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sARI: A soft agreement measure for class partitions
incorporating assignment probabilities

Abstract Agreement indices are commonly used to summarize the perfor-
mance of both classification and clustering methods. The easy interpreta-
tion/intuition and desirable properties that result from the Rand and ad-
justed Rand indices, has led to their popularity over other available indices.
While more algorithmic clustering approaches like k-means and hierarchical
clustering produce hard partition assignments (assigning observations to a sin-
gle cluster), other techniques like model-based clustering include information
about the certainty of allocation of objects through class membership proba-
bilities (soft partitions). To assess performance using traditional indices, e.g.
the adjusted Rand index (ARI), the soft partition is mapped to a hard set of
assignments, which commonly overstates the certainty of correct assignments.
This paper proposes an extension of the ARI, the soft adjusted Rand index
(sARI), with similar intuition and interpretation but also incorporating infor-
mation from one or two soft partitions. It can be used in conjunction with the
ARI, comparing the similarities of hard to soft, or soft to soft, partitions to the
similarities of the mapped hard partitions. Simulation study results support
the intuition that, in general, mapping to hard partitions tends to increase
the measure of similarity between partitions. In applications, the sARI more
accurately reflects the cluster boundary overlap commonly seen in real data.

Keywords adjusted Rand index · model-based clustering · mixture models ·
soft partition · posterior probabilities · class membership probabilities

Mathematics Subject Classification (2000) 62H30 · 91C20 · 62H86

1 Introduction

The rise of statistical clustering and classification techniques from the mid
twentieth century since Hartigan (1975), produced the need for a way to mea-
sure the similarity between two partitions of the same data set. For both
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clustering and classification, we might compare a set of estimated cluster or
class labels to the true labels (if known), to characterize methodology perfor-
mance. We might also compare two sets of labels, each generated by different
methods, for comparison purposes or to assess performance consistency.

As an example, in Figure 1, we introduce data from two simulated Gaus-
sians, 50 observations fromN ((3, 2)′, Σ) and 50 observations fromN ((5, 2)′, Σ),

where Σ =

(
1.20 0.15
0.15 1.20

)
. In the left scatterplot (Partition 1), the observations

are labeled by their true group partition: black circles versus green diamonds.
In the right scatterplot (Partition 2), observations are labeled by their esti-
mated group partition from fitting a mixture of Gaussians to the data. For
small data sets of low dimensionality, we are able to visualize a general sense of
how often and which observations are misclassified or mislabeled; however, in
general, we often rely on the use of a corresponding numerical summary that
measures how similar two partitions are to each other, an agreement index.
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Partition 2

Fig. 1 Comparing two partitions: true vs estimated labels (via Gaussian mixture model).

Many agreement indices have been suggested, such as the Jaccard index
(Downton and Brennan, 1980), Rand index (RI, Rand, 1971), Fowlkes-Mallows
index (Fowlkes and Mallows, 1983), and adjusted Rand index (ARI, Hubert
and Arabie, 1985; Morey and Agresti, 1984). The Hubert-Arabie adjusted
Rand index is the most heavily used as it has several desirable properties, such
as invariance to parameter differences across clusters, the number of objects
clustered, and the number of clusters, see for example Steinley (2004). One
commonality across these indices is their use of hard partitions, or a set of
labels such that each observation is assigned to only one class or cluster with
complete certainty. This feature matches nicely to clustering techniques such
as hierarchical clustering (Ward, 1963) and k-means clustering (MacQueen
et al, 1967) that produce hard assignments.
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However, hard partitions or class assignments naturally imply that every
observation in a cluster has the same certainty of belonging to their respective
cluster or class assignment. Observations near the middle or bulk of their clus-
ter are viewed similarly as observations near the boundary between clusters or
classes. In practice, assignment certainty is likely to be very different for these
two location types. In the example, Partition 2 has 17 misclassified observa-
tions, denoted by an “X” in Figure 2 (left). There are several misclassified
observations that are understandably misclassified because of their location
well within the “wrong” class. There are others, however, that lie within the
overlap between the two simulated classes.
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Fig. 2 Partition 2 misclassifications (indicated by “X”); Partition 2 uncertainty (observa-
tions with larger symbols have higher assignment uncertainty).

More recently, new clustering techniques (e.g. model-based clustering or
Gaussian mixture model clustering: Wolfe (1963); McLachlan and Peel (2004);
McLachlan and Krishnan (2007); Fraley and Raftery (2002); McNicholas (2016),
fuzzy c-means: Dunn (1973); Bezdek (1981)) have been gaining popularity in
practice. Model-based clustering methods produce a soft partition, defined
here as a set of cluster assignment probabilities for each observation that (most
commonly) sum to one. A soft partition can also be obtained with some fuzzy
clustering methods, provided the fuzziness can be re-interpreted as a probabil-
ity (Miyamoto et al, 2008). In Figure 2, the right scatterplot shows a measure
of uncertainty associated with Partition 2, where uncertainty is defined as
1 minus the maximum cluster assignment probability for each observation.
Note that larger observations with higher uncertainty are primarily near the
boundary between the two clusters (as expected). Comparing the misclassified
observations (left) to their uncertainties (right), we see that some misclassified
observations were also some of the most uncertain assignments. Incorporat-
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ing this uncertainty into agreement indices may be more representative of the
partition’s performance and any overlapping cluster structure that may exist.

