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Abstract Observations distant from the majority or deviating from the gen-
eral pattern often appear in datasets. Classical estimates such as the sample
mean or the sample variance can be substantially affected by these observations
(outliers). Even a single outlier can have huge distorting influence. However,
when one deals with real-valued data there exist robust measures/estimates
of location and scale (dispersion) which reduce the influence of these atypical
values and provide approximately the same results as the classical estimates
applied to the typical data without outliers.

In real-life, data to be analyzed and interpreted are not always precisely
defined and they cannot be properly expressed by using a numerical scale
of measurement. Frequently, some of these imprecise data could be suitably
described and modelled by considering a fuzzy rating scale of measurement.

In this paper, several well-known scale (dispersion) estimators in the real-
valued case are extended for random fuzzy numbers (i.e., random mechanisms
generating fuzzy-valued data), and some of their properties as estimators for
dispersion are examined. Furthermore, their robust behaviour is analyzed us-
ing two powerful tools, namely, the finite sample breakdown point and the
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sensitivity curves. Simulations, including empirical bias curves, are performed
to complete the study.

Keywords finite sample breakdown point · empirical bias curves · fuzzy
numbers · random fuzzy numbers · robustness · scale estimation · sensitivity
curves

1 Introduction

Imprecise data can be found in many real-life situations. Fields like Social and
Biomedical Sciences or Engineering have often to deal with this kind of data.
For instance, the valuation/rating of the employee productivity, the customer
satisfaction, the water quality or the technological impact, are matters for
which values correspond to intrinsically imprecise data. This type of data can
be often properly expressed and modelled by means of fuzzy numbers.

The concept of the so-called random fuzzy numbers (RFNs for short, see
Puri and Ralescu [23] for the seminal reference about), has been introduced to
formalize the random mechanism generating fuzzy number-valued data within
a probabilistic setting.

In summarizing or representing the central tendency or location of an RFN,
some measures have been suggested, namely, the so-called Aumann-type mean
(see Puri and Ralescu [23]) and two recently introduced extensions of the
median based on L1-type metrics between fuzzy numbers (more concretely,
the 1-norm and the wabl/ldev/rdev ones, see Sinova et al. [26,27]).

The measurement of the variability/dispersion of an RFN is also a useful
complementary tool to summarize its distribution. In a fuzzy setting the vari-
ability of the values of an RFN has been measured by means of the Fréchet
variance, defined in terms of a convenient L2-type metric (see, for instance,
Lubiano et al. [18], Ramos-Guajardo and Lubiano [24], Blanco-Fernández et
al. [1,2]).

An important and valuable feature of an (either location or scale) estimator
is to be robust. The lack of robustness of an estimator makes it to be sensitive
to the influence of extreme/atypical values (outliers) among data. Sinova et
al. [26,27] have shown that, as for the real-valued case, whereas the Aumann-
type mean is highly affected by the presence of outliers, the 1-norm and the
wabl/ldev/rdev medians are two robust alternatives in estimating location.

The aim of this contribution is to introduce some scale measures for RFNs
on the basis of two L1-type metrics, and to analyze their robustness, that is,
their sensitivity to either changes of values or the presence of outliers and in-
liers (usually repeated values in the data context) among data, as well as to
compare them with the standard deviation measure. The finite sample break-
down point, the empirical bias curves and the sensitivity curves will be the
employed tools to carry out this study.

In Section 2 the preliminaries on fuzzy numbers, arithmetic and metrics
between them, and the concept of RFN and related location measures are
recalled. Section 3 extends some scale measures for fuzzy data, analyzing some



Robust scale estimators for fuzzy data 3

of their relevant properties as dispersion measures. In Section 4 we focus on the
study of the robustness of the measures through the finite sample breakdown
point of the scale estimators considered in the previous section; simulations are
also performed to represent the corresponding empirical bias curves. Section 5
presents the sensitivity curves associated with the scale estimators. Finally,
some future research directions are commented.

2 Preliminaries about fuzzy data
associated with random experiments

As we have already commented, in dealing with imprecise data associated with
random experiments, fuzzy numbers become often an appropriate concept to
express and model these data (see, for instance, De la Rosa de Sáa et al. [6],
Blanco-Fernández et al. [1,2]). Actually, fuzzy numbers determine a continuous
scale in which each element has an intuitive meaning, although elements can-
not be one-to-one translated into words of a natural language that should be
necessarily finite. Furthermore, this scale is very rich and expressive and it can
be well-handled mathematically through a suitable arithmetic. Although this
arithmetic does not inherit all the properties of the arithmetic for real numbers,
the use of different metrics helps often to overcome the associated drawbacks.
The preliminary concepts about are to be recalled in Subsection 2.1.

To analyze statistically fuzzy data the preceding concepts should be ac-
companied with the modelling of the random mechanisms generating them. A
well-supported model for this purpose is the one given within the probabilistic
setting by random fuzzy numbers. Subsection 2.2 recalls this concept along
with some of the most relevant known summary location measures associated
with its induced distribution.

2.1 Fuzzy data, arithmetic and metrics

Fuzzy numbers (also referred to by some authors as fuzzy intervals) are for-
malized as follows:

Definition 1 A (bounded) fuzzy number is a mapping Ũ : R→ [0, 1] such
that for all α ∈ [0, 1] the α-level set defined as

Ũα =

{x ∈ R : Ũ(x) ≥ α} if α ∈ (0, 1]

cl{x ∈ R : Ũ(x) > 0} if α = 0

with ‘cl’ denoting the closure of the set, is a nonempty compact interval. For
each x ∈ R, the value Ũ(x) can be interpreted as the ‘degree of compatibility

of x with the property defined by Ũ ’. The space of (bounded) fuzzy numbers
will be denoted by F∗c (R).
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Real numbers can be viewed as special fuzzy numbers, so that each real
number x can be identified with the indicator function of the corresponding
singleton 1{x}.

When fuzzy numbers are considered to model experimental data, statistics
to analyze them are frequently based on two arithmetical operations, namely,
the sum and the product by scalars. The common way to extend the sum and
the product by a scalar from R to F∗c (R) is to use Zadeh’s extension principle
[30], which is equivalent to consider level-wise the usual interval arithmetic.
More concretely,

Definition 2 Given Ũ , Ṽ ∈ F∗c (R), the sum of Ũ and Ṽ is the fuzzy number

Ũ + Ṽ ∈ F∗c (R) such that for each α ∈ [0, 1]

(Ũ+Ṽ )α = Minkowski sum of Ũα and Ṽα =
[

inf Ũα+inf Ṽα, sup Ũα+sup Ṽα
]
.

