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Abstract. This work incorporates topological features via persistence diagrams to clas-
sify point cloud data arising from materials science. Persistence diagrams are multisets
summarizing the connectedness and holes of given data. A new distance on the space of
persistence diagrams generates relevant input features for a classification algorithm for ma-
terials science data. This distance measures the similarity of persistence diagrams using the
cost of matching points and a regularization term corresponding to cardinality differences
between diagrams. Establishing stability properties of this distance provides theoretical
justification for the use of the distance in comparisons of such diagrams. The classification
scheme succeeds in determining the crystal structure of materials on noisy and sparse data
retrieved from synthetic atom probe tomography experiments.

1. Introduction

A crucial first step in understanding properties of a crystalline material is determining
its crystal structure. For highly disordered metallic alloys, such as high-entropy alloys
(HEAs), atom probe tomography (APT) gives a snapshot of the local atomic environment.
APT has two main drawbacks: experimental noise and missing data. Approximately 65%
of the atoms in a sample are not registered in a typical experiment, and those atoms that
are captured have their spatial coordinates corrupted by experimental noise. As noted by
[21] and [31], APT has a spatial resolution approximately the length of the unit cell we
consider, as seen in Fig. 1. Hence the process is unable to see the finer details of a material,
making the determination of a lattice structure a challenging problem. Existing algorithms
for detecting the crystal structure [8, 18, 19, 22, 32, 37] are not able to establish the crystal
lattice of an APT dataset, as they rely on symmetry arguments. Consequently, the field
of atom probe crystallography, i.e., determining the crystal structure from APT data, has
emerged in recent years [15] and [32]. These algorithms rely on knowing the global
lattice structure a priori and aim to determine local small-scale structures within a larger
sample. For some materials this information is readily known, for others, such as HEAs,
the global structure is unknown and must be inferred. A recent work by [40] proposes a
machine-learning approach to classifying crystal structures of a noisy and sparse materials
dataset, without knowing the global structure a priori. The authors employ a convolutional
neural network for classifying the crystal structure by looking at a diffraction image, a
computer-generated diffraction pattern. The authors suggest their method could be used to
determine the crystal structure of APT data or other noisy and sparse data from materials
science. However, the synthetic data considered in [40] is not a realistic representation of
experimental APT data, where about 65% of the data is missing [35] and is corrupted by
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(a) BCC cell (b) FCC cell

Figure 1. Example of body-centered cubic, (BCC), (a) and face-
centered cubic, (FCC), (b) unit cells without additive noise or sparsity.
Notice there is an essential topological difference between the two struc-
tures: The body-centered cubic structure has one atom at its center,
whereas the face-centered cubic is hollow in its center, but has one atom
in the middle of each of its faces.

more observational noise [31]. Most importantly, their synthetic data is either sparse or
noisy, not a combination of both. We consider a combination of noise and sparsity, such as
is the case in real APT data.

In this work, we provide a machine learning approach to classify the crystal structure
of a noisy and sparse materials dataset. Specifically, we consider materials that are either
body-centered cubic (BCC) or face-centered cubic (FCC), as these lattice structures are
the essential building blocks of HEAs [39] and have fundamental differences that set them
apart in the case of noise-free, complete materials data. The BCC structure has a single
atom in the center of the cube, while the FCC has a void in its center but has atoms on
the center of the cubes’ faces, see Fig. 1. These two crystal structures are distinct when
viewed through the lens of Topological Data Analysis (TDA). Differentiating between the
holes and connectedness of these two lattice structures allows us to create an accurate
classification rule. This fundamental distinction between BCC and FCC point clouds is
captured well by topological methods and explains the high degree of accuracy in the
classification scheme presented herein. TDA provides input features for machine learning
algorithms, as well as a useful toolbox for classification. Several authors have used TDA on
real-world problems, see [4, 12, 24, 26, 27, 28, 38, 41] and the references therein. Persistent
homology, which measures changes in topological features over different scales, is the main
framework considered by these authors.