Currently, researchers commonly transform soft partitions to hard parti-
tions by, for example, mapping observations to the cluster or class with the
maximum probability, which often tends to overstate the observation’s indi-
vidual certainty of class membership and the overall agreement. In addition,
multiple soft partitions can lead to the same hard partition and will then be
indistinguishable via agreement indices. This paper proposes an adjustment
to the commonly used ARI, called the soft ARI (sARI) which allows for the
comparison of a hard partition (e.g. the true labels) to a soft partition of
class membership probabilities, or the comparison of two soft partitions. We
advocate using the sARI in conjunction with the ARI, to more completely
summarize agreement in the presence of uncertainty.

Over the last decade, there have been other indices proposed as variations
on the RI or ARI, including those by Campello (2007), Huellermeyer et al
(2012), and Amodio et al (2015). The first two allow for comparison of one
hard and one soft partition, while the latter allows for comparison of two soft
partitions. The goal of these papers was primarily to create an alternative for
the ARI that incorporated probabilistic information, but was not motivated
to necessarily act as a direct comparison to the ARI (or other indices of this
type). In contrast, the sARI’s development begins directly from the ARI and
so benefits from the same understanding and direct comparability. As such, it
is motivated as a companion index to the ARI rather than a supplanting one.

In Section 2 we review the Rand and adjusted Rand indices; in Section 3, we
propose the soft ARI. We illustrate some properties of the sARI in comparison
to the original ARI in Section 4, and present an application to real data in
Section 5. The paper concludes with a summary and discussion in Section 6.

2 Similarity Indices for Comparing Partitions of Data

Although our illustrative examples will use clustering methodology, the simi-
larity or agreement indices presented in this paper can be used for both cluster-
ing and classification approaches. As such, we use the terms cluster and class
interchangeably. Given a set of observations, the goal of clustering is to find
a partition such that observations that are more similar or are from the same
original class are more likely to be assigned to the same estimated cluster.

2.1 Rand Index

The Rand index (RI), attributed to Rand in 1971, is commonly used to mea-
sure the correspondence between two partitions of a set of observations. The
idea is based on counting types of pairs of observations. Given a set of N ob-
servations S = {O1, . . . ON}, suppose that there are two hard partitions of S
namely P1 = {u1, u2, . . . , uR} and P2 = {v1, v2, . . . , vC} with R and C classes,
ur and vc respectively, such that
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R⋃
r=1

ur = S =

C⋃
c=1

vc, ur ∩ ur′ = ∅ = vc ∩ vc′ ∀r 6= r′, c 6= c′.

We summarize the combinations of cluster membership in the two partitions
using a contingency table such as that given in Table 1.

Table 1 Contingency table notation for comparing two hard partitions.

P1 \ P2 v1 v2 . . . vC Sums
u1 n11 n12 . . . n1C n1·
u2 n21 n22 . . . n2C n2·
...

...
...

uR nR1 nR2 . . . nRC nR·
Sums n·1 n·2 . . . n·C n·· = N

In this table, nrc is the number of observations in both cluster ur and vc, and
nr· and n·c are the number of objects in cluster ur and vc respectively.

There are four different types of classifications of the
(
N
2

)
distinct pairs of

observations

type (a): observation pairs are placed in the same cluster in partition P1

and in the same cluster in partition P2

type (b): observation pairs are placed in the same cluster in partition P1

and in different clusters in partition P2

type (c): observation pairs are placed in different clusters in partition P1

and in the same cluster in partition P2

type (d): observation pairs are placed in different clusters in partition P1

and in different clusters in partition P2

Types (a) and (d) are considered agreements (A) in classification, while
types (b) and (c) are considered disagreements (D) (Hubert and Arabie, 1985).
If A and D are defined in this manner, then A + D =

(
N
2

)
. The RI, which is

interpreted as the probability of agreement, is defined as A

(N
2 )

where 0 ≤ RI ≤ 1,

with 1 indicating perfect agreement between the 2 partitions.

Comparing the hard clustering assignments generated from Partition 2, to
the true classifications from Partition 1 (Figure 1, Table 2), we have an RI of
0.715. This is fairly high agreement - although again we note that this value
assumes complete certainty in the clustering assignment.

Unfortunately in practice, the RI does not span its range and only ap-
proaches its upper limit as the number of classes increase (Steinley, 2004).
Because of these limitations, several variations on the RI have been proposed.
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Table 2 Cross-classification table of Partition 2’s hard assignment and the true labels.