Definition 3 Given Ũ ∈ F∗c (R) and γ ∈ R, the product of Ũ by the scalar

γ is the fuzzy number γ · Ũ ∈ F∗c (R) such that for each α ∈ [0, 1]

(γ · Ũ)α =


[
γ · inf Ũα, γ · sup Ũα

]
if γ ≥ 0

[
γ · sup Ũα, γ · inf Ũα

]
otherwise.

A remarkable fact and distinguishing feature in contrast to the real-valued
case, is that when F∗c (R) is endowed with the preceding arithmetic it does not

have a linear but a conical (i.e. semilinear) structure. Thus, Ũ+(−1)·Ũ 6= 1{0}

= neutral element for the fuzzy sum, but in this case Ũ reduces to a real
number.

Due to such a nonlinearity, one cannot state a definition for the difference
between fuzzy numbers that is always well-defined and simultaneously satisfies
that (Ũ − Ṽ ) + Ṽ = Ũ whatever Ũ , Ṽ ∈ F∗c (R) may be. This crucial draw-
back can be substantially overcome in developing statistics with fuzzy data
by involving suitable metrics. In this paper, we will make use of the following
ones:

Definition 4 (Diamond and Kloeden [7]) Given Ũ , Ṽ ∈ F∗c (R),

– the mapping ρ1 : F∗c (R) × F∗c (R)→ [0,+∞) defined as

ρ1(Ũ , Ṽ ) =
1

2

∫
(0,1]

(∣∣∣inf Ũα − inf Ṽα

∣∣∣+
∣∣∣sup Ũα − sup Ṽα

∣∣∣) dα
is called the 1-norm distance between Ũ and Ṽ ;

– the mapping ρ2 : F∗c (R) × F∗c (R)→ [0,+∞) defined as

ρ2(Ũ , Ṽ ) =

√
1

2

∫
(0,1]

([
inf Ũα − inf Ṽα

]2
+
[
sup Ũα − sup Ṽα

]2)
dα

is called the 2-norm distance between Ũ and Ṽ .
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Definition 5 (Sinova et al. [27]) Given Ũ , Ṽ ∈ F∗c (R), the mapping D1 :
F∗c (R) × F∗c (R)→ [0,+∞) given by

D1(Ũ , Ṽ ) = |wabl(Ũ)− wabl(Ṽ )|

+
1

2

∫
[0,1]

(
|ldevŨ (α)− ldevṼ (α)|+ |rdevŨ (α)− rdevṼ (α)|

)
dα,

where

wabl(Ũ) =

∫
[0,1]

mid Ũα dα,

ldevŨ (α) = wabl(Ũ)− inf Ũα, rdevŨ (α) = sup Ũα − wabl(Ũ),

with mid Ũα denoting the center/mid-point of Ũα, is called the wabl/ldev/

rdev-based L1 metric between Ũ and Ṽ .

Metrics ρ1 and D1 are L1-type ones on F∗c (R), whereas ρ2 is L2-type,
and the three corresponding metric spaces are separable. Moreover, through
the support function of fuzzy sets (see Puri and Ralescu [22]) and with the
above recalled arithmetic the metric spaces (F∗c (R), ρ1) and (F∗c (R),D1) can
be isometrically embedded onto a convex cone of the Banach space of the
L1-type real-valued functions defined on [0, 1] × {−1, 1} with the functional
arithmetic and the distance induced by certain norms, and (F∗c (R), ρ2) can be
isometrically embedded onto a convex cone of the Hilbert space of the L2-type
real-valued functions defined on [0, 1]×{−1, 1} with the functional arithmetic
and the distance induced by a certain norm.

2.2 Random fuzzy numbers and some relevant central tendency measures

To formalize the random mechanisms generating fuzzy data within a proba-
bilistic setting, the following notion is considered

Definition 6 (Puri and Ralescu [23]) Given a probability space (Ω,A, P ),
an associated random fuzzy number (for short RFN) is a mapping X :
Ω → F∗c (R) such that for all α ∈ [0, 1] the real-valued mappings inf Xα
and supXα are random variables, where Xα : Ω → P(R) is such that Xα(ω)
=
(
X (ω)

)
α

.

Remark 1 Equivalently, X : Ω → F∗c (R) is said to be an RFN if X is a
Borel-measurable mapping w.r.t. the Borel σ-field generated on F∗c (R) by the
topology induced by several different metrics, like those in Definitions 4 and 5.
This Borel-measurability ensures that one can properly refer to the distribution
induced by an RFN, the stochastic independence of RFNs, and so on, without
needing to state expressly these notions.
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Location measures are the first logical attempt when one wants to summa-
rize the distribution of either a random fuzzy number (population measure) or
a sample of observations from it (sample measure). The best known location
measure is the so-called Aumann-type mean value for random fuzzy numbers,
which extends the mean of a random variable and is formalized as follows:

Definition 7 (Puri and Ralescu [23]) Let X be a random fuzzy number as-
sociated with the probability space (Ω,A, P ) which is integrably bounded,
that is, E(max{| inf X0|, | supX0|}) <∞. The (population) Aumann-type

mean or expected value of X is the fuzzy number Ẽ(X ) ∈ F∗c (R) such that
for each α ∈ [0, 1] (

Ẽ(X )
)
α

= [E(inf Xα), E(supXα)]

with E denoting the expected value of a real-valued random variable.
In particular, if x̃n = (x̃1, . . . , x̃n) is a sample of observations from X , the

(sample) Aumann-type mean is the fuzzy number x̃n given for all α ∈ [0, 1]
by (

x̃n

)
α

=

(
1

n
· (x̃1 + . . .+ x̃n)

)
α

=

[
1

n

n∑
i=1

inf(x̃i)α,
1

n

n∑
i=1

sup(x̃i)α

]
.

Two recently introduced location measures extending the median of a ran-
dom variable are the following:

Definition 8 (Sinova et al. [26]) Let X be a random fuzzy number. The (pop-

ulation) 1-norm median of X is the fuzzy number M̃e(X ) such that for each
α ∈ [0, 1] (

M̃e(X )
)
α

=
[
Me
(

inf Xα
)
,Me

(
supXα

)]
,

with Me denoting the median of a real-valued random variable and where, in
case Me

(
inf Xα

)
or Me

(
supXα

)
are non-unique, we will follow the most usual

convention, that is, we will consider the midpoint of the interval of medians.
In particular, if x̃n = (x̃1, . . . , x̃n) is a sample of observations from X ,

the (sample) 1-norm median is the fuzzy number
̂̃
Me(x̃n) given for all

α ∈ [0, 1] by(̂̃
Me(x̃n)

)
α

=
[
Me{inf(x̃1)α, . . . , inf(x̃n)α},Me{sup(x̃1)α, . . . , sup(x̃n)α}

]
.

