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Abstract

Random forests are a commonly used tool for classification with high-dimensional data as
well as for ranking candidate predictors based on the so-called variable importance measures.
There are different importance measures for ranking predictor variables, the two most com-
mon measures are the Gini importance and the permutation importance. The latter has been
found to be more reliable than the Gini importance. It is computed from the change in predic-
tion accuracy when removing any association between the response and a predictor variable,
with large changes indicating that the predictor variable is important. A drawback of those
variable importance measures is that there is no natural cutoff that can be used to discriminate
between important and non-important variables. Several approaches, for example approaches
based on hypothesis testing, have been developed for addressing this problem. The existing
testing approaches are permutation-based and require the repeated computation of forests.
While for low-dimensional settings those permutation-based approaches might be computa-
tionally tractable, for high-dimensional settings typically including thousands of candidate
predictors, computing time is enormous. A new computationally fast heuristic procedure of
a variable importance test is proposed, that is appropriate for high-dimensional data where
many variables do not carry any information. The testing approach is based on a modified
version of the permutation variable importance measure, which is inspired by cross-validation
procedures. The novel testing approach is tested and compared to the permutation-based test-
ing approach of Altmann and colleagues using studies on complex high-dimensional binary
classification settings. The new approach controlled the type I error and had at least com-
parable power at a substantially smaller computation time in our studies. The new variable
importance test is implemented in the R package vita.
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1 Introduction

Since its introduction in 2001 random forests have evolved to a popular classification and regression

tool which is applied in many different domains. A random forest is a collection of decision trees

that are built from a subset of the original data (Breiman; 2001). In contrast to many parametric

methods, random forests can deal with nonlinear effects and it is often claimed that interactions

are adequately taken into account (see, Boulesteix et al.; 2015, for a recent discussion on this

issue). Random forests are fully non-parametric and thus offer a great flexibility. Moreover, they

can even be applied in the statistically challenging setting in which the number of variables, p, is

higher than the number of observations, n. This makes random forests especially attractive for

complex high-dimensional molecular data applications. Fast implementations of random forests

are already available (e.g., Wright and Ziegler; 2015; Schwarz et al.; 2010).

A further advantage of random forests is that they also offer so-called variable importance

measures which can be used to rank variables according to their predictive abilities. Often,

identifying relevant genes is of high interest to gain valuable insights into the functionality and

mechanisms that lead to a specific disorder. Moreover, the identification of relevant genes aids in

the diagnosis of certain disorders. The random forests method and its implemented importance

measures have often been used for the identification of such biomarkers (e.g., Reif et al.; 2009;

Wang-Sattler et al.; 2012; Yatsunenko et al.; 2012).

There are two commonly used variable importance measures, the Gini importance and the

permutation importance. Several articles have shown that the Gini importance has undesirable

properties (Strobl et al.; 2007; Nicodemus and Malley; 2009; Nicodemus; 2011; Boulesteix, Bender,

Bermejo and Strobl; 2012). For example variables that offer many cutpoints systematically obtain

higher Gini importance scores (Strobl et al.; 2007). Thus the permutation variable importance

should be preferred. The permutation variable importance measure – also referred to as the mean

decrease in accuracy – reflects the average decrease in accuracy when destroying the association

between a variable and the response by permuting the values of the variable. It is clear that

predictor variables whose importance score is negative or zero are likely to have no predictive

ability. However, for the predictor variables with positive importance score it is difficult to say

which importance scores are large enough so that it is unlikely that these have occurred by chance.

The variable importance depends on several different factors, including factors related to the data,

such as correlations between the data, the signal-to-noise ratio or the total number of variables,

and including forest specific factors, such as the choice of the number of randomly drawn candidate

predictor variables for each split. Therefore there is no universally applicable threshold that can

be used to determine what really high importance scores are.

Often, in practical applications, a certain percentage of the highest ranked variables are se-

lected; Reif et al. (2009) for example filtered out the 10% of variables with the highest importance

scores and used them for further considerations. However, one should be careful when selecting

a pre-specified number of highest ranked variables and considering these as relevant because one

would always identify some variables as relevant even in the absence of any associations between

the variables and the disorder.

An ad-hoc approach consists in using the absolute value of the smallest observed importance

score as a threshold for determining which variables are likely to be relevant, because one can be

sure that the smallest observed importance score must have been occurred due purely to chance

(Strobl et al.; 2009). However, this approach has several disadvantages, two of them being that
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the threshold depends on one single observed importance score and that it becomes more extreme

the more variables there are. It is thus clear that more elaborated approaches are needed.

Testing procedures are a sensible strategy for deciding which variables are likely to be relevant

(Saeys et al.; 2012). In a statistical test we aim to draw conclusions about the value of a population

parameter through the use of the observed sample. In the context of variable importance it is not

clear what this population parameter refers to and if it even exists. Thus the testing approaches

that were proposed for random forest’s variable importance measures, should rather be regarded

as heuristic methods that enable the selection of variables, instead of real statistical tests in the

strict mathematical sense. However, for simplicity and to be consistent with the literature, we

will refer to such approaches as statistical tests in this paper, although it should be kept in mind

that in the strict mathematical sense these are not statistical tests.

A statistical test based on the supposed normality of a scaled version of the permutation

variable importance was proposed by Breiman (2008). However, the procedure of Breiman (2008)

has been shown to have alarming statistical properties, and should not be used (Strobl and Zeileis;

2008). During the last years, more and more approaches have been developed that test which

variables are related to the outcome (see Hapfelmeier and Ulm; 2013, and references therein).

Since the true null distribution of variable importance depends on various factors, it becomes

difficult – if not impossible – to theoretically derive the null distribution. This is the reason for

the frequent use of permutation strategies in the existing testing approaches (Tang et al.; 2009;

Altmann et al.; 2010; Hapfelmeier and Ulm; 2013). However, such procedures are computationally

demanding. Very recently Hapfelmeier and Ulm (2013) published a comprehensive comparison

study of different permutation-based testing approaches. They conclude that their novel approach

has higher statistical power than many of the existing approaches and controls the type I error.

Their approach works as follows: For each variable that is tested for its association with the

response, a large number of forests (Hapfelmeier and Ulm (2013) used 400 in their studies) has

to be computed. Each forest is constructed based on a different permuted version of the variable

and the importance score of the permuted version is computed. The p-value for the variable is

then computed as the fraction of variable importance scores (obtained for the permuted versions),

that are greater than the variable importance of the original (i.e., unpermuted) version of the

variable. The computation of p-values for all variables thus requires computing as many forests

as predictor variables multiplied by the number of permutation runs. This approach has been

developed and investigated for the classical low-dimensional setting which typically includes not

more than a dozen covariates. It is obvious that with high-dimensional data such permutation-

based approaches become very computationally demanding, and might even become practically

unfeasible.

In this paper we present a heuristic variable importance test for high-dimensional data that is

computationally very fast and particularly suitable for high-dimensional genomic data. This test is

based on a slightly modified version of the permutation variable importance measure. Note that the

permutation variable importance measure is the method of first choice for an importance measure

since it is almost unbiased (see, e.g., Boulesteix, Janitza, Kruppa and König; 2012). In contrast

to the existing approaches, our testing procedure is not based on permutations. The idea of this

novel testing procedure is to use the information of observed non-positive variable importance

scores to reconstruct the null distribution of variable importance. This null distribution is then

used to compute p-values. We show results of several studies that explore if the new testing

approach controls the type I error and investigate its power in settings with binary response.
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The power of our novel testing approach is also compared to the power of the permutation-based

testing approach of Altmann et al. (2010). The approach of Altmann et al. (2010) has often

been used since its introduction in 2010 (e.g., Polak et al.; 2015; Prosperi et al.; 2014). It is very

computationally demanding, especially for high-dimensional data settings. But compared to the

approach of Hapfelmeier and Ulm (2013) it is computationally feasible for high-dimensional data

settings. Therefore we only consider the testing approach of Altmann et al. (2010) as a competing

method.