P1 \ P2 v1 v2 Sums
u1 42 8 50
u2 9 41 50

Sums 51 49 100

2.2 Adjusted Rand Index

One such variation, the adjusted Rand index (ARI), proposed by Hubert and
Arabie in 1985, corrects the RI for chance (Hubert and Arabie, 1985). In

general, an index corrected for chance has the form Index−E[Index]
Max[Index]−E[Index] . It is

assumed that the index follows a generalized hypergeometric distribution for
its model of randomness. By assuming this model, in fixing the marginals, the
partitions P1 and P2 are chosen at random. Hubert and Arabie (1985), using
this assumption, showed that the expectation can be calculated in closed form
giving an adjusted index of:

ARI(P1, P2) =

∑
r,c

(
nrc

2

)
−
[∑

r

(
nr·
2

)∑
c

(
n·c
2

)]
/
(
N
2

)
1
2

[∑
r

(
nr·
2

)
+
∑
c

(
n·c
2

)]
−
[∑

r

(
nr·
2

)∑
c

(
n·c
2

)]
/
(
N
2

) . (1)

The maximum value of the ARI is 1 (for identical partitions) and under random
partitioning, the expected value of the ARI is 0 (unlike the RI). Because the
ARI counts pairs of observations, it is not affected by label switching of classes,
and as opposed to other classification indices, it gives credit for classes that
are split into multiple classes or for multiple classes that are combined into
fewer classes. The ARI has been shown to be among the most desirable of
the common agreement indices, also used for variable selection, evaluating
simulations, and other non-standard uses as detailed in Steinley (2004).

Calculating the ARI for our illustrative example in Figure 1 and Table 2,
we obtain a value of 0.430. Note that we would not compare this value directly
to the RI; we would only report moderate agreement of Partition 2 with the
true labels (again, assuming certainty in Partition 2’s labels).

3 Soft Adjusted Rand Index

Both the RI and ARI are calculated using hard partitions which is necessarily
limiting. In this section, we extend the ARI to allow for one or more soft
partitions, i.e. matrices of class membership probabilities rather than vectors
of class memberships.

3.1 Soft Cluster Membership Probabilities

We refer to a soft cluster assignment as a set of probabilities, one per clus-
ter, that indicate the likelihood that an observation belongs to each cluster.
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While there are several clustering (and classification) approaches that return
soft assignments, our illustrative approach here is model-based clustering, also
known as Gaussian (finite) mixture model clustering.

In finite mixture model clustering, we assume that the observations are a
sample from a population with density f(x). We further assume that f(x) can
be modeled as a weighted mixture of component (cluster) densities, i.e.

f(x) =

K∑
k=1

πk · fk(x; θk)

where πk > 0,
∑K
k=1 πk = 1, and K is the number of mixture components in

the population. In model-based clustering all fk are assumed to be Gaussian.
This model is usually estimated through an EM algorithm (Dempster et al,
1977) iterating between cluster assignments and parameter estimation with
the final model being chosen by some criterion, such as the Bayesian Informa-
tion Criterion. The model can also be estimated through standard Bayesian
inference using MCMC approaches. Each component fk is assumed to repre-
sent a single cluster. Each observation xi is then assigned a vector of cluster
membership posterior probabilities: for i = 1, 2, ..., N and k = 1, 2, ...,K,

zki = P̂ (xi ∈ cluster k) = π̂kf̂k(xi)/f̂(xi).

We used model-based clustering to generate Partition 2 in Figure 1 (spec-
ifying K = 2); hard assignments were generated by assigning each observa-
tion to the cluster with the highest probability. Figure 3 and Table 3 show a
sample of 10 labeled observations (5 from each simulated class: u1, u2), pro-
viding their location and posterior probabilities for belonging to v1 or v2 in
the model-based clustering solution. Bolded numbers correspond to the hard
cluster assignment, and italicized numbers indicate incorrect final assignments
(given that u1 matches closest to v1 and u2 to v2). We see a large degree of
variation across pairs of posterior probabilities. Observations like 0 and 5 have
a high degree of certainty about their (correctly) assigned class. Observations
like 1, 2, 6, 7 show less certainty, but still have a higher probability of be-
longing to the correct class. We see some observations that are close to an
even split, but have a slightly higher probability of belonging to the incorrect
class (e.g. 3, 8). Lastly, observations like 4 and 9 have high probabilities of
being assigned to the incorrect class. These soft posterior probabilities are as
expected given their locations relative to fitting two overlapping Gaussians;
note that the hard assignment procedure forces essentially a linear boundary
between two elliptical clusters (see Figure 1 right).

3.2 Calculating the Soft Adjusted Rand Index

Let prci be the product of the (posterior) probabilities of assignment of ob-
servation i to ur in P1 and vc in P2. That is, prci = zri · zci, given posterior
probabilities zri and zci. Note that this assumes independence between the
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Fig. 3 Example observations from Table 3, remaining points colored by estimated cluster.