Definition 9 (Sinova et al. [27]) Let X be a random fuzzy number. The (pop-

ulation) wabl/ldev/rdev median of X is the fuzzy number M̃(X ) such that
for each α ∈ [0, 1]

(M̃(X ))α =
[
Me
(
wabl(X )

)
−Me

(
ldevX (α)

)
,Me

(
wabl(X )

)
+ Me

(
rdevX (α)

)]
,

where in case Me(wabl(X )), Me(ldevX (α)) or Me(rdevX (α)) are non-unique
the most usual convention is considered.
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In particular, if x̃n = (x̃1, . . . , x̃n) is a sample of observations from X , the

(sample) wabl/ldev/rdev median is the fuzzy number
̂̃
M(x̃n) given for all

α ∈ [0, 1] by( ̂̃
M(x̃n)

)
α

=
[
Me{wabl(x̃1), . . . ,wabl(x̃n)} −Me{ldevx̃1

(α), . . . , ldevx̃n
(α)},

Me{wabl(x̃1), . . . ,wabl(x̃n)}+ Me{rdevx̃1
(α), . . . , rdevx̃n

(α)}
]
.

It should be pointed out that the preceding location measures preserve
several valuable properties from the real-valued case.

Proposition 1 (Puri and Ralescu [23], Sinova et al. [26], Sinova et al. [27])

Ẽ, M̃e and M̃ are equivariant under affine transformations on F∗c (R), that is,

if γ ∈ R, Ũ ∈ F∗c (R) and Ẽ(X ) exists, then

Ẽ(γ · X + Ũ) = γ · Ẽ(X ) + Ũ ,

M̃e(γ · X + Ũ) = γ · M̃e(X ) + Ũ , M̃(γ · X + Ũ) = γ · M̃(X ) + Ũ .

Proposition 2 (Körner [14], Lubiano et al. [18], Sinova et al. [26], Sinova et
al. [27]) Let X be a random fuzzy number. Then,

Ẽ(X ) = arg min
Ũ∈F∗c (R)

E

([
ρ2(X , Ũ)

]2)
,

M̃e(X ) = arg min
Ũ∈F∗c (R)

E
(
ρ1(X , Ũ)

)
, M̃(X ) = arg min

Ũ∈F∗c (R)
E
(
D1(X , Ũ)

)
,

whenever the involved expectations exist.

3 Scale measures for random fuzzy numbers

In the preceding section some location measures for random fuzzy numbers
have been recalled. In addition to central tendency, another useful summary
tool associated with the distribution of a random element is the measurement
of its dispersion/variability, the so-called scale measures being the ones quan-
tifying it.

In this section, several scale measures are introduced for random fuzzy
numbers, the measures being based on the metrics and the location measures
recalled in Section 2. In formalizing these measures, Fréchet’s approach [10] is
to be considered. In accordance with this approach the scale measures can be
interpreted as a measure of the ‘mean error’ in approximating/estimating the
values of the RFN by means of a fuzzy number. The scale measures we are
going to present are assumed to be given in the same ‘units’ of the RFN.

Let X be an RFN, x̃n = (x̃1, . . . , x̃n) be a sample of observations from X
and consider the metrics between fuzzy numbers ρ2 and D1 ∈ {ρ1,D1}.
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Definition 10 The (population) standard deviation is the real number
SD(X ), if it exists, given by

SD(X ) =

√
E

([
ρ2
(
X , Ẽ(X )

)]2)
.

In particular, the (sample) standard deviation is the real number ŜD(x̃n)
given by

ŜD(x̃n) =

√√√√ 1

n

n∑
i=1

[
ρ2(x̃i, x̃n)

]2
.

Remark 2 It should be pointed out that the standard deviation of an RFN
corresponds to the squared root of the variance introduced by Körner [14]
(see Lubiano et al. [18], Körner and Näther [15] and González-Rodŕıguez et
al. [12], for the definition based on generalized metrics and more general fuzzy
set-valued random elements).

Definition 11 The (population) average distance deviation about the
mean is the real number D1-ADD(X ), if it exists, given by

D1-ADD(X ) = E
(
D1

(
X , Ẽ(X )

))
.

In particular, the (sample) average distance deviation about the

mean is the real number ̂D1-AAD(x̃n) given by

̂D1-ADD(x̃n) =
1

n

n∑
i=1

D1

(
x̃i, x̃n

)
.

Definition 12 The (population) median distance deviation about the
D1-median is the real number D1-MDD(X ), if it exists, given by

D1-MDD(X ) =

Me
(
ρ1
(
X , M̃e(X )

))
if D1 = ρ1

Me
(
D1

(
X , M̃(X )

))
if D1 = D1

In particular, the (sample) median distance deviation about the

D1-median is the real number ̂D1-MDD(x̃n) given by

̂D1-MDD(x̃n) =


Me

{
ρ1

(
x̃1,

̂̃
Me(x̃n)

)
, . . . , ρ1

(
x̃n,

̂̃
Me(x̃n)

)}
if D1 = ρ1

Me

{
D1

(
x̃1,

̂̃
M(x̃n)

)
, . . . ,D1

(
x̃n,

̂̃
M(x̃n)

)}
if D1 = D1

where in case Me is not unique, the usual convention of the mid-point of
possible medians will be applied.
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Before analyzing some relevant properties of these measures which are in-
herited from the real-valued case, we are going to prove that they are well-
defined whenever they exist, because the involved random distances are real-
valued random variables, and they actually extend well-known scale measures
for real-valued random variables. Thus,

Proposition 3 Let X : Ω → F∗c (R) be an RFN associated with the probability

space (Ω,A, P ), and let Ũ be an arbitrary fuzzy number. Then, the mappings

ρ2(X , Ũ) : Ω → R, ρ1(X , Ũ) : Ω → R and D1(X , Ũ) : Ω → R are (A,BR)-
measurable (i.e., they are real-valued random variables).

Proof Let ([0, 1],M[0,1], λ) denote the Lebesgue measure space on [0, 1]. Map-
pings h1, h2 : Ω × [0, 1] → R with h1(ω, α) = inf Xα(ω) and h2(ω, α) =
supXα(ω) are A ⊗M[0,1]-measurable (see López-Dı́az and Gil [16]). Conse-
quently, h3 : Ω × [0, 1] → R with h3(ω, α) = midXα(ω) is also A ⊗M[0,1]-
measurable. Since λ is a finite measure, on the basis of the Fubini Theorem one
can guarantee that the function g : Ω × [0, 1]→ R with g(ω, α) = wabl(X (ω))
whatever α ∈ [0, 1] may be is A⊗M[0,1]-measurable.

On the other hand, mappings h∗1, h
∗
2 : Ω×[0, 1]→ R with h∗1(ω, α) = inf Ũα

and h∗2(ω, α) = sup Ũα are left-continuous with respect to α on [0, 1] and do not
depend on ω, so that they are A⊗M[0,1]-measurable. Trivially, the constant

function g∗ : Ω × [0, 1] → R with g∗(ω, α) = wabl(Ũ) whatever ω ∈ Ω and
α ∈ [0, 1] maybe is A⊗M[0,1]-measurable.

