) is the 4th row in matrix B, and the ARI value between
reference partition and this model after merging is stored at the 22th row and the 4th column of the
matrix C.

Once we have every element of the matrix C, the best merging combination is chosen to correspond to the
largest ARI value, i.e., the largest element in C.

3.2 Averaging A Posteriori Probabilities

In model-based clustering applications, we use z;, to denote component membership, where z;; = 1 if
observation ¢ is in component g and z;; = 0 otherwise. After parameters have been estimated, e.g., via the
EM algorithm, the a posteriori probabilities (or, equivalently, expected values)

Fed(%; | fig, )
Zle Thd(Xi | fy,, Xn)

are used to produce the predicted classifications. Typically, the 2;;, are hardened to either 0 or 1 based on
maximum a posteriori (MAP) probabilities, i.e., MAP(Z;4) = 1 if maxy {2;;,} occurs in component h = g, and
MAP(%;4) = 0 otherwise. See Basford and McLachlan (1985) for a discussion of allocation of observations
into clusters in the model-based clustering context. Within our averaging approaches, if components of a
model in Occam’s window need to be merged, then, using the notation in (8), the post-merging Z;; will
correspond to one of or the sum of pre-merging 2,4, for j=1,...,H and g =1, ..., G. For example if f(x;)
is a convex combination of what were the first two components, then we simply have 2| = Z;1 + Zi2.

After any necessary merging has been carried out for models within Occam’s window, and models are
dropped if necessary (i.e., if in Case I there are fewer components than the reference model), we compute
a weighted average of the a posteriori probabilities. For each i, we average the a posteriori probabilities

(9)

Z’ig =



from the models My, Ms, ..., Mg using the weights Pr(M; | D), cf. (6). Averages of the a posteriori
probabilities can then be hardened to give predicted classifications.

3.3 Model Averaging

In addition to averaging a posteriori model probabilities, we also consider a direct averaging of models. This
time, we only consider models within Occam’s window that have the same number of components as the
model with the smallest BIC. We compute a weighted average of the parameter estimates for each parameter
in these models M; using the weights Pr(M, | D), cf. (6). Expected values Z;, are then computed based
on the averaged parameter estimates and the predicted classifications are based on the associated maximum
a posteriori probabilities.

This model averaging approach is quite different from averaging a posteriori probabilities (Section 3.2).
Rather than focusing on a weighted average of a posteriori probabilities, possibly after merging, here we
are concerned with producing classifications from one interpretable model. That is, the classifications from
our model averaging approach will come from one parameterized, interpretable mixture model, e.g., if we
average GG-component models from the GPCM family, the result of model averaging is a G-component
Gaussian mixture model.

Note that for all of our averaging approaches, we need to be careful to correctly match components
across models, e.g., component 1 in the best model might be equivalent to component 2 in the second best
model. This issue is related to the problem of label switching in mixture models (cf. Stephens, 2000). In
both averaging strategies, we match components based on minimum distance between estimated component
means.

3.4 Comments

Although more generally applicable, we develop and demonstrate our averaging approaches for Gaussian
mixture models. Naturally, questions arise around what sort of situations might benefit from these ap-
proaches and what other methods are appropriate for comparison. Recall that the objective of our averaging
approaches is to improve on the clustering performance of a single, i.e., the best, (Gaussian) mixture model.
In the case of model averaging (Section 3.3), the result is itself a Gaussian mixture model. Accordingly,
model averaging is expected to work well for clustering in the same kind of situations where Gaussian mixture
models would be expected to work well. When averaging a posteriori probabilities in Case I (Section 3.2),
the best model is the reference model, models with fewer components are discarded, and merging is used for
models with more components than the reference model before averaging is carried out. Because the best
model is the reference model, averaging a posteriori probabilities in Case I tends to produce similar clustering
results to model averaging, and this is borne out in our real and simulated data analyses (Section 4).