This paper is structured as follows: In Section 2 we briefly review the idea of random forests,

their integrated permutation variable importance measure and the heuristic testing approach of

Altmann et al. (2010). Then we present a heuristic testing idea which is applied to the classical

permutation variable importance measure (“naive approach”). As will be shown the testing idea

is based on presumptions which are not met by the classical permutation variable importance

measure. We therefore present a modified version of the classical permutation variable importance

which fulfills the criteria. Subsequently we introduce our novel testing procedure which is based

on this modified version of the permutation importance. Moreover, in Section 2 we describe

the designs considered in the simulation studies, which are conducted for testing our novel testing

approach and for the comparison to the naive approach and the approach of Altmann et al. (2010).

Section 3 shows the results of our studies and Section 4 gives a brief summary and discussion of

our results.

2 Methods

2.1 Random Forests

Random forests is an ensemble method that combines several classification trees. It can be used for

classification and regression tasks as well as for more special analyses such as for survival analysis

(Ishwaran et al.; 2008; Hothorn et al.; 2006) and ordinal regression (Hothorn et al.; 2006; Janitza

et al.; 2015). In this paper we focus on the use of random forests for classification tasks. Each

tree in random forests is built from a bootstrap sample or from a subsample of the original data.

The observations that are not used for the construction of a specific tree are termed out-of-bag

(OOB) observations. At each split in a tree a subset of mtry predictor variables is drawn from all

candidate predictors and considered for the split. Among those variables, the one that provides

the “best” split is selected. There are different variants of random forests, which basically differ

in their splitting criteria. The most popular variant is that of Breiman (2001), which implements

splits based on node impurity measures, such as the Gini index for classification trees. Another

popular variant proposed by Hothorn et al. (2006) is based on hypothesis testing. The variant

of Hothorn et al. (2006) has been shown to yield an unbiased split selection, while the classical

variant of random forests (Breiman; 2001) tends to favor variables that offer many split points.

For our studies we used the classical random forest variant of Breiman (2001) implemented in

the R package randomForest (Liaw and Wiener; 2002). Though this variant implements a biased

split selection, we chose it for implementing our studies because of its computational speed. With

respect to computing time, the random forest implementation of Breiman (2001) by far outper-

forms the (unbiased) random forest implementation of Hothorn et al. (2006). Since we consider

settings with a very large number of covariates and repeatedly fit random forests, the unbiased

random forest variant of Hothorn et al. (2006) is not applicable due to its high computational
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effort. However, we tried to avoid affecting our results by the biased split selection by choosing

only settings with continuous predictor variables so that we did not expect that a split selection

bias would occur in our studies. Moreover, we used subsampling (i.e., sampling from the original

data without replacement) instead of bootstrapping in order to avoid possible biases induced by

the bootstrap (Strobl et al.; 2007).

2.2 Classical permutation variable importance

Random forests offer variable importance measures which can be used to rank variables according

to their predictive abilities. The idea underlying the permutation variable importance measure

is to compare the prediction errors made by trees before and after permuting the values of a

specific predictor variable. By permuting the values of a predictor variable, we make sure that the

variable is not related to the response after the permutation. If the variable was associated with

the response before permutation, and if this relation is destroyed by permutation, the discrepancy

between the trees’ prediction errors before and after the permutation of the predictor variable

will be large. In contrast, if the predictor variable is just noise, a permutation of the variable’s

values will not affect the trees’ prediction errors. Usually the prediction error of trees is measured

by the misclassification rate for categorical responses. The classical permutation variable impor-

tance measure is then computed from the difference in misclassification rates before and after the

permutation:

V Ij =
1

ntree

ntree∑

t=1

1

|OOBt|
∑

i∈OOBt

{I(yi 6= ŷ∗it)− I(yi 6= ŷit)}, (1)

with I(.) denoting the indicator function, OOBt denoting the set of indices for observations that

are out-of-bag for tree t ∈ {1, . . . , ntree}, and ŷit and ŷ∗it denoting the predictions by the t-th tree

before and after permuting the values of the variable Xj , respectively.

In this paper a variable is termed as relevant if the trees’ prediction errors significantly increase

after the random permutation, or equivalently, if the variable significantly improves the prediction

accuracy. It is important to note that this definition of relevant predictor variables also includes

variables that do not have their “own” effect on the response, but are associated with the response

due to their correlation with truly influential predictor variables.

From the definition of the variable importance measure, it is clear that negative values or

values of zero indicate that the variable does not improve the trees’ predictive abilities, because

on average the error rates are similar or even larger when using the original, i.e., unpermuted

version of the variable. Thus we infer that the variable is likely to not be relevant. A positive

value for the variable importance, in contrast, reflects that the variable at least slightly improves

the trees’ predictive abilities since the error rates are smaller on average when using the original

version of the variable for deriving tree predictions. However, one cannot infer that a positive

value for the variable importance indicates a relevant variable since we do not know if the change

in prediction errors is solely due to chance. Testing procedures are required to assess if the change

in error rates is significantly larger than zero. If it is the case we can infer that the variable is

likely relevant.
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2.3 Permutation-based testing approach of Altmann et al. (2010)

The testing approach of Altmann et al. (2010) has originally been proposed as heuristic for correct-

ing biased importance measures, such as the Gini importance measure. However, it is applicable

to all kinds of importance measures of random forests. Besides its ability to correct biased im-

portance measures, it outputs p-values which are computed from importance scores. This feature

enables the user to select relevant variables based on the p-values.

In the first step of the method of Altmann et al. (2010), the variable importance scores are

obtained for all variables. Any arbitrary importance measure may be used for computing the

importance scores – it may even be biased. In the second step, importance scores for settings

in which the variable is not associated with the response are computed. Altmann et al. (2010)

generate these settings by randomly permuting the response variable to break any associations

between the response variable and all predictor variables. The data generated in this way is then

used to construct a new random forest and to compute the importance scores for the predictor

variables. The importance scores can be regarded as realizations drawn from the unknown null

distribution. The procedure, which involves the steps of randomly permuting the response vector,

constructing a random forest and computing the importance scores, is repeated S times. For each

variable there are S importance scores that can be regarded as realizations from the unknown null

distribution. Finally, in the last step of the method of Altmann et al. (2010), the S importance

scores are used to compute the p-value for the variable. One possibility for deriving the p-value

consists in computing the fraction of S importance scores that are greater than the original

importance score. This approach is referred to as the non-parametric approach in this paper since

we do not make any assumptions on the distribution of importance scores of unrelated predictor

variables. Alternatively, one can assume a parametric distribution such as the Gaussian, Log-

normal or Gamma-distribution for the importance scores of unrelated predictor variables. The

parameters for the respective distribution are replaced by their maximum likelihood estimates,

which are computed based on the S importance scores of the considered variable. Having defined a

specific distribution for the variable’s null importance, the p-value is computed as the probability

of observing an importance score that is higher than the original importance score, given this

distribution. We refer to this approach as parametric approach.