Table 3 Posterior probabilities of example observations shown in Figure 3.

Posteriors
Label v1 v2

0 0.987 0.013
1 0.671 0.329

u1 2 0.533 0.467
3 0.456 0.544
4 0.315 0.685
5 0.002 0.998
6 0.243 0.757

u2 7 0.446 0.554
8 0.529 0.471
9 0.889 0.111

two partitions. While it is likely that the classes resulting from the two meth-
ods will be dependent, it is reasonable to assume that one partition does not
influence the solution of the second partition. If comparing the true labels to a
model-based clustering solution, prci = 1 · zci, if observation i comes from true
class r. Note that probabilities, zki were defined previously in a model-based
clustering context, however the definition of prci holds for any algorithm that
provides cluster membership probabilities. Given the posteriors, we then have:

1. prc· =
∑N
i=1 prci is the sum of the product of the (posterior) probabilities

of assignment to ur in P1 and vc in P2 over all observations.
2. p·c· =

∑R
r=1 prc· =

∑R
r=1

∑N
i=1 prci is the sum of the product of the (pos-

terior) probabilities for belonging to group vc in P2 for all observations.

3. pr·· =
∑C
c=1 prc· =

∑C
c=1

∑N
i=1 prci is the sum of the product of the (pos-

terior) probabilities for belonging to group ur in P1 for all observations.
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These probabilities can be summarized in a contingency table (Table 4),
similar to Table 1, except that this table allows fractional values.

Table 4 Contingency table notation for comparing two soft partitions.

P1 \ P2 v1 v2 . . . vC Sums
u1 p11· p12· . . . p1C· p1··
u2 p21· p22· . . . p2C· p2··
...

...
...

uR pR1· pR2· . . . pRC· pR··
Sums p·1· p·2· . . . p·C· p··· = N

Replacing the nrc’s in Equation (1) with the appropriate prc·’s, gives us

sARI(P1, P2) =

∑
r,c

(
prc·
2

)
−
[∑

r

(
pr··
2

)∑
c

(
p·c·
2

)]
/
(
N
2

)
1
2

[∑
r

(
pr··
2

)
+
∑
c

(
p·c·
2

)]
−
[∑

r

(
pr··
2

)∑
c

(
p·c·
2

)]
/
(
N
2

) . (2)

When there is certainty in the assignment of observations to classes, i.e. all
(posterior) probabilities are either 0 or 1, then sARI will be identical to ARI
as prc· = nrc. This is true in particular when there is a perfectly classified set
of observations. There will be near agreement between sARI and ARI at the
other extreme, when there is random partitioning of the observations into the
classes. In this case, both nrc and prc· are tending to N/RC.

Combinations cannot be computed on fractional values; however, notice
that we can rewrite combinations in Equation (1) using gamma functions, e.g.∑

r,c

(
nrc
2

)
=
∑
r,c

(
nrc!

2!(nrc − 2)!

)
=
∑
r,c

Γ (nrc + 1)

2× Γ (nrc − 1)
.

With this, we can rewrite Equation (2) using gamma functions, which allow
for computation on non-integer table values. Define

Λrc =
∑
r

Γ (pr·· + 1)

Γ (pr·· − 1)
+
∑
c

Γ (p·c· + 1)

Γ (p·c· − 1)
.

Then the sARI for two partitions P1, P2 is defined as

sARI(P1, P2) =

∑
r,c

Γ (prc·+1)
Γ (prc·−1) −

1
N(N−1)Λrc

1
2Λrc −

1
N(N−1)Λrc

. (3)

The gamma function has asymptotes at 0 and each negative integer. If
any cells in Table 4 are ≤ 1, we run the risk of hitting an asymptote of the
gamma function for the denominator of each term in Equation (3). To ensure
sARI calculation feasibility, we present an alternative ARI calculation which
we adapt for use with the sARI.
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3.3 Alternative Calculation of Soft Adjusted Rand Index

As an alternative to Equation (1), Steinley (2004), showed that the classifica-
tions, type (a) - type (d) can be written as

a = 1
2

[∑
r

∑
c n

2
rc −N

]
, b = 1

2

[∑
r n

2
r· −

∑
r

∑
c n

2
rc

]
,

c = 1
2

[∑
c n

2
·c −

∑
r

∑
c n

2
rc

]
, d = 1

2

[∑
r

∑
c n

2
rc +N2 −

∑
r n

2
r· −

∑
c n

2
·c
]
,

and the ARI is given by

ARI(P1, P2) =

(
N
2

)
(a+ d)− [(a+ b)(a+ c) + (c+ d)(b+ d)](
N
2

)2 − [(a+ b)(a+ c) + (c+ d)(b+ d)]
. (4)

We use this computation to calculate the sARI, replacing the integer table
values from Table 1 with the posterior probabilities from Table 4 as follows