Persistent homology is applicable to classification problems as it studies and differ-
entiates holes within data as viewed in different dimensions, e.g., the space enclosed by
a loop is a one-dimensional hole. Overall, persistent homology provides a summary of
the connectedness and holes (empty space in atomic cells) of data, which indirectly gives
information about the shape of the data as well. Indeed, persistent homology records when
different homological features emerge and vanish in the data. This analysis quantifies the
significance of a homological feature and provides a tool to contend with noisy data. The
appearance and disappearance of each homological feature is calculated and recorded in a
persistence diagram. Persistence diagrams yield topological summaries of the persistent
homology of a dataset and are rich sources of detail about underlying topological features.
The diagrams could be used in distance-based classifiers [5, 25] or vectorized and input
into standard classification algorithms, such as support vector machines [1, 3].

Distances on the space of persistence diagrams yield a means of comparison between
diagrams. The Wasserstein and bottleneck distances compute the cost of the optimal
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matching between the points in each persistence diagram, while allowing matching to
additional points on the diagonal to allow for cardinality differences and to prove stability
properties as in [9]. Motivated by [25], we consider here the dc

p distance, a distance on
the space of persistence diagrams. This distance employs the cardinality of the persistence
diagrams, as well as distances between points in the diagrams. It calculates the cost
of an optimal matching between the persistence diagrams without any points added to
the diagonal. A regularization term then considers the cardinality differences between
persistence diagrams.

The stability of the dc
p distance is also verified in this paper. This property guarantees that

when the distances between point clouds go to zero, the distances between the associated
persistence diagrams go to zero as well. Another formulation of this stability is given
in [7]; using a related approach, we show continuity of the mapping of point cloud to
persistence diagram under the dc

p distance. This analysis provides insight into how the
cardinality of the diagrams changes with the size of the input point clouds. Additionally,
using statistics on the diagram’s cardinality generates corresponding prediction intervals,
which give probabilistic bounds on the dc

p distances between persistence diagrams. The
idea is that point clouds generated from the same process have small variability with respect
to cardinality of the persistence diagrams.

The contributions of this work is:
(1) The stability of the dc

p distance in a continuous fashion.
(2) Theoretical and statistical bounds on the number of 1-dim holes represented in a

persistence diagram based on the cardinality of the underlying point cloud.
(3) A dc

p distance based classification algorithm for the crystal structure of high entropy
alloys using synthetic atom probe tomography experiments.

The work is organized as follows. Relevant definitions and concepts necessary for
persistent homology are presented in Section 2. Stability results of the dc

p distance are in
Section 3, as well as prediction interval bounds. Section 4 demonstrates a classification
scheme for materials science data retrieved from synthetic APT experiments. We conclude
and provide future directions in Section 5.

2. Persistent Homology Background

This section succinctly explains the construction of persistence diagrams, which are
topological summaries of the underlying space. The Vietoris-Rips complex provides the
necessary computational link between the point cloud, a subset of Rd under the Euclidean
distance, and its persistence diagram. Below we give a brief summary of the necessary
background. For a detailed treatment, see [11].

Definition 1. A ν-simplex is the convex hull of an affinely independent point set of size
ν + 1.

Definition 2. For a set of points P, an abstract simplicial complex σ is a collection of
finite subsets of P such that for every set A in σ and every nonempty set B ⊂ A, we have
that B is in σ. The elements of σ are called abstract simplices and are the combinatorial
analogues of the geometric simplices in Def. 1.