2.4 Naive testing approach

From its definition, the classical permutation variable importance is expected to randomly vary

around the value zero if variables are not associated with the response. In this paper we investigate

a new heuristic approach which consists in approximating the null distribution based on the ob-

served non-positive importance scores. More precisely, we reconstruct the variable importance null

distribution by mirroring the empirical distribution of the observed negative and zero importance

scores on the y-axis. This results in a distribution which is symmetric around zero (see Figure

1). Let M1 = {V Ij |V Ij < 0; j = 1, . . . , p} denote the observed negative variable importance

scores, and M2 = {V Ij |V Ij = 0; j = 1, . . . , p} is the set of importance scores which are zero, with

p denoting the number of candidate predictors. We define the hypothetical importance scores

M3 = {−V Ij |V Ij < 0; j = 1, . . . , p} = −M1, which arise from multiplying the negative impor-

tance scores by −1. The null distribution F̂0 is computed as the empirical cumulative distribution

function of M = M1 ∪M2 ∪M3.
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Variable importance

0

Empirical distribution
 based on negative and

  zero importance scores
Reflection

Figure 1: Reconstruction of the null distribution based on variables that are likely non-relevant
(i.e., with negative or zero importance scores). The negative part of the null distribution (solid
line) is approximated based on the observed negative and zero importance scores. The positive
part (dashed line) is obtained from reflection about the y-axis.

Based on F̂0 a p-value for variable Xj is derived as

pj = 1− F̂0(V Ij).

It is clear that this testing approach is not suitable for all types of data. The data must contain

a relatively large number of variables without any effect so that the approximation of the null

distribution is precise enough. A high number of variables without any effect is typically present

with genetic data, such as microarray or SNP data, so that our testing approach is primarily of

practical relevance to high-dimensional genomic data settings.

2.5 Novel permutation variable importance

The novel variable importance measure is not based on the out-of-bag observations but uses a

similar strategy, which is inspired by the cross-validation procedure. In a nutshell the idea is as

follows: We first split the data into k sets of equal size. We then construct k forests, where the

l-th forest is constructed based on observations that are not part of the l-th set. For each forest

we then use observations for variable importance computation that were not used for constructing

the forest.

Let Sl contain the indices of observations from the l-th set, and |Sl| denotes the cardinality

of Sl. For categorical response the fold-specific variable importance for predictor variable Xj is

defined by

V I
CV (l)
j =

1

ntree

ntree∑

t=1

1

|Sl|
∑

i∈Sl

{I(yi 6= ŷ∗it)− I(yi 6= ŷit)}, (2)

with ntree denoting the number of trees in a forest, I(.) denoting the indicator function and ŷit

and ŷ∗it denoting the predictions by the t-th tree before and after permuting the values of Xj ,

respectively. Note that the predictions ŷit and ŷ∗it, t = 1, . . . , ntree, are obtained from the forest,

which is constructed based on observations {1, 2, . . . , n}\Sl, and thus does not use the observations

i ∈ Sl in tree construction.

The cross-validated variable importance for predictor variable Xj is then defined by

V ICV
j =

1

k

k∑

l=1

V I
CV (l)
j . (3)
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The most simple version of cross-validation results for k = 2, so that each of the two sets is

once used for creating the forest and once for deriving importance scores. In general, this method

is also known as 2-fold cross-validation or the hold-out method. To differentiate it from cross-

validation with k ≥ 3, from now on we will refer to it as the hold-out method. The corresponding

hold-out variable importance for predictor variable Xj is given by

V IHO
j =

1

2

2∑

l=1

V I
CV (l)
j , (4)

and directly results from setting k to 2 in Eq. (3). Thus it is a special case of the cross-validated

importance measure defined in Eq. (3).

2.6 New testing approach

The new testing approach solely differs from the naive testing approach in the fact that it uses the

hold-out variable importance (Eq. (4)) instead of the classical out-of-bag-based importance (Eq.

(1)). The hold-out importance measure is preferred over the classical importance measure in the

new testing approach because it has desirable properties as will be shown in this paper.

Based on the hold-out variable importance, the p-values are derived in exactly the same man-

ner as for the naive approach. The basic steps of our novel testing approach are sketched in the

following.

A novel variable importance test for high-dimensional data

Step 1 The data is randomly partitioned into two sets of equal size. Each set is used to create a

random forest. The two forests are used to compute the hold-out variable importance V IHO
j

(see Eq. (4)) for variables Xj , j = 1, . . . , p.

Step 2 The null distribution for the hold-out variable importance is approximated based on the

observed non-positive importance scores. For this purpose we define the sets

M1 = {V IHO
j |V IHO

j < 0; j = 1, . . . , p} (i.e., all negative importance scores),

M2 = {V IHO
j |V IHO

j = 0; j = 1, . . . , p} (i.e., all importance scores of zero) and

M3 = {−V IHO
j |V IHO

j < 0; j = 1, . . . , p} = −M1 (i.e., all negative importance scores

multiplied by −1),

and consider the empirical cumulative distribution function F̂0 of M = M1 ∪M2 ∪M3.

Step 3 The p-value corresponding to the variable importance of predictor variable Xj is computed

as

pj = 1− F̂0(V IHO
j ).

Note that in this paper we use the hold-out version of the classical permutation variable

importance which uses the difference in error rates before and after randomly permuting the

values of the considered variable. Our proposed testing procedure is very general in the sense that

hold-out versions of different permutation-based variable importance measures might be used, such

as the conditional permutation importance of Strobl et al. (2008), the AUC-based importance of
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Janitza et al. (2013), or the importance measures for ordinal responses considered in Janitza et al.

(2015).

It is important to note that if one wants to use a different measure, say, the conditional importance

of Strobl et al. (2008), the hold-out version of this measure should be computed, that is, the variable

importance should be computed using the splitting procedure described in 2.5.

The new testing approach is implemented in the R package vita, which is based on the R package

randomForest (Liaw and Wiener; 2002). Currently, only the hold-out version of the classical

variable importance measure is implemented. The R package vita also contains an implementation

of the testing approach of Altmann et al. (2010).

2.7 Simulation studies

Since our new testing approach is suitable for high-dimensional genomic data, we only consider

settings with large numbers of predictor variables and high signal-to-noise ratios. There is common

consensus in the literature that it is very difficult – if not impossible – to simulate realistic complex

data structures which capture all the patterns and sources of variability that are generated by a real

biological system. Therefore we based our studies on five high-dimensional genomic data sets from

real world applications (see Table 1 for an overview). These data sets were often used by various

authors for binary classification purposes (e.g., Dı́az-Uriarte and De Andres; 2006; Dettling and

Bühlmann; 2003; Tan and Gilbert; 2003). A brief description of the data sets is given in Appendix

A. Note that no pre-selection of data sets based on the results was done, instead we report the

results of all data sets that we analyzed, as has been recommended by Boulesteix (2015).

Data set p n Source
Prostate Cancer 6033 102 Singh et al. (2002)
Breast Cancer 4869 77 van’t Veer et al. (2002)
Leukemia 7129 72 Golub et al. (1999)
Colon Cancer 2000 62 Alon et al. (1999)
Embryonal Tumor 7129 60 Pomeroy et al. (2002)

Table 1: Overview over high-dimensional genomic data sets used for our investigations. p: number
of predictor variables; n: number of observations in the considered data set.

To study the properties of our test, we need to know which of the variables are truly relevant

and which are not. In other words, we have to know the truth, which we can never know from real

world data. Therefore in our studies we used the design matrix of the real world data sets, but

the response vector was generated anew according to a specified relation. Three different studies

were performed. Table 2 gives an overview of the three studies.

Predictor variables Correlations between
with effect predictor variables

Study I no yes
Study II yes yes
Study III yes no

Table 2: Overview of performed studies which differ in the inclusion of predictor variables with
effect and in the presence of correlations between predictor variables.

In the first study (Study I) none of the predictor variables of a data set has an effect and

there are correlations between predictor variables. In the second and third studies (Study II, III)
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some of the predictor variables have an effect on the response. While Study II includes correlated

variables, in Study III all predictor variables are independent of each other.