As a consequence from these conclusions, the functions [h1(·, ·)− h∗1(·, ·)]2
+ [h2(·, ·)−h∗2(·, ·)]2, |h1(·, ·)−h∗1(·, ·)|+ |h2(·, ·)−h∗2(·, ·)|, |g(·, ·)−g∗(·, ·)| and
|g(·, ·)− h1(·, ·)− (g∗(·, ·)− h∗1(·, ·))|+ |h2(·, ·)− g(·, ·)− (h∗2(·, ·)− g∗(·, ·))| are
A ⊗M[0,1]-measurable. On the basis of the Fubini Theorem, and because of

λ being a finite measure, we have that ρ2(X , Ũ), ρ1(X , Ũ) and D1(X , Ũ) are
(A,BR)-measurable. �

On the basis of the preceding result, the scale measures introduced in
this section are well-defined whenever they exist. Moreover, they extend well-
known measures for real-valued random variables, as it is now to be demon-
strated.

Proposition 4 Let X : Ω → F∗c (R) be an RFN associated with the probability
space (Ω,A, P ). If X = 1{X} a.s. [P ] for a real-valued random variable X as-
sociated with (Ω,A, P ), then SD(X ), D1-ADD(X ) and D1-MDD(X ) coincide
with the corresponding measures for the real-valued case.

Proof This is immediate taking into account that
– the Aumann-type mean, the 1-norm median and the wabl/ldev/rdev me-

dian coincide in such situation with the corresponding measures for the
real-valued case

– and the ρ2 and D1 metrics are generalizations of the Euclidean distance in
R. �
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The scale measures in Definitions 10-12 preserve many interesting proper-
ties for real-valued random variables. More concretely,

Proposition 5 SD, D1-ADD and D1-MDD are nonnegative operators.

Proposition 6 SD(X ) = 0, or D1-ADD(X ) = 0, holds if, and only if, the

RFN X is degenerate at a fuzzy number (i.e., there exists a fuzzy number Ũ

such that X = Ũ a.s. [P ]). Furthermore, if the RFN X is degenerate at a fuzzy
number, then D1-MDD(X ) = 0.

Proof Indeed, because of the non-negativity of the distances between fuzzy
numbers, one can conclude that SD(X ) = 0 or D1-ADD(X ) = 0 if, and only

if, D(X , Ẽ(X )) = 0 a.s. [P ] whatever D ∈ {ρ2, ρ1,D1} may be, that is, if and

only if X = Ẽ(X ) a.s. [P ].

On the other hand, if X = Ũ a.s. [P ], then D1(X , Ũ) = 0 a.s. [P ], whence
D1-MDD(X ) = 0. �

Remark 3 As for the real-valued case, D1-MDD(X ) = 0 does not generally
imply that the RFN X is degenerate at a fuzzy number. For instance, if X is
a nondegenerate random fuzzy number taking on the triangular fuzzy values
Tri(0, 1, 2) and Tri(1, 2, 3) with probabilities 2/3 and 1/3, respectively (where,(
Tri(a, b, c)

)
α

= [α · b + (1 − α) · a, α · b + (1 − α) · c]), then M̃e(X ) = M̃(X )
= Tri(0, 1, 2), whence D1-MDD(X ) = Me{0, 0, 1} = 0.

Proposition 7 SD, D1-ADD and D1-MDD are shift invariant and scale
equivariant. That is, if γ ∈ R, Ũ ∈ F∗c (R) and X is an RFN for which the
involved scale measures exist, then,

SD(γ · X + Ũ) = |γ| · SD(X ), D1-ADD(γ · X + Ũ) = |γ| ·D1-ADD(X ),

D1-MDD(γ · X + Ũ) = |γ| ·D1-MDD(X ).

Proof Indeed, whatever the metric D ∈ {ρ2, ρ1,D1} and the location mea-

sure C̃(X ) ∈ {Ẽ(X ), M̃e(X ), M̃(X )} may be, because of the properties of the
metrics and the location measures we have that

D
(
γ · X + Ũ , C̃(γ · X + Ũ)

)
= D

(
γ · X + Ũ , γ · C̃(X ) + Ũ

)
= |γ| ·D

(
X , C̃(X )

)
,

whence the proof is immediately concluded. �

Proposition 8 Let X be an RFN associated with the probability space (Ω,A, P ),
and let (X1, . . . ,Xn) be a simple random sample from X .

i) If Ẽ(X ) and SD(X ) exist, then the statistic ŜD(X1, . . . ,Xn) is a strongly
consistent estimator of SD(X ), that is,

lim
n→∞

ŜD(X1, . . . ,Xn) = SD(X ) a.s. [P ].
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ii) If D1 ∈ {ρ1,D1}, and Ẽ(X ) and D1-ADD(X ) exist, then the statistic
̂D1-ADD(X1, . . . ,Xn) is a strongly consistent estimator of D1-ADD(X ),

that is,

lim
n→∞

̂D1-ADD(X1, . . . ,Xn) = D1-ADD(X ) a.s. [P ].

iii) If for each α ∈ [0, 1] the medians of the real-valued random variables inf Xα
and supXα are unique, and the sequences of the real-valued sample medians{

Me{inf(X1)α, . . . , inf(Xn)α}
}
n

and
{

Me{sup(X1)α, . . . , sup(Xn)α}
}
n

as
functions of α over [0, 1] are both uniformly integrable, then the statistic
̂ρ1-MDD(X1, . . . ,Xn) is a strongly consistent estimator of ρ1-MDD(X ),

that is,

lim
n→∞

̂ρ1-MDD(X1, . . . ,Xn) = ρ1-MDD(X ) a.s. [P ].

iv) If the population median of the real-valued random variable wabl(X ) is
unique, and also for each α ∈ [0, 1] the population medians of the real-valued
random variables ldevX (α) and rdevX (α) are actually unique, and the
two sequences of sample medians {Me

{
ldevX1

(α), . . . , ldevXn
(α)}

}
n

and

{Me
{

rdevX1
(α), . . . , rdevXn

(α)}
}
n

as functions of α over [0, 1] are both

uniformly integrable, then the statistic ̂D1-MDD(X1, . . . ,Xn) is a strongly
consistent estimator of D1-MDD(X ), that is,

lim
n→∞

̂D1-MDD(X1, . . . ,Xn) = D1-MDD(X ) a.s. [P ].