ã = 1
2

[∑
r

∑
c p

2
rc· −N

]
, b̃ = 1

2

[∑
r p

2
r·· −

∑
r

∑
c p

2
rc·
]
,

c̃ = 1
2

[∑
c p

2
·c· −

∑
r

∑
c p

2
rc·
]
, d̃ = 1

2

[∑
r

∑
c p

2
rc· +N2 −

∑
r p

2
r·· −

∑
c p

2
·c·
]
,

We use this equivalent form of the sARI for our calculations

sARI(P1, P2) =

(
N
2

)
(ã+ d̃)− [(ã+ b̃)(ã+ c̃) + (c̃+ d̃)(b̃+ d̃)](
N
2

)2 − [(ã+ b̃)(ã+ c̃) + (c̃+ d̃)(b̃+ d̃)]
. (5)

3.4 Example

Returning to the illustrative example, rather than forcing a hard assignment
from model-based clustering, we use soft cluster membership probabilities (see
Section 3.1) to create Table 5, resulting in a sARI of 0.301 for agreement with
the true labels. This value is in comparison to an ARI of 0.430 for the hard
partition agreement. In comparing Table 5 and Table 2, we see that the di-
agonal cells, representing agreement, have lost magnitude. The upper right
off-diagonal has increased from 8 to 10.431 and the lower left off-diagonal
has increased from 9 to 11.825. Since, in this simple two-group example, off-
diagonals represent disagreements, an increase in these cells represents a de-
crease in agreement between the true labels and the clustering. A smaller
sARI value relative to the corresponding ARI reflects the uncertainty in the
model-based clustering solution.

Table 5 Probability contingency table for illustrative example.

P1 \ P2 v1 v2 Sums
u1 39.569 10.431 50
u2 11.825 38.175 50

Sums 51.394 48.606 100
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Further investigating this difference, Table 6 reproduces the ten selected
observations from Table 3, italicized if misclassified. If we sum entries 0 through
2 in the first column and 5 through 7 in the second column for the original
data columns, we see the contribution of the correct classifications for the
soft partition is 0.987 + 0.671 + 0.533 + 0.998 + 0.757 + 0.554 = 4.5 while the
contribution for the hard partition is 6. In contrast, for the incorrect classi-
fications, the contribution for the soft partition is the sum of entries 3 and
4 in the second column and the last two entries in the first column, giving a
total of 0.544 + 0.685 + 0.529 + 0.889 = 2.647 versus the penalty of 4 for the
hard partition. So the soft partition here has lost 6 − 4.5 = 1.5 and gained
4− 2.647 = 1.353 for a net loss of 0.147.

If we do this over all observations, we find that compared to the hard
partition, the correct classifications in the soft partition contributed 9.087 less
and the misclassifications 3.831 less for a net loss of 5.256 in overall correct
classification terms, resulting in a lower sARI relative to the ARI. The over-
confidence of the hard correct classifications outweighs the under-confidence
in the hard misclassifications.

Small variations in the posterior probabilities will result in little to no dif-
ference in the hard classification and ARI, while they could however have a
significant impact on the sARI. For example, if in Figure 1, the green multi-
variate Gaussian group is shifted to the left by 0.25, increasing overlap in the
two classes, the ARI decreases slightly from 0.430 to 0.404 due to observation
2 additionally being misclassified. The posterior probabilities are affected by
the added uncertainty from the increased cluster overlap, and the resulting
sARI decreases from 0.301 to 0.212. Conversely, we can shift the green group
to the right by 0.25, decreasing the overlap in the two classes, resulting in more
certainty in the classification. This is reflected in both the ARI and sARI in-
creasing to 0.513 and 0.388 respectively. The original posterior probabilities
for the 10 example observations and the updated posterior probabilities, based
on the two shifts are given in Table 6.

4 Simulation Study

Here we look at a variety of simulations to illustrate the difference in ARI
and sARI, and how that difference is likely to change depending on varying
data structures. We first consider the comparison of a soft partition to a hard
partition (as with our illustrative example for model-based clustering versus
true labels); and then consider the comparison of two soft partitions.

The simulated datasets are generated using the clusterGeneration pack-
age (Qiu and Joe, 2015) in the R (R Core Team, 2017) software language,
which allows control of multiple aspects of mixtures of Gaussians. Qiu and
Joe (2006) introduce a separation index, which measures the magnitude of the
gaps between any two clusters by looking at their maximum separation on a
one-dimensional projection. A specified level of separation is used pairwise for
a cluster and its nearest neighboring cluster. As such, the chosen separation
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Table 6 Posterior probabilities of example observations from Table 3. The partitions u1

and u2 are the true assignment (Figure 1 - Partition 1) while v1 and v2 are the model-based
clustering assignment (Figure 1 - Partition 2). The different columns represent when the
data are shifted together by 0.25, the original data and when the data are shifted apart by
0.25. Probabilities are italicized for misclassified observations.