We tested our novel testing procedure and the naive testing procedure using Studies I, II and

III. To obtain stable results we performed the computations for 500 repetitions of each study. Due

to computational reasons, we performed only 200 repetitions of each study for the approach of

Altmann et al. (2010). We used the permutation importance defined in Eq. (1) for computing

p-values according to the approach of Altmann et al. (2010). This enables a fair comparison of

our novel approach, which is based on the permutation variable importance measure, and the

approach of Altmann et al. (2010). We always computed p-values for both approaches (non-

parametric and parametric). Altmann et al. (2010) point out that a Kolmogorov-Smirnov test

might be used to choose the most appropriate distribution for the parametric approach. In our

studies we adhere to Algorithm 1 (outlined in the Supplement to Altmann et al.; 2010), which uses

a Gaussian distribution with mean and variance estimated by the arithmetic mean and sample

variance, respectively. The parameter S should be chosen so that it is large enough. For the

parametric approach the recommendation of Altmann et al. (2010) is a value S between 50 and

100. No recommendations were given for the non-parametric method. We always used a large

value S = 500 in the studies to exclude the possibility that the performance of Altmann’s approach

may be related to a suboptimal choice of parameters. In the following we describe each study in

more detail.

2.7.1 Study I

The first study reflects scenarios where all predictor variables are pure noise. We used the original

design matrix and the original response vector of the real data applications. To destroy associations

between the response vector and the design matrix we permuted the elements of the response

vector. In this modified data, associations between predictor variables and the response are only

due to chance. Note that the design matrix was not modified and correlations between predictor

variables were preserved.

2.7.2 Study II

In our second study we simulated a scenario in which 100 variables have an effect on the response

and the other variables have no effect. We again used the original design matrix reflecting realistic

correlation patterns, but generated a new response vector. This allows for a complex data scenario,

but at the same time we have the information which of the variables are relevant.

The binary response Y for an observation with covariate vector x> = (x1, x2, . . . , xp) was

generated from a logistic regression model with success probability

P (Y = 1|x) =
exp(x1β1 + x2β2 + . . .+ xpβp)

1 + exp(x1β1 + x2β2 + . . .+ xpβp)
,

with p denoting the total number of predictor variables in the considered data set. The coefficients

β1, β2, . . . , βp were chosen as follows: First we randomly drew j1, j2, . . . , j100 without replacement

from the set {1, 2, . . . , p} to define which of the variables have an effect on the response and

should therefore be selected by a variable importance testing procedure. The corresponding co-

efficients βj1 , βj2 , . . . , βj100 were subsequently drawn from the set {−3,−2,−1,−0.5, 0.5, 1, 2, 3},
while ensuring that effects in the set were selected equally often. All other coefficients were set to
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zero.

Although standardization is not necessary for the application of random forests in general, we

standardized the design matrix in order to make effects comparable across variables of different

scales.

2.7.3 Study III

This study includes only uncorrelated predictor variables. We used the design matrix of the

real data sets and permuted the values within each variable independently to create uncorrelated

variables. As with Study II, 100 variables were supposed to have an effect on the response. The

approach for deciding which variables have an effect and for generating the response is exactly the

same as described for Study II.

2.7.4 Parameter settings

We performed analyses under different parameter settings to see if the choice of parameters affects

the results. All studies (Studies I, II, III) were performed

• for two different values for the parameter mtry: mtry =
√
p and mtry = p

5 , with p denoting

the number of predictor variables.

• for two different numbers of predictor variables. We used either a very large number of

candidate predictors, namely that from the original design matrices (see Table 1), or a

subset of p = 100 predictor variables randomly drawn from the original design matrices.

In the studies with large predictor numbers 100 variables had an effect, and in the studies

with a subset of p = 100 predictor variables only 20 variables had an effect (only relevant to

Study II and III).

• for two different sets that both determine the effects of relevant predictor variables (only

relevant to Study II and III). One set was chosen as {−3,−2,−1,−0.5, 0.5, 1, 2, 3}. A

second effect set with smaller effects was also investigated: {−1,−0.8,−0.6, −0.4,−0.2,

0.2, 0.4, 0.6, 0.8, 1}. Since results were very similar for the two different sets, only those for

the effect set {−3,−2,−1,−0.5, 0.5, 1, 2, 3} are shown.

The number of trees in the random forest was always set to 5000. We used subsamples of size

d0.632ne to construct trees, with n denoting the number of total observations (Strobl et al.; 2007).

All other parameters not mentioned here were set to the default values so that trees were grown to

maximal depth. The codes implemented in our studies can be obtained from the website http://

www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/janitza/index.

html.

2.7.5 Evaluation criteria

One important aspect that was investigated in the studies is the statistical power of the testing

approaches. The statistical power is generally defined as the probability of rejecting the null

hypothesis, given that the null hypothesis is false. In this paper we define the null hypothesis

that the trees’ prediction accuracy does not worsen when permuting the values of a predictor

variable. If the null hypothesis is rejected (i.e., prediction accuracy worsens), there is evidence

that the variable is relevant. The statistical power of the testing approaches was explored by
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computing the fraction of variables with p-value below α = 0.05 of those that have an effect.

Note that in Studies II and III there are predictor variables with different effect strengths; the

absolute effect strengths are 0.5, 1, 2, 3, or 0.2, 0.4, 0.6, 0.8, 1 in the alternative setting. For power

considerations we computed the proportion of variables with p-value below α = 0.05 within each

subset of variables with the same absolute effect.

The second important aspect concerns the validity of the testing approaches. The type I error

of a test is defined as the probability of rejecting the null hypothesis, given that the null hypothesis

is true. A test is valid if its type I error does not exceed the significance level α. In our studies we

investigated if the testing procedures control the type I error by computing the fraction of variables

with p-value below α = 0.05 among those variables that are not relevant. For this purpose we had

to know which variables are not relevant. In Study I none of the variables has an effect and thus

none is relevant. In Study III exactly those variables whose regression coefficient is zero are not

relevant. In Study II, however, due to the correlation between the variables, it is difficult to assess

which variables are not relevant: Predictor variables that do not have an “own” effect (i.e., those

with coefficient of zero) but are correlated with variables that have an effect, might significantly

improve the trees’ predictive abilities. Therefore in Study II, the regression coefficients cannot be

used to judge which variables are not relevant, because variables with coefficients of zero can also

be relevant. Thus only Study I and III can be used for investigating the type I error.

In addition to type I error and power investigations, we inspected two further related issues.

The first issue concerns the assumption of the presented testing procedure that under the null

hypothesis the variable importance distribution is symmetric around zero. We empirically assessed

if this is the case for the variable importance measures introduced in Sections 2.2 and 2.5 by

plotting the distribution of variable importance scores observed in Study I, where none of the

variables is relevant. If we observe an asymmetric distribution or a distribution which is shifted

along the x-axis, we expect the testing procedure to have a systematically too high or too low

type I error.

The second issue concerns the discrimination between relevant and non-relevant variables by

their importance scores. A testing procedure will have low statistical power if it is based on a

variable importance measure that does not discriminate well between relevant and non-relevant

variables. Thus we inspected the discriminative ability to see if the novel hold-out variable impor-

tance may be used in a testing procedure. We considered the classical permutation importance as

“gold standard” and compared its discriminative ability to that of the hold-out importance. For

these investigations we used Study III because, in contrast to Study II, we know which variables

are relevant and which are not. The area under the curve was used as a measure for discrimi-

native ability. Let the predictor variable indices B = {1, . . . , p} be partitioned into the disjoint

sets B = B0 ∪B1, where B0 represents the non-relevant variables and B1 represents the relevant

variables. The area under the curve is defined by

AUC =
1

|B0| |B1|
∑

j∈B0

∑

k∈B1

I(V Ij < V Ik) + 0.5I(V Ij = V Ik) (5)

where |Bl| denotes the cardinality of Bl with l ∈ {0, 1}, and I(·) denotes the indicator function

(see, e.g., Pepe; 2004). Note that the area under the curve is often used for evaluating the ability of

a method (which may be for example a diagnostic test or a prediction model) to correctly discrim-

inate between observations with binary outcomes (often diseased versus healthy). In our studies,

in contrast, the area under the curve is computed considering the predictor variables X1, . . . , Xp
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as the units to be predicted (as relevant or non-relevant variables) rather than the observations

i = 1, . . . , n. The area under the curve here corresponds to an estimate of the probability that

a randomly drawn relevant variable has a higher importance score than a randomly drawn non-

relevant variable. An AUC value of 1 means that each of these relevant variables receives a higher

importance score than any non-relevant variable, thus indicating perfect discrimination by the im-

portance measure. An AUC value of 0.5 means that a randomly drawn relevant variable receives

a higher importance score than a randomly drawn non-relevant variable in only half of the cases,

indicating no discriminative ability by the importance measure.