When averaging a posteriori probabilities in Case IT (Section 3.2), the model with the fewest components
is the reference model and all models in Occam’s window are used for averaging (after merging is carried out
where needed). Unless the best model is also the model with the fewest components, averaging a posteriori
probabilities in Case I produces clusters that may be quite different from those produced by model averaging
or averaging a posteriori probabilities in Case I. There are two reasons for this: the number of components
is different and more models are used in the averaging. That is not to say that the clustering results arising
from averaging a posteriori probabilities in Case II will be very different to those produced by a single
Gaussian mixture model — after all, we know there is a well-fitting (as determined by being inside Occam’s
window) single Gaussian mixture with the same number of components — but rather that clustering results
arising from averaging a posteriori probabilities in Case II might be quite different to those produced by the
best model or one of our other averaging approaches. This is also borne out in our real and simulated data
analyses (Section 4).

It is possible that averaging a posteriori probabilities in Case IT might successfully capture clusters that
are not well-described by a Gaussian distribution; however, it can only do this to the extent that a model



within Occam’s window has selected the appropriate number of components (e.g., Section 4.3, Scenario III).
Because of this limitation, we do not proffer averaging a posteriori probabilities in Case II, or either of our
other averaging approaches, as techniques for finding clusters that cannot be captured using a single Gaussian
distribution. In such cases, a non-Gaussian mixture model could be used, a posteriori merging of components
(cf. Section 2.2) could be applied to the best model or to the model that results from model averaging (e.g.,
Section 4.3, Scenario III), or the approaches used herein could be applied to average non-Gaussian mixture
models.

4 Data Analyses

4.1 Performance Assessment

All of our examples are treated as genuine clustering examples, i.e., no prior knowledge of the labels or the
number of components is used. However, the true labels are known in each case and we can use them to
evaluate classification performance. There are many indices that can be used to compare agreement between
true and predicted classes. In a comprehensive comparison, Milligan and Cooper (1986) recommended the
ARI, which has become the index of choice in model-based clustering applications. As mentioned in Section 3,
Steinley (2004) discusses some properties of the ARI. We use the ARI to evaluate classification performance
herein.

4.2 Real Data Analyses
4.2.1 Italian wine

Forina et al. (1986) present data on chemical and physical properties of 178 samples of three varieties (Barolo,
Barbera, and Grignolino) of wine from the Piedmont region of Italy. A data set containing 27 physical and
chemical properties is available in the pgmm package (McNicholas et al., 2014) for R. We fit the GPCM models
to these data using mixture, under the default settings, for G = 1,2,...,9. The VVI model with G = 3
components is the best model in terms of the BIC (12103.74), but the EVI model has an almost identical
BIC value (12103.81). This is an example where choosing the ‘best’ model in terms of the BIC and ignoring
all other models is clearly questionable because the BIC values are so close. Although the BIC values are
extremely close, the classifications associated with the respective models are different, i.e., the respective
MAP classifications disagree on four of the wine samples.

We apply our averaging procedures to these data. Only the aforementioned two models lie in Occam’s
window and, because both have G = 3 components, merging components is not required. The results
(Table 2) indicate that averaging a posteriori probabilities leads to a very slight improvement in the ARI
over the best model (going from 0.8951 to 0.8962), while model averaging gives a slightly inferior ARI
(0.8456) when compared to the best model.

Table 2: A summary of the models in Occam’s window along with ARI values for the true labels versus
predicted classifications from the best model, from averaging a posteriori probabilities (AAP), and from
model averaging (MA), respectively, for the Italian wine data.

Occam’s Window Pr(M; | D) ARI Values
Model BIC G Best AAP MA
VVI 12103.74 3 0.5088
EVI 12103.81 3 0.4912 0-8951 0.8962 0-8456




4.2.2 Female voles data

Flury (1997) discusses seven measurements on female voles from two species, Microtus californicus and
Microtus ochrogaster. The data are available within the R package Flury (Flury, 2012). The GPCM models
are fitted to these data using mixture, for G = 1,2,...,9. The BIC selected a VEE model with G = 3
components and ARI = 0.6577. We apply our averaging procedures to these data. There are three models
within Occam’s window, i.e., the best model and two models with G = 2 components. When averaging a
posteriori probabilities, we merge components of the best model to give a two-component model (i.e., Case II).
Averaging a posteriori probabilities leads to much better classification performance (ARI = 0.9081) when
compared with the best model (ARI = 0.6577), cf. Table 3. Because we only consider model averaging when
there are models within Occam’s window with the same number of components as the best model, it is not
applicable here.