Proof i) If Xn denotes the sample mean estimator, then on the basis of the
triangle inequality for ρ2 we have that for any i ∈ {1, . . . , n}∣∣∣ρ2(Xi, Ẽ(X ))− ρ2(Ẽ(X ),Xn)

∣∣∣ ≤ ρ2(Xi,Xn)

≤ ρ2(Xi, Ẽ(X )) + ρ2(Ẽ(X ),Xn)

and, hence, by taking squares on the three members of the inequality and
averaging later over i we have that

1

n

n∑
i=1

[
ρ2(Xi, Ẽ(X ))

]2
+
[
ρ2(Ẽ(X ),Xn)

]2
−ρ2(Ẽ(X ),Xn)

2

n

n∑
i=1

ρ2(Xi, Ẽ(X ))

≤
[
ŜD(X1, . . . ,Xn)

]2
≤ 1

n

n∑
i=1

[
ρ2(Xi, Ẽ(X ))

]2
+
[
ρ2(Ẽ(X ),Xn)

]2
+ρ2(Ẽ(X ),Xn)

2

n

n∑
i=1

ρ2(Xi, Ẽ(X ))

whence, by applying the Strong Law of Large Numbers for the real-valued

random variables ρ2(X , Ẽ(X )) and
[
ρ2(X , Ẽ(X ))

]2
and the strong consis-

tency of Xn in ρ2-sense (as a consequence from Colubi et al. [4], in which
an SLLN for random fuzzy sets has been obtained for the stronger metric
of the supremum between fuzzy sets), we have that

lim
n→∞

[
ŜD(X1, . . . ,Xn)

]2
= [SD(X )]

2
a.s. [P ],
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and therefore

lim
n→∞

ŜD(X1, . . . ,Xn) = SD(X ) a.s. [P ].

ii) On the basis of the triangle inequality for D1 we have that for any i ∈
{1, . . . , n}

D1(Xi, Ẽ(X ))−D1(Ẽ(X ),Xn) ≤ D1(Xi,Xn) ≤ D1(Xi, Ẽ(X ))+D1(Ẽ(X ),Xn)

and, hence, by averaging over i we have that∣∣∣∣∣ ̂D1-ADD(X1, . . . ,Xn)− 1

n

n∑
i=1

D1(Xi, Ẽ(X ))

∣∣∣∣∣ ≤ D1(Ẽ(X ),Xn),

whence by applying the Strong Law of Large Numbers for the real-valued
random variable D1(X , Ẽ(X )) and the strong consistency of Xn in D1-
sense we have that∣∣∣ lim

n→∞
̂D1-ADD(X1, . . . ,Xn)−D1-ADD(X )

∣∣∣ = 0 a.s. [P ],

what implies that

lim
n→∞

̂D1-ADD(X1, . . . ,Xn) = D1-ADD(X ) a.s. [P ].

iii) On the basis of the triangle inequality for ρ1 for any i ∈ {1, . . . , n} we have
that

ρ1(Xi, M̃e(X ))− ρ1(M̃e(X ),
̂̃
Me(X1, . . . ,Xn)) ≤ ρ1(Xi,

̂̃
Me(X1, . . . ,Xn))

≤ ρ1(Xi, M̃e(X )) + ρ1(M̃e(X ),
̂̃
Me(X1, . . . ,Xn))

and, hence,

Me
{
ρ1(X1, M̃e(X )), . . . , ρ1(Xn, M̃e(X ))

}
− ρ1(M̃e(X ),

̂̃
Me(X1, . . . ,Xn))

≤ ̂ρ1-MDD(X1, . . . ,Xn)

≤ Me
{
ρ1(X1, M̃e(X )), . . . , ρ1(Xn, M̃e(X ))

}
+ ρ1(M̃e(X ),

̂̃
Me(X1, . . . ,Xn))

whence, by applying the strong consistency of the fuzzy-valued sample 1-
norm median in ρ1-sense (see Sinova et al. [26]) and the strong consistency
under the assumed conditions of the sample median from the real-valued
random variable ρ1(X , M̃e(X )), we have that

lim
n→∞

̂ρ1-MDD(X1, . . . ,Xn) = ρ1-MDD(X ) a.s. [P ].

iv) The proof is analogous to that for iii) by applying the strong consistency
of the fuzzy-valued sample wabl/ldev/rdev median in D1-sense (see Sinova
et al. [27]). �
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Remark 4 It should be pointed out that the strong consistency in Proposi-
tion 8 has been understood in the sense of the convergence of the sample scale
measure to the population one, instead of the convergence (after maybe a cor-
rection) of the sample measure to the population standard deviation as often
made in case of dealing with real-valued random variables. Actually, the last
convergence is usually discussed in the real-valued case by considering some
outstanding models for the distribution of the involved random variables; this
type of models has not been yet stated for RFNs in a realistic way.

4 Analysis of the robustness: the finite sample breakdown point

A popular and powerful tool allowing us to describe the robustness of an
estimator is its breakdown point. As we can read in Donoho and Huber [9],
“the notion of breakdown point was coined, formally defined, and very briefly
discussed by Frank Hampel, at that time a student of Erich Lehman, in his
PhD in 1968” [13]. Although originally it was presented for location estimators,
the concept has also been generalized to scale estimators.

A simple and intuitive definition of the breakdown point but one restricted
to finite samples, the so-called finite sample breakdown point (fsbp for
short), was introduced by Donoho [8] and Donoho and Huber [9]. For scale
estimators, it is defined as the minimum proportion of sample data which
should be perturbed in order to let the estimator get either an arbitrary large
value or the value zero. The higher the breakdown point of an estimator, the
more robust it is. Therefore, two situations are required to study: the one
consisting in contaminating the sample by means of outliers, which can make
the estimator overestimate the true scale up to infinity (explosion), and the
one consisting in contaminating the sample by means of inliers, which may
result in underestimation of the true scale to zero (implosion). Notice that
when we deal with location estimators only the explosion case needs to be
considered.

Next, the replacement version of the finite sample breakdown point for
scale estimators (see Donoho and Huber [9]) is recalled (applied in this case
to imprecise data):

Definition 13 For any sample of observations x̃n from an RFN X , the finite
sample breakdown point of a scale estimate T̂n is defined by

fsbp∗(T̂n, x̃n) = min
{

fsbp+(T̂n, x̃n), fsbp−(T̂n, x̃n)
}

where
fsbp+(T̂n, x̃n) = min

{k
n

; sup
ỹn,k

T̂(ỹn,k) =∞
}

and
fsbp−(T̂n, x̃n) = min

{k
n

; inf
ỹn,k

T̂(ỹn,k) = 0
}

with ỹn,k obtained by replacing any k observations of x̃n by arbitrary values.
The quantities fsbp+ and fsbp− are called the explosion breakdown point
and the implosion breakdown point.
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4.1 General analysis of the finite sample breakdown point

In the following theorems it will be proved that if in the considered sample x̃n
there are no equal observations, then the fsbp of the estimate ̂D1-MDD(x̃n) is
1
n

⌊
n
2

⌋
(denoting b·c the floor function), which is the highest possible fsbp for a

scale estimate. By contrast, the fsbp of the estimates ŜD(x̃n) and ̂D1-ADD(x̃n)
is 1

n , the lowest possible. The proofs are based on Rousseeuw and Croux [25].