3 Results

3.1 Properties of the classical and novel permutation importance

3.1.1 Null distribution

Figure 2 shows the null variable importance distributions for the novel hold-out variable impor-

tance (left panel) and the classical variable importance (right panel) for the settings with large

predictor space and mtry set to
√
p. Results are very similar for mtry = p

5 and are shown in Figure

B.1 in the appendix.

The null distribution of the hold-out variable importance seems to be symmetric around zero,

and thus seems to satisfy the presumption of a symmetric null distribution. In contrast to that,

the null distribution of the classical variable importance is not totally symmetric. In the studies

with p = 100 this asymmetry is much more apparent (Figure B.9): All distributions are clearly

positively skewed showing that a large fraction of variables have small negative importance scores,

while smaller fractions of variables have large positive importance scores. The null distribution of

the cross-validated variable importance looks very similar for k ≥ 3 (see Figures B.1, B.9). In con-

trast, the null distribution of the fold-specific variable importance is nearly symmetric around zero

(results not shown). This seems to be contradictory since the cross-validated variable importance

is the average of fold-specific variable importances. Further inspection of the simulation results

reveals that this effect is possibly due to the overlap of forests. For k ≥ 3 the same observations

are used for creating the forests of several folds. For example, if we had three sets, S1, S2, S3, the

first forest is constructed using S2 and S3, the second forest is constructed using S1 and S3, and

the third forest is based on S1 and S2. Each pair of forests have some part of the observations in

common. For example, the first and the second forests are both based on observations from set

S3. The variables have similar predictive abilities for the sets S2 ∪ S3 (on which the first forest

is trained) and S1 ∪ S3 (on which the second forest is trained). If high values for a variable Xj

speak in favor of class 1 in the subset S2 ∪ S3, then in the subset S1 ∪ S3 high values for Xj will

also speak in favor of class 1 – even if there is, in reality, no association between Xj and the class

membership. Even in settings without any associations, the two forests then often select the same

predictor variables for a split. Thus for k ≥ 3 one of the same few variables will always obtain high

fold-specific importance scores as can also be seen from empirical studies. In Figure 3 the fold-

specific variable importance scores for the first two folds (for the Colon Cancer data) are plotted

against each other for different values of k. The fold-specific variable importance computed for

500 repetitions of Study I (no relevant variables) with mtry set to p
5 are shown. Results for mtry

=
√
p are shown in Figure B.2. Similar results are obtained for the other data sets and when using

only a subset of p = 100 predictor variables (not shown). For k ≥ 3 (2nd, 3rd and 4th plot) we
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Figure 2: Variable importance null distribution when using the classical permutation variable
importance measure and the novel hold-out permutation variable importance measure and setting
mtry to

√
p (default value). Distributions are shown for all variables and 500 repetitions (Study

I).
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clearly observe the phenomenon just described: There are some variables which have large positive

fold-specific variable importance scores for both folds resulting in a large cross-validated variable

importance score. In contrast, there are not as many variables with negative fold-specific variable

importances for both folds. From that it is clear that the cross-validated variable importance has

a skewed null distribution.

Figure 3: Fold-specific variable importance for the first fold plotted against fold-specific variable
importance for the second fold for Study I (mtry = p

5 ) of the Colon Cancer data with k = 2,
k = 3, k = 5 and k = 10.

We expect that similar mechanisms occur with the classical permutation variable importance,

which is based on the out-of-bag observations, as the classical permutation variable importance

is similar to the cross-validated variable importance in which k is set to the sample size n. But

more research is needed to fully understand the behavior of the classical permutation variable

importance.

The hold-out variable importance, in contrast, is not affected in the same manner. Here the

data is partitioned into the sets S1 and S2. Each set – and correspondingly each observation within

the set – is used for the construction of one forest. The first forest uses S2 and the second forest

uses S1, resulting in two forests which are completely independent of each other. The selection of

variables for a split in the second forest is thus independent of which variables have been selected

in the first forest. Therefore the mechanisms described for k ≥ 3 do not apply for k = 2. This

is also supported by the empirical results in Figures 3 and B.2 (first plot) where we observe an

equal amount of variables with negative fold-specific variable importance scores for both folds

as variables with positive fold-specific importance scores for both folds. Although, we note a

substantially higher number of variables with both negative or positive fold-specific importance

scores than variables with one negative and one positive fold-specific importance score. This

might be explained by the fact that the variable importance for the first forest is computed using

observations from set S1, that have been used for the construction of the second forest, and vice

versa. A positive correlation might therefore be expected between the fold-specific importance

scores. However, this has no effect on the symmetry of the null distribution of the hold-out

variable importance.

To conclude, we have empirically shown that the hold-out variable importance has a symmetric

null distribution, while the classical importance and the cross-validated variable importance do

not have a symmetric distribution. From our studies we would expect that our novel testing

approach controls the type I error exactly, while the naive testing approach does not.
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Figure 4: Discriminative ability of the novel hold-out permutation variable importance measure
and the classical permutation variable importance measure. Discriminative ability is measured by
the area under the curve for Studies II and III (mtry always set to

√
p). Values of 0.5 indicate no

discriminative ability (horizontal dotted line).

3.1.2 Discriminative ability

Figure 4 shows the discriminative ability of the classical and the holdout variable importance for

Study II (left) and Study III (right). Results are shown when using the default mtry value. The

discriminative ability is measured in terms of the area under the curve (cf. Section 2.7.5). Our

novel hold-out variable importance measure and the classical variable importance measure have

very similar discrimination ability. For Study III the performance of the hold-out importance

measure is slightly better than the performance of the classical permutation importance measure.

The results with mtry = p
5 are very similar (Figure B.3), and a slightly better performance of

the hold-out importance measure can be observed in both, Study II and III. The results for the

predictor space reduced to p = 100 are in line with these findings and are shown in Figures B.12

and B.13. We therefore consider the novel hold-out variable importance measure a good measure

to reflect the relevance of variables. The cross-validated variable importances with k ≥ 3 have

similar discriminative ability, too (results not shown). As with the classical variable importance

measure, when computing the hold-out and cross-validated importance each observation is used

for tree construction and for variable importance computation. In contrast to that, the fold-

specific variable importance, defined in Eq. (3) uses one part of the observations only for tree

construction and the other part for variable importance computation. By building an average of

fold-specific importances we make sure that all information is used for tree construction and for

variable importance computation.

To summarize, we have seen from our studies that the hold-out importance does not have a

worse discriminative ability than the classical variable importance measure and thus might be

used as reasonable alternative to the classical importance. The hold-out importance, in addition,

is symmetric around zero for variables not associated with the response – a criterion that is not
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Figure 5: Type I error in Study I for the new testing approach (which uses the hold-out permuta-
tion variable importance measure), the naive testing approach (which uses the classical permuta-
tion variable importance measure) and the approach of Altmann et al. (2010) (non-parametric and
parametric). Hypothesis tests were performed at significance level α = 0.05 (dashed horizontal
line).

fulfilled for the classical and the cross-validated variable importance. This motivates the use of

this novel measure in our proposed testing procedure.