Shifted Closer Original Data Shifted Apart
Label v1 v2 v1 v2 v1 v2

0 0.969 0.031 0.987 0.013 0.995 0.005
1 0.574 0.426 0.671 0.329 0.758 0.242

u1 2 0.447 0.553 0.533 0.467 0.619 0.381
3 0.386 0.614 0.456 0.544 0.531 0.469
4 0.262 0.738 0.315 0.685 0.376 0.624
5 0.005 0.995 0.002 0.998 0.001 0.999
6 0.307 0.693 0.243 0.757 0.168 0.832

u2 7 0.492 0.508 0.446 0.554 0.368 0.632
8 0.569 0.431 0.529 0.471 0.455 0.545
9 0.881 0.119 0.889 0.111 0.883 0.117

index is more of a bound for the amount of separation across all the clusters.
Separation values range from -1 (no separation) to 1 (extremely well-separated)
where zero indicates clusters that are just touching. Figure 4 provides example
scatterplots of 2-dimensional projected clusters for 3 simulated data sets of 3
clusters and 4 variables, for separation levels -0.5, 0, 0.5.

4.1 Simulation study for one soft partition versus one hard partition

In this subsection, 100 mixtures are generated from the clusterGeneration

package for each of 39 different levels of separation from -0.95 to 0.95. Three
sets of simulations are presented with mixtures generated for either 2, 3, or 8
clusters over 3, 4, or 5 dimensions. The true labels from the generated mixtures
are compared to soft partitions, produced by fitting mixtures of Gaussians
using the mclust package (Fraley and Raftery, 2002; Scrucca et al, 2016) and
choosing the solution with the optimal BIC.

Results of the three simulations can be seen in Figures 5, 6, and 7. The ARI
is calculated between the true partition and the hard partition obtained by a
maximum a posterior mapping of the mclust solution. The sARI is calculated
between the true hard partition and the posterior probability matrix of cluster
membership from the mclust solution. In all four figures, results are shown
over the 39 levels of separation: the upper left (a) plot shows the average ARI
and average sARI for the 100 mixtures; the upper right (b) plot illustrates the
distributions of the sARI values; the lower left (c) plot has the distributions
of the ARI values; and the lower right (d) plot displays the distribution of
the differences between the ARI and the sARI. The general results are similar
regardless of the number of clusters or variables simulated (similar results
were found for other combinations of clusters and dimensions not shown in
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Fig. 4 Example scatterplots of 2-dimensional projected clusters (3 clusters, 4 variables):
(a) separation of -0.5; (b) separation of 0; (c) separation of 0.5.

this paper). For highly overlapping clusters (separation level near -1) as well
as clusters with little overlap (separation level near 1), there is high agreement
between partitions with both the ARI and sARI. The non-trivial differences
occur with separation levels between -0.6 and 0.05. In this range, we can
expect little separation between clusters, and observations with less certain
classifications. This results in sARI values that are on average less than the
ARI values. Each of the simulation sets demonstrate that on average, using a
hard partition with these separation levels results in a measure of agreement
that is overconfident.

There are however, instances where the sARI is slightly greater than the
ARI. This happens more frequently, on average in the simulations where there
are fewer clusters (2 or 3 rather than 8). Fewer clusters are also associated
with larger differences between the two measures of agreement. For example,
in the set of simulations shown in Figure 5, across the 100 × 39 replications,
approximately 3.3% of them give a negative difference between the ARI and
sARI; the distribution summary of these negative differences, as well as for
those from the other simulation scenarios are given in Table 7. We expect
to see negative differences when there are enough observations with largest
(posterior) probability on the wrong cluster, but the correct cluster still has
non-trivial assignment probability. For example, when there are two clusters
and observations have near 50/50 chance of being in either cluster, but are
classified incorrectly more often than they are classified correctly.

Figure 8 gives two such examples, one for a separation index of 0.15 and
one for a separation index of -0.30. The two simulated classes are represented
with different symbol types. An observation is black if correctly classified and
red if misclassified. An observation is large if the uncertainty associated with
the classification is greater than 0.4 (where choosing between the two groups
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Fig. 5 Plots for varying levels of cluster separation (2 clusters, 3 variables): (a) Lines of
average ARI, sARI for one hard partition and one soft partition; (b) boxplots of sARI; (c)
boxplots of ARI; (d) boxplots for difference of ARI versus sARI.

is close to a “coin flip”). We would expect the sARI to be greater than the
ARI generally when there are more large red observations than large black
observations. For example, in the left plot, there are two misclassified observa-
tions; the smaller observation has posterior probability vector (0.847, 0.153),
indicating that the (mis)classification was quite certain. However, the larger
observation has posterior probability vector (0.504, 0.496), indicating that the
(mis)classification was very uncertain. While the ARI considers the 2 obser-
vations fully misclassified, the sARI only considers 1.486 observations misclas-
sified (1.351 of which comes from these two observations), thus producing a
sARI (0.970) that is larger than the ARI (0.960). Similarly, in the right plot,
the ARI considers 99 observations misclassified, and the sARI considers 94.823
observations misclassified resulting in an ARI of 0.173 and a sARI of 0.195.