Theorem 1 For any sample x̃n = {x̃1, . . . , x̃n} from an RFN X in which
there are not two identical fuzzy numbers, we have that

fsbp+( ̂D1-ADDn, x̃n) =
1

n
, fsbp−( ̂D1-ADDn, x̃n) =

n− 1

n
.

Therefore, the finite sample breakdown point of the scale estimate ̂D1-ADDn

is given by

fsbp∗( ̂D1-ADDn, x̃n) =
1

n
.

Proof Let x̃n = {x̃1, . . . , x̃n} be a sample in which there are not two iden-

tical fuzzy numbers, and denote fsbp+ = fsbp+( ̂D1-ADDn, x̃n) and fsbp−

= fsbp−( ̂D1-ADDn, x̃n). The proof is to be split in three steps.

Step 1: We begin showing that fsbp− ≤ (n− 1)/n.
We are going to find a sample ỹn,k = {ỹ1, . . . , ỹn} with k = n− 1 replaced

observations such that ̂D1-ADD(ỹn,k) = 0.
We construct the sample ỹn,k by replacing the observations x̃2, . . . , x̃n by

x̃1. The considered sample ỹn,k has k = n− 1 replaced observations. See that
̂D1-ADD(ỹn,n−1) = 0.

Since ỹn,n−1 = x̃1, we have that for all i ∈ {1, . . . , n}, D1

(
ỹi, ỹn,n−1

)
= D1(x̃1, x̃1) = 0

Thus, ̂D1-ADD(ỹn,n−1) =
∑n
i=1D1

(
ỹi, ỹn,n−1

)
/n = 0.

Therefore, inf z̃n,n−1
̂D1-ADD(z̃n,n−1) = 0 with z̃n,n−1 any sample with

n− 1 replaced observations, and for this reason fsbp− ≤ (n− 1)/n.

Step 2: Now we show that fsbp− ≥ (n− 1)/n.
Let ỹn,k be any sample with k < n− 1 replaced observations. There exist

at least two observations x̃1ỹn,k
, x̃2ỹn,k

∈ {x̃1, . . . , x̃n} such that x̃1ỹn,k
, x̃2ỹn,k

∈ ỹn,k. Let δ := mini,j∈{1,...,n}D1(x̃i, x̃j)/n > 0. We have that

δ =
mini,j∈{1,...,n}D1(x̃i, x̃j)

n
≤
D1(x̃1ỹn,k

, x̃2ỹn,k
)

n

≤
D1(x̃1ỹn,k

, ỹn,k) +D1(x̃2ỹn,k
, ỹn,k)

n
≤
∑n
i=1D1(ỹi, ỹn,k)

n
= ̂D1-ADD(ỹn,k)

Therefore, inf ỹn,k
̂D1-ADD(ỹn,k) ≥ δ > 0 with k < n − 1, and so, fsbp−

≥ (n− 1)/n.
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Step 3: Finally, we will prove that fsbp+ = 1/n.

We construct the sample ỹn,k by replacing the observation x̃1 by x̃(n) +L,
with L ∈ R, L > 0 and x̃(n) the fuzzy number defined for each α ∈ [0, 1] as
follows:

(x̃(n))α =
[
max

{
inf(x̃i)α : i = 1, . . . , n

}
, max

{
sup(x̃i)α : i = 1, . . . , n

}]
.

Indeed, x̃(n) ∈ F∗c (R) since by considering its inf/sup representation/charac-
terization (see, for instance, Goetschel and Voxman [11]) one immediately
verifies that

i) − inf (x̃(n))α and sup (x̃(n))α are left-continuous on (0, 1], right-continuous
at 0, and non-increasing on [0, 1],

ii) and inf (x̃(n))1 ≤ sup (x̃(n))1.

The considered sample ỹn,k has k = 1 replaced observation. In this case,
it satisfies that

D1

(
ỹ1, ỹn,1

)
= D1

(
x̃(n) + L, ỹn,1

)
= D1

(
x̃(n) + L, x̃′n +

L

n

)

= D1

(
x̃(n), x̃

′
n

)
+D1

(
L,
L

n

)
= D1

(
x̃(n), x̃

′
n

)
+

(n− 1)L

n
≥ (n− 1)L

n
,

with x̃′n = {x̃(n), x̃2 . . . , x̃n}, and taking into account in the third equality

that for all α ∈ [0, 1], inf(x̃(n))α > inf(x̃′n)α, sup(x̃(n))α > sup(x̃′n)α and
L > L/n.

Thus, ̂D1-ADD(ỹn,1) =
∑n
i=1D1

(
ỹi, ỹn,1

)
/n ≥ (n− 1)L/n2.

Letting L → ∞, supz̃n,1
̂D1-ADD(z̃n,1) = ∞ with z̃n,1 any sample with 1

replaced observations. Therefore

fsbp+ =
1

n
.

�

Theorem 2 For any sample of observations x̃n = (x̃1, . . . , x̃n) from an RFN
X in which there are not two identical fuzzy numbers, we have that

fsbp+(ŜDn, x̃n) =
1

n
, fsbp−(ŜDn, x̃n) =

n− 1

n
.

Therefore, the finite sample breakdown point of the scale estimate ŜDn is given
by

fsbp∗(ŜDn, x̃n) =
1

n
.

Proof It is analogous to the previous one. �
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Theorem 3 For any sample of observations x̃n = (x̃1, . . . , x̃n) from an RFN
X in which there are not two identical fuzzy numbers, we have that

fsbp+( ̂ρ1-MDDn, x̃n) =
1

n

⌊
n+ 1

2

⌋
, fsbp−( ̂ρ1-MDDn, x̃n) =

1

n

⌊n
2

⌋
.

Therefore, the finite sample breakdown point of the scale estimate ̂ρ1-MDDn

is given by

fsbp∗( ̂ρ1-MDDn, x̃n) =
1

n

⌊n
2

⌋
.

Proof Denote fsbp+ =fsbp+( ̂ρ1-MDDn, x̃n) and fsbp−=fsbp−( ̂ρ1-MDDn, x̃n).
The proof is presented in four steps.

Step 1: We begin showing that fsbp− ≤
⌊
n
2

⌋
/n.