3.2 Type I error

The type I errors of all approaches are investigated using Study I and are depicted in Figure 5.

The type I errors of our novel testing procedure are always close to the significance level α = 0.05,

indicating that the test does not systematically reject the null hypothesis too often or too rare.

Our studies with a subset of p = 100 give similar results (Figure B.10). These findings are in

line with the results in Section 3.1.1 where it was shown that the null distribution of the hold-out

variable importance is nearly symmetric around zero.

The results for the naive approach are also in line with the findings from Section 3.1.1. As

expected, the type I error of the naive approach is systematically different from 0.05. More
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precisely, in the studies with large predictor numbers the naive approach always gives slightly too

large type I errors if mtry is set to the default value, and too small type I errors if mtry is p
5

(Figure 5). In the studies with a smaller predictor number (p = 100), the type I errors are always

close to 0.1 for both large and small mtry values (Figure B.10). Therefore the naive approach

should only be used with caution.

The non-parametric approach of Altmann et al. (2010) always gives type I errors close to 0.05

for both the studies with large and smaller (p = 100) predictor numbers. The type I error for

the parametric approach of Altmann et al. (2010) is always considerably smaller than 0.05 in the

studies with large predictor numbers, indicating that the parametric approach is too conservative

in settings with large predictor numbers. In our studies with p = 100, in contrast, the type I error

is much closer to 0.05. The variability in type I errors was smaller for the approach of Altmann

et al. (2010) than for the novel and the naive testing procedures. In settings with the predictor

space reduced to p = 100 the variability increased for all testing approaches.

3.3 Statistical power

3.3.1 Study III

Figure 6 shows the proportion of variables with p-value below 0.05 averaged over 500 (200 for the

approach of Altmann et al. (2010), resp.) repetitions of Study III when the full predictor space

is used. The proportions are computed among variables with the same absolute effect size of 0.5,

1, 2 and 3, respectively. In addition, the proportion of variables with p-value below 0.05 among

variables without effect (i.e., those variables Xj for which βj = 0) are shown. For all testing

procedures the proportion of variables with p-value below 0.05 increases with increasing absolute

effect size. Variables with larger effects are more easily identified than variables with small effects.

The parametric approach of Altmann et al. (2010) consistently has the smallest power. The non-

parametric approach of Altmann et al. (2010) and the new and the naive testing approaches have

similar performance. However, the novel approach has slightly higher statistical power than the

non-parametric approach of Altmann et al. (2010), especially in settings with mtry = p
5 . For mtry

=
√
p the naive approach has a slightly higher number of variables with p-value below 0.05 than

the other two approaches for both, non-relevant (i.e., βj = 0) and relevant (i.e., βj 6= 0) variables.

In contrast, for mtry = p
5 the naive approach has fewer variables with p-value below 0.05.

The results are in line with the results in Section 3.2, where it was shown that the type I error

is smallest for the non-parametric approach of Altmann et al. (2010), and is higher (lower) for

the naive approach than for the novel approach if mtry was set to the default value,
√
p (a large

value, p
5 ). To conclude, the novel testing approach has the best performance in the settings with

large numbers of predictor variables because it consistently has the highest power while preserving

the type I error. However, the statistical power of all testing procedures was low. In our studies

with a subset of p = 100 predictor variables, we observed much higher statistical power for all

approaches (Figure 7). The naive approach does not preserve the type I error in the settings with

reduced predictor space. This can be seen when inspecting the proportion of rejections among

predictor variables Xj with βj = 0 in Figure 7. The same can be seen from the results of Study

I (Figure B.10). The novel testing approach has similar – and on average even slightly higher –

statistical power than the non-parametric and parametric approaches of Altmann et al. (2010).

Note that the results presented so far are averaged over all repetitions of Study III. Thus

there is no information on the variability in the selected number of variables with effect. Further
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Study III – full predictor space
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Figure 6: Proportion of rejected null hypothesis among predictor variables Xj with specified
absolute effect size |βj | ∈ {0, 0.5, 1, 2, 3}. The mean proportions over 500 (200 for the approach of
Altmann et al. (2010), resp.) repetitions of Study III are shown when using our novel approach,
the naive approach and the approach of Altmann et al. (2010), with mtry set to

√
p (upper panel)

and p
5 (lower panel). The red dashed line represents the 5% significance level.
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Study III – reduced predictor space
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Figure 7: Proportion of rejected null hypothesis among predictor variables Xj with specified
absolute effect size |βj | ∈ {0, 0.5, 1, 2, 3}. The mean proportions over 500 (200 for the approach of
Altmann et al. (2010), resp.) repetitions of Study III are shown when using our novel approach,
the naive approach and the approach of Altmann et al. (2010), with mtry set to

√
p (upper panel)

and p
5 (lower panel). The red dashed line represents the 5% significance level.

inspection reveals, however, that the variabilities for the naive approach, the novel approach and

the non-parametric approach of Altmann et al. (2010) are similar (see Figures B.4 - B.18 and

Figures B.14 - B.18). The variability for the parametric approach of Altmann et al. (2010), in

contrast, is smaller, which is due to the fact that the approach is very conservative and selects

only few variables.

3.3.2 Study II

The results for Study II are shown in Figure 8. The proportion of variables with p-value below

0.05 is largest when using the novel testing approach. Thereafter, the proportion decreases bit

by bit for the naive testing approach, the non-parametric approach of Altmann et al. (2010) and

the parametric approach of Altmann et al. (2010). The approaches of Altmann et al. (2010)

identify far less variables as significant than the naive and the novel testing procedures. With the

parametric approach, the proportion of variables with p-value below 0.05 is very low, especially if

mtry is set to
√
p. It is even lower than 0.05, indicating that the parametric approach of Altmann

et al. (2010) is too conservative. This is not the case for the non-parametric approach of Altmann

et al. (2010).

In many settings the proportion of identified variables Xj with βj = 0 is very large and greatly

exceeds 0.05. This is attributable to the correlations between the variables. From the construction
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Study II – full predictor space
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Figure 8: Proportion of rejected null hypothesis among predictor variables Xj with specified
absolute effect size |βj | ∈ {0, 0.5, 1, 2, 3}. The mean proportions over 500 (200 for the approach of
Altmann et al. (2010), resp.) repetitions of Study III are shown when using our novel approach,
the naive approach and the approach of Altmann et al. (2010), with mtry set to

√
p (upper panel)

and p
5 (lower panel). The red dashed line represents the 5% significance level.
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of the naive and the novel testing approach, variables which do not have an “own” effect, but are

correlated to variables with effect, may be considered as relevant as long as they improve the

trees’ prediction accuracy. Therefore, even variables that do not have a direct influence are very

often identified by the two procedures – but still not as often as variables with direct influence.

In contrast to that, it is not clear if the approach of Altmann et al. (2010) is also supposed to

select variables that do not have a direct influence but correlate with variables that have an effect.

Therefore in settings with correlated predictor variables it is not possible to evaluate which testing

approach has better performance.

Note that we expect that, when based on the conditional importance of Strobl et al. (2008), the

testing procedures would not as often select variables that are only associated with the response

through their correlation to truly influential variables.

4 Discussion

During the last years, several approaches have been developed for hypothesis testing based on

random forest’s variable importance (see Hapfelmeier and Ulm; 2013, and references therein).