4.2 Simulation study for two soft partitions

In this subsection, soft partitions are obtained from fitting model-based clus-
tering models(mclust) to each half of the variables generated from a single
mixture of Gaussians, simulated using clusterGeneration. Thus, the obser-
vations are the same, but the resulting pairs of soft partitions will likely be
somewhat different.
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Fig. 6 Plots for varying levels of cluster separation (3 clusters, 4 variables): (a) Lines of
average ARI, sARI for one hard partition and one soft partition; (b) boxplots of sARI; (c)
boxplots of ARI; (d) boxplots for difference of ARI versus sARI.

Table 7 Summary statistics for the difference in ARI and sARI for replications of each
simulation set where the sARI is greater than the ARI.

Simulation Count Min. 1st Q. Median 3rd Q. Max.
2 clusters:
3 variables 130 -0.0295 -0.0076 -0.0042 -0.0019 -1.479e-5
4 variables 174 -0.0275 -0.0072 -0.0031 -0.0012 -1.377e-7
5 variables 143 -0.0279 -0.0079 -0.0035 -0.0013 -2.092e-6
3 clusters:
3 variables 126 -0.0287 -0.0038 -0.0021 -0.0009 -3.883e-6
4 variables 126 -0.0169 -0.0036 -0.0020 -0.0007 -4.014e-6
5 variables 97 -0.0145 -0.0041 -0.0022 -0.0012 -3.882e-6
8 clusters:
3 variables 67 -0.0058 -0.0019 -0.0011 -0.0005 -4.202e-5
4 variables 75 -0.0042 -0.0014 -0.0009 -0.0004 -1.391e-5
5 variables 141 -0.0049 -0.0014 -0.0006 -0.0002 -1.462e-6

4.2.1 2 cluster, 8 variable model with varying separation

We generate 100 2 cluster, 8 variable datasets for the same 39 levels of sep-
aration. We then randomly split each dataset into two sets of 4 variables
and fit model-based clustering models to each variable set. There are three
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Fig. 7 Plots for varying levels of cluster separation (8 clusters, 5 variables): (a) Lines of
average ARI, sARI for one hard partition and one soft partition; (b) boxplots of sARI; (c)
boxplots of ARI; (d) boxplots for difference of ARI versus sARI.

possibilities to consider: comparing the two original soft partitions via sARI,
transforming one of the partitions to a hard partition and comparing it to the
other soft partition via sARI, and finally the standard approach of transform-
ing both partitions to hard partitions and comparing via ARI. Looking at the
ARI versus 1 hard/1 soft partition sARI versus 2 soft partitions sARI allows
us to assess how each successive transformation affects the level of similarity
estimated between clusterings.

We first allow the number of clusters found in each solution to be selected
via BIC. In Figure 9, we see in (a) the average levels of the indices as separation
changes (increasing from left to right). There is almost perfect overlap between
the different indices and hard/soft partitions from around -0.4 and lower. The
line is also trending back up to the left which seems odd at first glance, given
the increasing level of overlap, until you look at the plots in (b) and (c).
Investigating further, we find that as the overlap increases between the two
clusters, both solutions find 1 cluster (ARI/sARI of 1), or one solutions finds
1 cluster, while the other finds 2 (ARI/sARI of 0). The proportion of times
both clusterings find only 1 cluster increases as separation decreases.

In order to properly contrast the behavior between sARI and ARI without
this issue, Figure 10 presents results where we fix the number of clusters found
by mclust to 2. In Figure 10 (a), the lines are mostly monotonically increasing
from left to right as expected.
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Fig. 8 Example plots demonstrating simulated data from 2 clusters and 3 variables where
the ARI is less than the sARI. The left plot is for a separation index of 0.15 and the right plot
for a separation index of -0.3. Observation symbols represent the two simulated classes. An
observation is colored red if it was misclassified by model-based clustering. An observation
is large if it has uncertainty above 0.4.

For both sARI lines, as the ARI tends to 1, the difference between the
ARI and sARI approaches 0. The sARI and ARI differ most over a range
of reasonable (but not total) cluster overlap values. On average, the ARI is
ranked over sARI for one soft and one hard partition, which is itself ranked
over the sARI for two soft partitions. Plot (d) in both Figures 9 and 10 show
that ARI is almost always above the sARI (with a few exceptions).

5 Application

In this section, we apply the sARI to the diabetes data, a classic clustering
benchmarking data set, available in the mclust package in R. This data has
been used as an example in many model-based clustering papers including
Banfield and Raftery (1993), Fraley and Raftery (2007), and Scrucca et al
(2016). This data set contains diabetes diagnoses (classified as chemical, nor-
mal, or overt) on 145 patients based on their blood plasma and insulin levels
measured under 3 conditions. A pairs plot of the data can be seen in Figure 11.