We are going to find a sample ỹn,k = {ỹ1, . . . , ỹn} with k =
⌊
n
2

⌋
replaced

observations such that ̂ρ1-MDD(ỹn,k) = 0.
We construct the sample ỹn,k by replacing the observations x̃2, . . . , x̃bn2 c+1

by x̃1. The sample ỹn,k has k =
⌊
n
2

⌋
replaced observations. See that

̂ρ1-MDD(ỹn,bn2 c) = 0. Since
̂̃
Me(ỹn,bn2 c) = x̃1, then for all i ∈ {1, . . . , bn2 c+1},

ρ1
(
ỹi,
̂̃
Me(ỹn,bn2 c)

)
= ρ1(x̃1, x̃1) = 0.

Thus, ̂ρ1-MDD(ỹn,bn2 c) = Mei∈{1,...,n}

(
ρ1
(
ỹi,
̂̃
Me(ỹn,bn2 c)

))
= 0.

Therefore, inf z̃n,bn
2
c

̂ρ1-MDD(z̃n,bn2 c) = 0 for any sample z̃n,bn2 c with
⌊
n
2

⌋
replaced observations, and fsbp− ≤

⌊
n
2

⌋
/n.

Step 2: Now we show that fsbp− ≥
⌊
n
2

⌋
/n.

Take any sample ỹn,k with k < bn2 c replaced observations. Because of the
definition of median for real numbers, there exist at least bn2 c+ 1 observations

ỹj (with j ∈ {1, . . . , bn2 c+1}) in the sample ỹn,k such that ρ1
(
ỹj ,
̂̃
Me(ỹn,k)

)
/2

≤ Mei∈{1,...,n}

(
ρ1
(
ỹi,
̂̃
Me(ỹn,k)

))
.

Moreover, because of ỹn,k having k < bn2 c replaced observations from the

sample x̃n, there exist at least two observations x̃1ỹn,k
, x̃2ỹn,k

∈ {x̃1, . . . , x̃n}

such that x̃1ỹn,k
= ỹj1 and x̃2ỹn,k

= ỹj2 with ỹj1 , ỹj2 ∈ {ỹ1, . . . , ỹbn2 c+1}. Let
δ := mini,j∈{1,...,n} ρ1(x̃i, x̃j)/4 > 0. We have that

δ =
mini,j∈{1,...,n} ρ1(x̃i, x̃j)

4
≤
ρ1(x̃1ỹn,k

, x̃2ỹn,k
)

4

≤ 1

2
·
ρ1(x̃1ỹn,k

,
̂̃
Me(ỹn,k)) + ρ1(x̃2ỹn,k

,
̂̃
Me(ỹn,k))

2

≤ 1

2
·
(

Mei∈{1,...,n}

(
ρ1
(
ỹi,
̂̃
Me(ỹn,k)

))
+ Mei∈{1,...,n}

(
ρ1
(
ỹi,
̂̃
Me(ỹn,k)

)))
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= Mei∈{1,...,n}

(
ρ1
(
ỹi,
̂̃
Me(ỹn,k)

))
= ̂ρ1-MDD(ỹn,k).

Therefore, inf ỹn,k
̂ρ1-MDD(ỹn,k) ≥ δ > 0 with k < bn2 c, and hence fsbp−

≥
⌊
n
2

⌋
/n.

Step 3: Now we will prove that fsbp+ ≤
⌊
n+1
2

⌋
/n.

We construct the sample ỹn,k by replacing the observation x̃1 by x̃(n) +L,

x̃2 by x̃(n) + 2L, . . ., x̃bn+1
2 c

by x̃(n) + bn+1
2 cL, with L ∈ R, L > 0 and x̃(n)

the fuzzy number defined for each α ∈ [0, 1] by

(x̃(n))α =
[

max
{

inf(x̃i)α : i = 1, . . . , n
}
, max

{
sup(x̃i)α : i = 1, . . . , n

}]
.

The considered sample ỹn,k has k =
⌊
n+1
2

⌋
replaced observations. It satis-

fies that ρ1
(
ỹi,
̂̃
Me(ỹn,k)

)
≥ L/2 for any i ∈ {2, . . . , n}.

Hence, ̂ρ1-MDD(ỹn,bn+1
2 c

) = Mei∈{1,...,n}

(
ρ1
(
ỹi,
̂̃
Me(ỹn,bn+1

2 c
)
))
≥ L/2.

Consequently, as L → ∞, we have that supz̃
n,bn+1

2
c

̂ρ1-MDD(z̃n,bn+1
2 c

) = ∞

for any sample z̃n,bn+1
2 c

with
⌊
n+1
2

⌋
replaced observations.

Step 4: Finally, we will prove that fsbp+ ≥
⌊
n+1
2

⌋
/n.

Take any sample ỹn,k with k < bn+1
2 c replaced observations. Because of the

definition of median for real numbers, there exist at least bn+1
2 c observations ỹj

of the sample ỹn,k such that ρ1
(
ỹj ,
̂̃
Me(ỹn,k)

)
≥Mei∈{1,...,n}

(
ρ1
(
ỹi,
̂̃
Me(ỹn,k)

))
,

with j∈{1, . . . , bn+1
2 c}.

Moreover, because of ỹn,k having k < bn+1
2 c replaced observations from the

sample x̃n, there exist at least one observation x̃1ỹn,k
∈ {x̃1, . . . , x̃n} such that

x̃1ỹn,k
= ỹj1 with ỹj1 ∈ {ỹ1, . . . , ỹbn+1

2 c}. Let M := maxi,j∈{1,...,n} ρ1(x̃i, x̃j)
< ∞. We have that

M = max
i,j∈{1,...,n}

ρ1(x̃i, x̃j) ≥ ρ1(x̃1ỹn,k
,
̂̃
Me(ỹn,k))

≥ Mei∈{1,...,n}

(
ρ1
(
ỹi,
̂̃
Me(ỹn,k)

))
= ̂ρ1-MDD(ỹn,k).

Therefore, supỹn,k
̂ρ1-MDD(ỹn,k) ≤ M < ∞ with k < bn+1

2 c, and conse-

quently, fsbp+ ≥
⌊
n+1
2

⌋
/n. �

Theorem 4 For any sample of observations x̃n = (x̃1, . . . , x̃n) from an RFN
X in which there are not two identical observations, we have that

fsbp+( ̂D1-MDDn, x̃n) =
1

n

⌊
n+ 1

2

⌋
, fsbp−( ̂D1-MDDn, x̃n) =

1

n

⌊n
2

⌋
.

Therefore, the finite sample breakdown point of the scale estimate ̂D1-MDDn

is given by

fsbp∗( ̂D1-MDDn, x̃n) =
1

n

⌊n
2

⌋
.

Proof It is analogous to the previous one. �
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4.2 Simulations-based analysis of the finite sample breakdown point:
empirical bias curves

To illustrate in which way the contamination affects the considered scale esti-
mators, a simulation study is now presented.