Table 3: A summary of the models in Occam’s window along with ARI values for the true classifications
versus classifications from the best model and from averaging a posteriori probabilities (AAP), respectively,
for the female voles data.

Occam’s Window Pr(M; | D) ARI Values
Model BIC G Best AAP
VEE 1309.37 3 0.9540
EEE 1316.70 2 0.0244 0.6577 0.9081
VEE 1316.95 2 0.0216

4.2.3 Swiss bank notes

The Swiss bank note data are available in the mclust package (Fraley et al., 2013), and comprise six
measurements on 100 genuine and 100 counterfeit old Swiss 1000-franc bank notes. The GPCM models
are fitted to these data using mixture, for G = 1,2,...,9. The BIC selects an EEE model with G = 4
components and ARI = 0.6790. This model uses two components for each of the true labels (i.e., genuine
and counterfeit). We apply our averaging procedures to these data. This time, three models lie in Occam’s
window: the first (i.e., the best) and third models have G = 4 components and the second model has G = 3
components.

When averaging a posteriori probabilities, we must either ignore the three-component model (Case I) or
merge components within the four-component models to give three-component models (Case IT). The results
(Table 4) indicate that averaging a posteriori probabilities under Case I leads to the same classification
performance as given by the best model (i.e., ARI = 0.6790); however, averaging a posteriori probabilities
under Case II leads to a great improvement in classification performance (ARI = 0.9068). When carrying out
model averaging, we only consider the two models with G = 4 components, i.e., the first and third models,
and the results (Table 4) show that model averaging has led to an improved classification performance (ARI
= 0.7602) when compared with the best model (ARI = 0.6790). However, the classification improvement
using model averaging is notably less than that from averaging a posteriori probabilities in Case II.

4.2.4 Iris data

Fisher (1936) discussed four measurements, in centimetres, of the length and width of sepals and petals
from three species of irides (Iris setosa, Iris virginica, and Iris versicolor), originally collected by Anderson
(1935). The data consist of 50 samples from each of three species and is available in the datasets package
for R. The GPCM models are fitted to these data using mixture, for G = 1,2,...,9. The BIC selected
an VEV model with G = 3 components and ARI = 0.9222. Three models lie in Occam’s window and
they do not have the same number of components. Similar to our analysis of the Swiss bank notes data



Table 4: A summary of the models in Occam’s window along with ARI values for the true labels versus
predicted classifications from the best model, from averaging a posteriori probabilities (AAP), and from
model averaging (MA), respectively, for the bank note data.

Occam’s Window Pr(M; | D) ARI Values
Model BIC G Case 1 Case 11 Best AAP MA
/ MA Case I Case II
EEE 2651.92 4 0.9819 0.6736
VEE 2653.44 3 0.3141 0.6790 0.6790 0.9068 0.7602
VEE 2659.91 4 0.0181 0.0124

(Section 4.2.3), we must either ignore one model (Case I) or merge components within the three-component
models to give two-component models (Case II). Averaging a posteriori probabilities under Case I leads to
the same classifications as given by the best model (i.e., ARI = 0.9222), while Case II gives an inferior ARI
(0.5681) when compared to the best model (cf. Table 5). Because there are three species of iris in these data,
it is not surprising that Case II does not yield a favourable result here. Model averaging is also performed
and gives a slightly inferior ARI (0.9039) when compared to the best model (Table 5).

Table 5: A summary of the models in Occam’s window along with ARI values for the true labels versus
predicted classifications from the best model, from averaging a posteriori probabilities (AAP), and from
model averaging (MA), respectively, for the iris data.

Occam’s Window Pr(M; | D) ARI Values
Model BIC G Case 1 Case II Best AAP MA
/ MA Case 1 Case II
VEV 789.37 3 0.9833 0.6531
VvV 790.70 2 0.3358 0.9222 0.9222 0.5681 0.9039
\A'AY 797.52 3 0.0167 0.0111

4.2.5 Coffee data

The coffee data comprise 43 observations on twelve chemical properties of coffee samples collected from
two species (Arabica and Robusta) from 29 countries around the world. These data are available in the
pgmm package for R. The mixture package is used to fit the GPCM family to the twelve chemical properties
for G = 1,...,9. The VEI model with G = 2 was chosen by the BIC, and there is one other model
within Occam’s window, i.e., a G = 2 component EEI model. Performing model averaging via a posteriori
probabilities or model averaging leads to perfect classification (ARI = 1; Table 6), as does the best model.