The data set is clustered using mixtures of Gaussians fit with the mclust

package. Results are presented for the clustering solutions from two different
parameterized models. We use the 3 cluster VVV (volume, shape and orienta-
tion allowed to vary across the ellipsoidal clusters) model, which is the optimal
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Fig. 9 Plots for varying levels of cluster separation for 2 clusters (mclust allowed to use BIC
to select the number of clusters in each solution): (a) Lines of average ARI, sARI for 1 hard
and 1 soft partition, sARI for 2 soft partitions; (b) boxplots of sARI for 2 soft partitions;
(c) boxplots of ARI; (d) boxplots for difference of ARI versus sARI (for 2 soft partitions).

model chosen by the BIC. We also use the solution for an alternative param-
eterization of EEI (equal volume and shape, with orientation parallel to the
coordinate axes) with 9 clusters (optimal BIC for this parameterization). The
hard and soft clustering solutions from each model are compared to the diag-
nosis provided in the data and to each other. The resulting ARI and sARI’s
are summarized in Table 8.

Comparing the hard 3 cluster solution of Gaussian mixtures with parame-
terization VVV to the given diagnoses results in an ARI of 0.664 (contingency
table given in Table 9). When comparing the soft clustering solution for this
same model to the given diagnoses, the sARI drops to 0.602 (contingency table
given in Table 10). The comparison of the hard 9 cluster solution for Gaussian
mixtures with parameterization EEI to the given diagnoses produces an ARI
of 0.564. Comparing the soft clustering solution for this model to the diagnoses
results in a sARI of 0.381. The hard partitions produced by the two models
are quite similar to each other (ARI = 0.799), whereas the soft partitions only
have moderate similarity (sARI = 0.459).

As expected from the simulation results, when clustering the diabetes data,
a hard partition from either clustering solution overestimates the similarity



sARI 19

Fig. 10 Plots for varying levels of cluster separation for 2 cluster solutions (where mclust

was constrained to fit 2 clusters in each solution): (a) Lines of average ARI, sARI for 1 hard
and 1 soft partition, sARI for 2 soft partitions; (b) boxplots of sARI for 2 soft partitions;
(c) boxplots of ARI; (d) boxplots for difference of ARI versus sARI (for 2 soft partitions).

between the classification and the true diagnosis, as seen by comparing the
hard partition and soft partition columns of Table 8. Having a sARI that
is substantially less than the ARI indicates that there is non-trivial overlap
in the cluster boundaries, producing uncertainty in the classification. This
information might also indicate that the three variables do not identify the
final diagnoses as well as the ARI might imply, leading us to conclude that
either the diagnosis classes are non-separable or that a search for more useful
variables is necessary.

6 Discussion

The proposal of the soft adjusted Rand index (sARI) is not intended to sup-
plant the adjusted Rand index (ARI) but to be used in conjunction with it.
The use of both can help the user understand what effect the transforma-
tion of soft partition to hard partition can have on the comparison with other
clustering results and more accurately reflects the uncertainty in a set of clus-
ter/class assignments. In the vast majority of cases, sARI will be smaller than
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Fig. 11 Pairs plot of the diabetes data colored by diagnosis (chemical - black, normal - red,
overt - green).

Table 8 Agreement between different Gaussian mixture model clustering solutions for the
diabetes data.

Model VVV
Hard Soft

Diagnosis Partition Partition

Model EEI
Diagnosis 1 0.664 0.602

Hard Partition 0.564 0.799 0.695
Soft Partition 0.381 0.514 0.459

ARI, due to the overconfidence in hard correct classifications outweighing the
overconfidence in hard misclassifications. In a small proportion of cases, where
the overlap between clusters is such that the assignment is almost random,
sARI can occasionally be slightly larger than ARI.

Obviously this idea can be extended to other indices of partition similar-
ity by simple analogue, e.g. Fowlkes-Mallows (Fowlkes and Mallows, 1983),
Jaccard (Jaccard, 1901), etc. There is also the potential to extend beyond
the idea of independence between two partitions when constructing the pro-
portions in the probability classification tables. Co-occurrence matrices from
Bayesian inference for clustering are one area where that might be achieved.
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Table 9 Contingency table for diabetes diagnosis and hard clustering solution for 3 com-
ponent (VVV) mixture of Gaussians.

1 2 3
Normal 72.00 4.00 0.00

Chemical 9.00 26.00 1.00
Overt 0.00 6.00 27.00

Table 10 Contingency table for diabetes diagnosis and soft clustering solution for 3 com-
ponent (VVV) mixture of Gaussians.

1 2 3
Normal 68.89 7.06 0.48

Chemical 8.96 25.36 1.67
Overt 0.00 6.00 27.00
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