Following Sinova et al. [26], trapezoidal RFNs X = Tra(inf X0, inf X1,
supX1, supX0) have been considered in the simulations, each of them charac-
terized by means of the following four real-valued random variables, namely,

X1 = midX1 = (inf X1 + supX1)/2, X2 = sprX1 = (supX1 − inf X1)/2,

X3 = lsprX0 = inf X1 − inf X0, X4 = rsprX0 = supX0 − supX1,

whence X = Tra(X1 −X2 −X3, X1 −X2, X1 +X2, X1 +X2 +X4).

Recall that when we deal with scale estimators, two different types of con-
tamination need to be studied: the one caused by the presence of outliers in
the sample, which can make the estimator explode to infinite (explosion), and
the one caused by the presence of inliers in the sample, which can make the
estimator implode to zero (implosion).

Explosion case:

Three different types of outliers have been considered:

– Outliers because of the location: X1 ∼ N (100, 1) and X2, X3, X4 ∼ χ2
1.

– Outliers because of the shape: X1 ∼ N (0, 1) and X2, X3, X4 ∼ χ2
1 + 100.

– Outliers because of the location and shape: X1 ∼ N (100, 1) and X2, X3,
X4 ∼ χ2

1 + 100.

For each type of outlier, the next steps have been followed:

• A sample of size n = 100 of trapezoidal fuzzy numbers has been gener-
ated, assuming that X1 ∼ N (0, 1), X2, X3, X4 ∼ χ2

1, being all of them
independent.

• k observations of the sample have been replaced by the outliers, with k ∈
{0, 1, . . . , 50}.

• For each k, the value of the different scale estimators has been calculated.
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Fig. 1 Explosion breakdown point with outliers because of the location
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Fig. 3 Explosion breakdown point with outliers because of the location and shape

Figures 1, 2 and 3 display the explosion bias curves with the three different
types of outliers. As we can check, the breakdown for the estimators ŜDn and
̂D1-ADDn happens when a single outlier is introduced in the sample (the

value of these estimators changes considerably from 0 to 1 outlier). However,
50 outliers are needed to introduce to cause breakdown with the estimators
̂D1-MDDn.

Implosion case:

Inliers must be considered as contamination in the sample:

• A sample of size n = 100 of trapezoidal fuzzy numbers has been gener-
ated, assuming that X1 ∼ N (0, 1), X2, X3, X4 ∼ χ2

1, being all of them
independent.

• One datum of the sample has been randomly chosen and k observations
have been replaced by it, with k ∈ {0, 1, . . . , 99}.

• For each k, the value of the different scale estimators has been computed.

On the basis of the simulations for the implosion case one can empirically
conclude from Figure 4, that 99 observations are needed to perturb to let the

estimators ŜDn and ̂D1-ADDn implode to the value zero. By contrast, only

50 are needed to contaminate for the estimators ̂D1-MDDn.
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5 Analysis of robustness: Sensitivity curves

In the previous section, the empirical bias curves have been studied as a tool
to measure the robustness of an estimator. Now, another important and useful
measurement of the robustness will be considered: the sensitivity curves, which
are the sample version of the influence functions (see Maronna et al. [19]).

Whereas the empirical bias curves tell us how much the estimator changes
when a percentage of the data is contaminated, the sensitivity curves describe
how the estimator reacts to a single outlier.

Dealing with fuzzy data, we can consider three different types of outliers
depending on if they are deviate from the majority of data because of their
location, because of their shape or for both reasons. Therefore, some sensitivity
curves allow us to measure the effect of different locations of a single outlier
in the sample, other curves measure the effect of considering different shapes
of a single outlier, and other ones measure the effect of different locations and
shapes of a single outlier in the sample.

Following the simulation procedure performed in the previous section, for
each type of outlier, a sample of size n = 100 of trapezoidal fuzzy num-
bers, x̃100 = {x̃1, . . . , x̃100}, was considered, assuming that X1 ∼ N (0, 1),
X2, X3, X4 ∼ χ2

1, being all of them independent. The outlier x̃a was con-
structed by replacement in the following way:

Let x̃i ∈ {x̃1, . . . , x̃100} be characterized by the four-tuple (x1i , x
2
i , x

3
i , x

4
i ),

with x1i ∈ X1, x2i ∈ X2, x3i ∈ X3 and x4i ∈ X4, the arbitrary observation
that will be replaced by the outlier x̃a. Depending on the type of outlier,
x̃a ∼ (x1a, x

2
a, x

3
a, x

4
a) was constructed as follows

– Outlier because of the location: x1a = x1i + a, x2a = x2i , x
3
a = x3i , x

4
a = x4i ,

with a ∈ R.
– Outlier because of the shape: x1a = x1i , x

2
a = x2i + |a|, x3a = x3i + |a|, x4a

= x4i + |a|, with a ∈ R.
– Outlier because of the location and shape: x1a = x1i + a, x2a = x2i + |a|, x3a

= x3i + |a|, x4a = x4i + |a|, with a ∈ R.

Definition 14 Let X be an RFN, x̃n = {x̃1, . . . , x̃n} a sample of observations

and T̂n a scale estimator. The sensitivity curve of the estimator T̂n for the
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sample x̃n is the difference
SC(x̃a) = T̂(x̃

′

n)− T̂(x̃n)
where the sample x̃

′

n is obtained by replacing any observation of x̃n by the
outlier x̃a, with a ∈ R.

The sensitivity curve of a robust scale estimator will be bounded, while
the one corresponding to a non-robust scale estimator will have an unbounded
behaviour.

For the simulations, the three types of outliers were considered and the real
number a varying in [−10, 10]. Figure 5, 6 and 7 plot the sensitivity curves of
the different scale estimators, for each type of outlier.

In all cases, we can see that the sensitivity curves with estimators ̂D1-MDDn

are bounded, whereas the ones corresponding to the estimators ŜDn and
̂D1-ADDn have an unbounded behaviour.
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Fig. 5 Sensitivity curves with outliers because of the location
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Fig. 6 Sensitivity curves with outliers because of the shape
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Fig. 7 Sensitivity curves with outliers because of the location and shape
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6 Concluding remarks

This paper presents an introductory work to the analysis of the robustness of
scale measures in dealing with imprecise data, when they are assumed to be
modelled by means of fuzzy numbers and generated from random fuzzy num-
bers. Several scale estimators have been presented and some of their properties
have been examined.

The finite sample breakdown point, the empirical bias curves and the sensi-
tivity curves, as powerful tools to verify the robust behaviour of the considered
estimators, have allowed us to draw similar conclusions to those from the case
of real-valued data.

The study conducted in this article can be complemented and extended in
the future by facing, among others,
• the formalization and discussion of other properties of the scale estimators,
• the use of other metrics between fuzzy data,
• the study of other scale estimates, like the indices Ŝn and Q̂n introduced

by Rousseeuw and Croux (see [25]), and the M-estimates of scale,
• the use of other tools to check the robustness.
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