The existing approaches are computationally demanding and require the repeated computation

of forests. In this paper we presented a fast implementation of a variable importance test that

tests if a predictor variable significantly improves the forest’s predictive ability. In all our studies

the novel testing procedure preserved the type I error and successfully identified at least as many

relevant predictor variables as the testing approach of Altmann et al. (2010). However, our studies

were restricted to classification tasks. Further studies are needed to assess if the novel variable

importance test can also be applied to settings with numeric response.

Our testing procedure is based on a slightly modified version of the permutation variable impor-

tance, whose null distribution was shown to be symmetric around zero. The classical permutation

variable importance, in contrast, has a skewed null distribution and thus seems inappropriate

for the application of our testing procedure. In our studies the testing approach based on the

classical permutation importance worked quite well for settings with huge predictor numbers, but

did not preserve the type I error in settings with fewer (p = 100) predictor variables. Thus it

should be used with caution. We therefore strongly recommend the use of our testing procedure,

which is based on a modified version of the permutation variable importance. This approach has

consistently been shown to precisely preserve the type I error in our studies.

Our testing procedure focuses on the identification of predictor variables which significantly

improve the forest’s predictive ability. The permutation variable importance measure, by its defi-

nition, reflects the improvement in predictive ability if a variable is used for making the prediction.

Thus there is a monotone relationship between the value of the variable importance and the p-

value derived from our testing approach: predictor variables with higher importance scores obtain

smaller p-values. This must not necessarily be the case with permutation-based approaches. This

is obvious as Altmann et al. (2010) state that their approach corrects for the bias in the Gini impor-

tance measure which ranks, for example, variables with many categories higher than variables with

fewer categories. In this case a re-sorting of variables occurs when computing p-values from the

Gini importance based on the proposed permutation procedure. If using a parametric distribution

for the variable importance of unrelated variables, the permutation-based heuristic approach of

Altmann et al. (2010) was very conservative in our studies and had much smaller statistical power

than our approach. When deriving p-values in a non-parametric way, that is without making any
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distributional assumptions, the testing approach of Altmann et al. (2010) showed almost the same

statistical power as the novel approach. This suggests that the poor performance is related to the

assumed parametric distribution for the importance scores of unrelated variables. In our studies

we used the normal distribution for modeling the variable importance distribution of unrelated

variables. Studies indicate that the assumption of a normal distribution is not reasonable due

to the skewness of the distribution of null importance scores (data not shown). Researchers who

apply the approach of Altmann et al. (2010) to high-dimensional data should therefore consider

alternative distributions or approximate the null distribution in a non-parametric way.

Overall, the statistical power of all testing procedures was low in our studies with huge predictor

numbers. The power of the variable importance measure to discriminate between relevant and

non-relevant variables was poor, too. The approach of Altmann et al. (2010), which showed high

power in other studies (Molinaro et al.; 2011; Hapfelmeier and Ulm; 2013), also had very low

statistical power in our studies. This discrepancy is likely related to the fact that the existing

studies included only a few variables, while our studies are based on several thousands of variables.

Molinaro et al. (2011) for example focused on candidate-gene studies and considered only a few

dozens of the features. When repeating our studies with a subset of 100 variables the statistical

power substantially increased, and the variable importance discriminated much better between

relevant and non-relevant variables. This suggests that the issue of detecting relevant features by

variable importance measures is much more difficult for genome-wide association studies, including

hundreds of thousands to millions of features, than for candidate-gene studies, that include only

a few hundreds of features.

The novel testing approach is, however, not applicable to any high-dimensional data set. We

expect that it may perform poorly if only a few non-positive importance scores are observed. If

there are only a few variables with negative importance score or importance score of zero, the

approximation of the variable importance null distribution might be too imprecise and might lead

to inaccurate p-values. In the most extreme setting (100 predictor variables in total and corre-

lations between predictor variables), we observed on average about 70 non-positive importance

scores (for the Prostate Cancer data even only 40). However, our approach still worked surpris-

ingly well. Nevertheless, in settings (i) with small predictor numbers (below 200), or (ii) with very

strong correlations between predictor variables, or (iii) with high expected signal-to-noise ratio,

we recommend that users look closely at the number of non-positive importance scores. If this

number is small, we recommend that users be careful when using our testing approach because

it is not clear if a small number of non-positive importance scores is sufficient to derive p-values.

In such cases one should consider the computationally more demanding alternatives, such as the

approach by Altmann et al. (2010), which had very similar performance in our studies.
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Appendix A Real data sets

Prostate Cancer Data (Singh et al.; 2002): From 1995 to 1997 samples of prostate tumors
and adjacent non-tumor prostate tissue were collected from patients undergoing radical prosta-
tectomy at the Brigham and Women’s Hospital. High-quality expression profiles were obtained
from 50 non-tumor prostate samples and 52 tumor specimens. The oligonucleotide microarrays
contained probes for approximately 12600 genes. We obtained this data set from the website
http://ligarto.org/rdiaz/Papers/rfVS/randomForestVarSel.html.

Breast Cancer Data (van’t Veer et al.; 2002): We considered the data set that was previ-
ously analyzed by Dı́az-Uriarte and De Andres (2006) and made publicly available at the website
http://ligarto.org/rdiaz/Papers/rfVS/randomForestVarSel.html. In this data set there
were 33 patients that developed distant metastases within 5 years and 44 that remained disease-
free for over 5 years. Missing data was imputed by using 5-nearest neighbor imputation. Further
details on transformations of the original data are given in the supplement to the paper of Dı́az-
Uriarte and De Andres (2006).

Leukemia Data (Golub et al.; 1999): The Leukemia Data consists of 47 patients with acute
lymphoblastic leukemia (ALL) and 25 patients with acute myeloid leukemia (AML). The consid-
ered data set comprises both, training samples and test samples from Golub et al. (1999) and was
retrieved from the Bioconductor package golubEsets. The samples were assayed using Affymetrix
Hgu6800 chips and data on the expression of 7129 genes are available.

Colon Cancer Data (Alon et al.; 1999): In this data set, expression levels of 40 tumor and
22 normal colon tissues for 6500 human genes are measured. The considered data set contains
the expression of the 2000 genes with highest minimal intensity across the 62 tissues measured
using the Affymetrix technology. We obtained this data set from the website http://ligarto.

org/rdiaz/Papers/rfVS/randomForestVarSel.html.

Embryonal Tumor Data (Pomeroy et al.; 2002): This data set includes 60 patients with
embryonal tumors of the central nervous system from whom biopsies were obtained before receiving
treatment. The data was used to differentiate between patients who are alive after treatment
(n = 21) and those who succumbed to their disease (n = 39) (data set C in the paper by Pomeroy
et al.; 2002). RNA was extracted from frozen specimens and was analysed with oligonucleotide
microarrays containing 7129 probes from 6817 genes. We obtained the data from the website
http://datam.i2r.a-star.edu.sg/datasets/krbd/NervousSystem/NervousSystem.html.
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Appendix B Further results of simulation studies

B.1 Studies with complete predictor space
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Figure B.1: Variable importance null distribution when using the hold-out permutation variable
importance measure, the cross-validated importance measure with k = 3, k = 5, and k = 10 and
the classical permutation variable importance measure and setting mtry to

√
100 (upper) and p

5
(lower).
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Figure B.2: Fold-specific variable importance for the first fold plotted against fold-specific variable
importance for the second fold for Study I (mtry =

√
p) of the Colon Cancer data with k = 2,

k = 3, k = 5 and k = 10.
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Figure B.3: Discriminative ability of the novel hold-out permutation variable importance measure
and the classical permutation variable importance measure. Discriminative ability is measured by
the area under the curve for Studies II and III (mtry always set to p

5 ). Values of 0.5 indicate no
discriminative ability (horizontal dotted line).
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Figure B.4: Relative frequency of repetitions of Study III in which the specified number of
variables with effect was selected (i.e., variables with p-value below α = 0.05). Distributions are
shown for variables with specified absolute effect size and when using our new approach, the naive
approach and the approach of Altmann et al. (2010) (non-parametric and parametric), with mtry

set to
√
p (upper) and p

5 (lower).