Table 6: A summary of the models in Occam’s window along with ARI values for the true labels versus
predicted classifications from the best model, from averaging a posteriori probabilities (AAP), and from
model averaging (MA), respectively, for the coffee data.

Occam’s Window Pr(M; | D) ARI Values
Model BIC G Best AAP MA
VEI 1334.22 2 0.6843 1 1 1
EEI 1335.72 2 0.3157

10



4.2.6 Examples with only one model in Occam’s window: breast cancer data and olive oil
data

In a Wisconsin breast cancer study, several features are recorded for 681 cases of potentially cancerous tu-
mours, of which 238 are actually malignant. Mangasarian et al. (1995) use these data to establish whether fine
needle aspiration can determine tumour status. These data are available in the faraway package (Faraway,
2011) for R.

The olive oil data, available in the pgmm package for R, comprise 572 observations on the percent compo-
sition of olive oil with respect to eight fatty acids found by lipid fractionation from nine areas across three
regions (Southern Italy, Sardinia, and Northern Italy) in Italy.

Fitting the GPCM models to each of these data sets using mixture, for G = 1,2,...,9, results in only
one model lying within Occam’s window. For the olive oil data, the BIC chooses an EVE model with G = 9
components. For the breast cancer data, the BIC chooses an EVE model with G = 6 components. We note
that G = 9 is the upper end of the range of values that was used for G (i.e., G =1,...,9); accordingly, we
repeated the analysis of these data using the range G = 1,...,20. The same result was obtained, i.e., the
EVE model with G = 9 components was the only model inside Occam’s window. Of course, when there is
only one model in Occam’s window, averaging is equivalent to reporting classifications from the model with
the best BIC.

4.3 Simulated Data

Three simulation scenarios are considered. In each case, data are generated via the genRandomClust ()
function from the R package clusterGeneration (Qiu and Joe, 2012). The genRandomClust() function
generates random clusters based on the method proposed by Qiu and Joe (2006).

50 5 10

15

20

5 0 510

-15

15 <10 5 0 5 10 15 -5 10 -5 0 5 10 15 20

Figure 1: A pairs plot for one of the 30 data sets from Scenario 1.

In Scenario I, we generate 30 data sets with p = 3 variables, n = 480 observations, and substantially
overlapping clusters by setting numClust=4, sepVal=0.03, numNonNoisy=3, and clustszind=2 (e.g., Fig-
ure 1). This is a very difficult clustering problem and perfect classification results are not expected. We use
mixture to fit each of the 30 data sets for G = 1,2,...,9. Over the 30 runs, the ARI values achieved by the
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best model, averaging a posteriori probabilities (Cases I and II), and model averaging were all similar (Table
7). However, the performance of averaging a posteriori probabilities in Case IT might be considered slightly
preferable to the others because it has the largest mean ARI as well as the smallest standard deviation.

Table 7: The summary for the best model, averaging a posteriori probabilities (AAP), and model averaging
(MA) among 30 runs from Scenario I.

ARI Best AAP MA
Case I Case 11

Average 0.7345 0.7373 0.7528 0.7442

Std. Deviation 0.0624 0.0631 0.0367 0.0604

In Scenario II, we generate p = 3 variables for n = 644 observations and we add one noise variable (by
setting numNoisy=1). We used mixture to fit the GPCM models to these data for G =1,2,...,9. The BIC
selects a VEE model with G = 4 and ARI = 0.9061, and there are four models within Occam’s window
(Table 8). One of the models (EEI, G = 6) has more components than the best model and so merging is
required before averaging a posteriori probabilities. Both model averaging (ARI = 0.9196) and averaging
a posteriori probabilities (ARI = 0.9092) lead to a slight improvement in classification performance, with
the former being slightly better.

Table 8: A summary of the models in Occam’s window along with ARI values for the true labels versus
predicted classifications from the best model, from averaging a posteriori probabilities (AAP), and from
model averaging (MA), respectively, for the simulated data from Scenario II.

Occam’s Window Pr(M; | D) ARI Values
Model BIC G AAP MA Best AAP MA
VEE 11981.63 4 0.4410 0.4504
EEE 11982.15 4 0.3401 0.3473
EVE 11983.23 4 0.1990 0.2024 0-9061 0-9092 0-9196
EEI 11987.83 6 0.0199

In Scenario 11, we generated four components. Two are simulated from bivariate Gaussian distributions,
and the other two are uniformly generated from triangles via the rejection method (Figure 2). There are 500
points, 100 in each of the triangles and 150 in each of the Gaussian components. These data were generated
to illustrate our merging approaches when the model generating the data is very clearly not within the family
of models being used for analysis.

We fit the GPCM models to these data using mixture, for G = 1,...,9. A VVV model with G = 6
components and ARI = 0.9061 was selected by the BIC (Figure 3), and there are four other models in
Occam’s window (with G = 4,5,6, and 7 components, respectively). Averaging a posteriori probabilities in
Case I leads to some improvement in ARI (0.9344), and in Case II leads to perfect classification (Table 9,
Figure 3). Model averaging gives the same classification performance as the best model (Table 10); notably,
if we merge the components of the resulting model, perfect classification results are obtained (Figure 3). This
is a nice illustration of how model averaging can be followed by component merging to model non-Gaussian
clusters.

4.4 Comparison with Strehl’s Consensus Clustering Algorithms

In this section, our methodology is compared with the consensus clustering algorithms proposed by Strehl
et al. (2002). Consensus clustering is defended as forming a single consolidated clustering through combining
multiple clusterings of a set of objects without considering the features or algorithms that determined these
clusterings. Strehl et al. (2002) introduced three efficient heuristics to solve the cluster ensemble problem:
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Figure 2: Scatterplot of the simulated data from Scenario III.

Table 9: A summary of the models in Occam’s window along with ARI values for the true labels versus pre-
dicted classifications from the best model and from averaging a posteriori probabilities (AAP), respectively,
for the simulated data from Scenario III.

Occam’s Window Pr(M; | D) ARI Values
Model BIC G Case I Case 11 Best AAP
Case I Case 11

VVV 4168.84 6 0.6820 0.5471

VVI 4170.39 6 0.3145 0.2523

\AAY 4171.37 5 0.1547 0.9061 0.9344 1
\AAY 4173.92 4 0.0431

VVI 4179.37 7 0.0035 0.0028

Table 10: A summary of the models in Occam’s window along with ARI values for the true labels versus
predicted classifications from the best model and from model averaging (MA), respectively, for the simulated
data from Scenario III.

Occam’s Window & G =6 Pr(M; | D) ARI Values
Model BIC G Best MA
VVV 4168.84 6 0.6844
VVI 4170.39 6 0.3156 0-9061 0-9061

CSPA, HGPA, and MCLA (cf. Section 1). These three algorithms transform the given multiple clusterings
into a suitable graph representation. Note that MCLA uses hyperedge collapsing operations to determine
soft cluster membership values for each object and is a more efficient algorithm than CSPA or HGPA.
MATLAB (MATLAB, 2011) code for these three algorithms is available at http://strehl.com. To facilitate
comparison of Strehl’s algorithms to our methodology, the partitions corresponding to the models in Occam’s
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Figure 3: The best model (VVV, G = 6, left-hand side) and one other model from within Occam’s window
(VVV, G =4, right-hand side) for Scenario III.

window are taken to be the multiple clusterings that need to be consolidated.

We compare our methods to those using Strehl’s consensus clustering algorithms for each of the five real
data sets already considered that had multiple models inside Occam’s window (Table 11). For the coffee data,
there is a three-way tie between averaging a posteriori probabilities, model averaging, and MCLA. In the
other four cases, one of our averaging a posteriori probabilities approaches outperforms all other approaches.
In the four cases were model averaging was applied, it gave the same classification performance as MCLA
in one case and outperformed all consensus clustering approaches in the other three cases. Looking at the
three consensus clustering algorithms, we note that MCLA always outperforms both CSPA and HGPA. The
very poor performance of both CSPA and HGPA on the coffee data is also noteworthy, especially when one
considers that all other methods give perfect classification results.

Table 11: A summary of ARI values for our methodology and Strehl’s algorithms on five real data sets. The
highest ARI for each data set is highlighted.