30



B
re
a
st

C
a
n
ce

r
| βj | =  3

F
re

qu
en

cy
 o

f
 r

ep
et

iti
on

s

0.
00

0.
15

0.
30

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

| βj | =  2

F
re

qu
en

cy
 o

f
 r

ep
et

iti
on

s

0.
00

0.
15

0.
30

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

| βj | =  1

F
re

qu
en

cy
 o

f
 r

ep
et

iti
on

s

0.
0

0.
2

0.
4

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

| βj | =  0.5

F
re

qu
en

cy
 o

f
 r

ep
et

iti
on

s

0.
0

0.
2

0.
4

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

mtry = p

| βj | =  3

F
re

qu
en

cy
 o

f
 r

ep
et

iti
on

s

0.
0

0.
2

0.
4

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

| βj | =  2

F
re

qu
en

cy
 o

f
 r

ep
et

iti
on

s

0.
0

0.
3

0.
6

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

| βj | =  1

F
re

qu
en

cy
 o

f
 r

ep
et

iti
on

s

0.
0

0.
4

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

| βj | =  0.5

F
re

qu
en

cy
 o

f
 r

ep
et

iti
on

s

0.
0

0.
3

0.
6

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

●

●

●

●

New approach
Naive approach
Altmann (non−param.)
Altmann (param.)

mtry = p 5

Figure B.5: Relative frequency of repetitions of Study III in which the specified number of
variables with effect was selected (i.e., variables with p-value below α = 0.05). Distributions are
shown for variables with specified absolute effect size and when using our new approach, the naive
approach and the approach of Altmann et al. (2010) (non-parametric and parametric), with mtry

set to
√
p (upper) and p

5 (lower).
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Figure B.6: Relative frequency of repetitions of Study III in which the specified number of
variables with effect was selected (i.e., variables with p-value below α = 0.05). Distributions are
shown for variables with specified absolute effect size and when using our new approach, the naive
approach and the approach of Altmann et al. (2010) (non-parametric and parametric), with mtry

set to
√
p (upper) and p

5 (lower).
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Figure B.7: Relative frequency of repetitions of Study III in which the specified number of
variables with effect was selected (i.e., variables with p-value below α = 0.05). Distributions are
shown for variables with specified absolute effect size and when using our new approach, the naive
approach and the approach of Altmann et al. (2010) (non-parametric and parametric), with mtry

set to
√
p (upper) and p

5 (lower).
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Figure B.8: Relative frequency of repetitions of Study III in which the specified number of
variables with effect was selected (i.e., variables with p-value below α = 0.05). Distributions are
shown for variables with specified absolute effect size and when using our new approach, the naive
approach and the approach of Altmann et al. (2010) (non-parametric and parametric), with mtry

set to
√
p (upper) and p

5 (lower).
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B.2 Studies with reduced predictor space (p = 100)
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Figure B.9: Variable importance null distribution when using the hold-out permutation variable
importance measure, the cross-validated importance measure with k = 3, k = 5, and k = 10 and
the classical permutation variable importance measure and setting mtry to

√
100 (upper) and p

5
(lower).
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Figure B.10: Type I error in Study I for the new testing approach (which uses the hold-out permu-
tation variable importance measure), the naive testing approach (which uses the classical permu-
tation variable importance measure) and the approach of Altmann et al. (2010) (non-parametric
and parametric). Hypothesis tests were performed at significance level α = 0.05 (dashed horizontal
line).
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B.2.2 Study II
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Figure B.11: Proportion of rejected null hypothesis among predictor variables with specified ab-
solute effect size. The mean proportions over 500 (200 for the approach of Altmann et al. (2010),
resp.) repetitions of Study II are shown when using our novel approach, the naive approach and
the approach of Altmann et al. (2010) (non-parametric and parametric), with mtry set to

√
p

(upper panel) and p
5 (lower panel). The red dashed line represents the 5% significance level.
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Figure B.12: Discriminative ability of the novel hold-out permutation variable importance measure
and the classical permutation variable importance measure. Discriminative ability is measured by
the area under the curve. Results are shown for mtry set to

√
p (left) and p

5 (right). Values of 0.5
indicate no discriminative ability (horizontal dotted line).
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B.2.3 Study III
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Figure B.13: Discriminative ability of the novel hold-out permutation variable importance measure
and the classical permutation variable importance measure. Discriminative ability is measured by
the area under the curve. Results are shown for mtry set to

√
p (left) and p

5 (right). Values of 0.5
indicate no discriminative ability (horizontal dotted line).
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Figure B.14: Relative frequency of repetitions of Study III in which the specified number of
variables with effect was selected (i.e., variables with p-value below α = 0.05). Distributions are
shown for variables with specified absolute effect size and when using our new approach, the naive
approach and the approach of Altmann et al. (2010) (non-parametric and parametric), with mtry

set to
√
p (upper) and p

5 (lower).
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Figure B.15: Relative frequency of repetitions of Study III in which the specified number of
variables with effect was selected (i.e., variables with p-value below α = 0.05). Distributions are
shown for variables with specified absolute effect size and when using our new approach, the naive
approach and the approach of Altmann et al. (2010) (non-parametric and parametric), with mtry

set to
√
p (upper) and p

5 (lower).

40



L
e
u
k
e
m
ia

| βj | =  3

F
re

qu
en

cy
 o

f
 r

ep
et

iti
on

s

0.
00

0.
15

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

| βj | =  2

F
re

qu
en

cy
 o

f
 r

ep
et

iti
on

s

0.
0

0.
2

0.
4

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

| βj | =  1

F
re

qu
en

cy
 o

f
 r

ep
et

iti
on

s

0.
0

0.
2

0.
4

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

| βj | =  0.5

F
re

qu
en

cy
 o

f
 r

ep
et

iti
on

s

0.
00

0.
15

0.
30

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

mtry = 100

| βj | =  3

F
re

qu
en

cy
 o

f
 r

ep
et

iti
on

s

0.
00

0.
15

0.
30

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

| βj | =  2

F
re

qu
en

cy
 o

f
 r

ep
et

iti
on

s

0.
0

0.
2

0.
4

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

| βj | =  1

F
re

qu
en

cy
 o

f
 r

ep
et

iti
on

s

0.
0

0.
2

0.
4

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

| βj | =  0.5

F
re

qu
en

cy
 o

f
 r

ep
et

iti
on

s

0.
0

0.
2

0.
4

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

●

●

●

●

New approach
Naive approach
Altmann (non−param.)
Altmann (param.)

mtry = 100 5

Figure B.16: Relative frequency of repetitions of Study III in which the specified number of
variables with effect was selected (i.e., variables with p-value below α = 0.05). Distributions are
shown for variables with specified absolute effect size and when using our new approach, the naive
approach and the approach of Altmann et al. (2010) (non-parametric and parametric), with mtry

set to
√
p (upper) and p

5 (lower).
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Figure B.17: Relative frequency of repetitions of Study III in which the specified number of
variables with effect was selected (i.e., variables with p-value below α = 0.05). Distributions are
shown for variables with specified absolute effect size and when using our new approach, the naive
approach and the approach of Altmann et al. (2010) (non-parametric and parametric), with mtry

set to
√
p (upper) and p

5 (lower).
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Figure B.18: Relative frequency of repetitions of Study III in which the specified number of
variables with effect was selected (i.e., variables with p-value below α = 0.05). Distributions are
shown for variables with specified absolute effect size and when using our new approach, the naive
approach and the approach of Altmann et al. (2010) (non-parametric and parametric), with mtry

set to
√
p (upper) and p

5 (lower).
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