AAP

MA CSPA HGPA MCLA
Case I Case 11
Wine 0.8962 0.8456 0.7590 0.1522 0.8625
Female voles 0.9081 0.4488 0.3802 0.7060
Bank note 0.6790 0.9068 0.7602 0.4868 0.0315 0.6790
Iris 0.9222 0.5681 0.9039 0.8508 0.2889 0.9039
Coffee 1 1 0.1100 0.0792 1

5 Discussion

This paper proposes a departure from the ‘single best model’ paradigm that has heretofore dominated
the model-based clustering literature. Two averaging approaches are used and both focus on averaging
models within Occam’s window: one averages a posteriori probabilities and the other averages the models’
parameters to give a single interpretable model. Averaging a posteriori probabilities may require some
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components to be merged, and we introduced an ARI-based method to do this. This method requires a
reference model, which is either taken to be the best model within Occam’s window or the model within
Occam’s window with the fewest components.

While we present our approaches as either averaging a posteriori probabilities or averaging models, one
could also think of them as either using all models in Occam’s window or using just the models with the
same number of components as the best model. When using model averaging, we use the models with
the same number of components as the best model. When averaging a posteriori probabilities in Case I,
we use the models with at least as many components as the best model. When averaging a posteriori
probabilities in Case II, we use all models to carry out the averaging. The performance of averaging a
posteriori probabilities will depend on the efficacy of the component merging approach used — the method
proposed herein (Section 3.1) clearly worked very well on the real and simulated data considered in Section 4.
The performance also depends on how good the choice of the number of components is; in fact, this is a
central issue with all three of our approaches. Instead of choosing the number of components corresponding
to the best model or choosing the fewest components, other approaches could be used to select the number
of components.

We used three simulation scenarios and seven real data sets to illustrate our approaches. On the seven
real data sets, the performance of our averaging techniques was similar to, or slightly better than, that of
the best model. In all but one case, averaging a posteriori probabilities in Case II gave comparable or better
performance to the best model and the other averaging approaches. The exception arose in the analysis of
the iris data, where the number of components in the reference model was smaller than the true number of
classes. Our approaches performed favourably when compared to the three consensus clustering algorithms
introduced by Strehl et al. (2002). Averaging a posteriori probabilities in Case II has the advantage of using
all models within Occam’s window and perhaps has the greatest potential to notably improve classification
performance; however, there is the risk that a model with too few components will result. Using model
averaging or averaging a posteriori probabilities in Case I avoids the risk of underestimating the number of
components relative to the best model; however, the potential for improvement in classification performance
may not be as great.

One may argue that averaging is not needed, and that one should just report the set of competing models
within Occam’s window. Of course, there may be particular applications where this is preferable; however,
end users generally want a single clustering result and our averaging approaches deliver this — in fact,
similar to model-based clustering in general, they deliver this in both hard and soft varieties. In terms of
speed, it is noteworthy that the merging and averaging steps we use, i.e., the steps that we carry out above
and beyond the usual model-based clustering procedure, are very fast and can be carried out for very large
values of n, G, and p (in fact, the value of latter is irrelevant in this respect). This means that our averaging
approaches will not be a limiting factor in performing model-based clustering for data with larger values of
n, G, and/or p, i.e., our averaging approaches can be applied to any model-based clustering technique that
itself works well for the data at hand. In such cases, it might be worth considering the LASSO-penalized
BIC (Bhattacharya and McNicholas, 2014) as an alternative to the BIC, and this will be explored in future
work.

The approaches introduced herein are perhaps the beginning of a corpus of work on averaging for families
of mixture models in model-based clustering. We used the GPCM family of models to illustrate our ap-
proaches, but they could equally well be applied to non-Gaussian mixtures and to other families. We opted
for ¢ = 20 in the definition of Occam’s window (5), and the use of other values will be explored in future
work. Alternatives to the BMA framework we consider could also be explored, leading to different weights
and/or a different window. We focused on clustering applications herein, but our merging methods could
also be applied, in an analogous fashion, for model-based classification (e.g., Dean et al., 2006; McNicholas,
2010; Andrews et al., 2011) and model-based discriminant analysis (Hastie and Tibshirani, 1996); this will
also be a focus of future work.
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