Definition 3. For a given threshold ε , the Vietoris-Rips complex is a simplicial complex
formed from a set such that corresponding to each subset of ν points of the set, an ν-simplex
is included in the Vietoris-Rips complex each time the subsets have pairwise distances at
most ε .
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The Vietoris-Rips complex can be visualized by placing a ball of radius ε/2 at each
point in the set and then adding a ν-simplex at the points corresponding to the intersection
of ν balls. See Fig. 2 for an illustration. For the Vietoris-Rips complex corresponding to ε ,
denoted byV Rε , it is clear thatV Rε ⊂ V Rε ′ for ε < ε ′. Thus we need only examine specific
ε values corresponding to the emergence and disappearance of homological features. These
ε values are recorded as ordered pairs (b, d) in a persistence diagram, where b denotes the
birth of a feature and d its death.

As can be seen in Fig. 2, a 0-dim homological feature is a connected component of a
simplex, a 1-dim homological feature is a hole, such as those created by a loop or the circle
S1, and a 2-dim homological feature describes voids, e.g., the inside of a sphere; see [38]
for details. Higher dimensional data analogously yields higher dimensional holes.
Remark 1. Persistence diagrams can also be computed using a pertinent function g from
a topological space to R. Such a function can act as an approximation to a point cloud;
typical functions used are kernel density estimators as in [14] and the distance to measure
function as in [6]. Homological features are born and die within the sublevel sets g−1(−∞, t]
as t increases. These birth and death times create another persistence diagram, see Fig. 2f.

To calculate the similarity between diagrams for classification problems, a distance on
the space of persistence diagrams is needed. A typical distance is the Wasserstein distance.
Definition 4. The p-Wasserstein distance between two persistence diagrams X and Y is
given by Wp(X,Y ) =

(
infη:X→Y

∑
x∈X ‖x − η(x)‖

p
∞
) 1
p , where the infimum is taken over all

bijections η, and the points of the diagonal are added with infinite multiplicity to each
diagram. If p → ∞, then W∞(X,Y ) = infη:X→Y supx∈X ‖x − η(x)‖∞ is the bottleneck
distance between diagrams X and Y .

The Wasserstein distance yields the penalty of matched points under the optimal bijec-
tion. Points can be matched to the diagonal of each persistence diagram, which is assumed
to have infinitely many points with infinite multiplicity; this ensures that a bijection between
X and Y actually exists, since X and Y may not have the same cardinality. In other words,
the Wasserstein distance gives no explicit penalty for differences in cardinality between
two diagrams. Instead, the Wasserstein distance penalizes unmatched points by using their
distance to the diagonal. However, cardinality differences may play a key role in machine
learning problems, and to that end, [25] proposed the dc

p distance given below.
Definition 5. Let X and Y be two persistence diagrams with cardinalities n and m respec-
tively such that n ≤ m and denoted X = {x1, . . . , xn}, Y = {y1, . . . , ym}. Let c > 0 and
1 ≤ p < ∞ be fixed parameters. The dc

p distance between two persistence diagrams X and
Y is

(1) dc
p(X,Y ) =

(
1
m

(
min
π∈Πm

n∑̀
=1

min(c, ‖x` − yπ(`)‖∞)p + cp |m − n|
)) 1

p

,

where Πm is the set of permutations of (1, . . . ,m). If m < n, define dc
p(X,Y ) := dc

p(Y, X).

Remark 2. Note that this distance can be applied to arbitrary point clouds with finite
cardinality as well. As shown in [25], a smaller c in Eq. (1) accounts for local geometric
differences, while a larger c focuses on global geometry. It is precisely by considering
differences in cardinality that the dc

p distance can distinguish between features of the point
cloud that other distances may miss. Also in Eq. (1), if X is fixed and m → ∞ , then
dc
p(X,Y ) → c.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Begin with a point cloud (a). After increasing the radius
of the balls around the points, a 1-simplex (line segment) forms in the
corresponding Vietoris-Rips complex, (b). Eventually, more 1-simplices
are added and a 1-dim hole forms (c). In (d), the persistence diagram
tracks all the birth and death times, with respect to the radius ε/2, of the
homological features for each dimension. Using the same points as in
(a), the kernel density estimator function for this point cloud is plotted in
(e). A corresponding persistence diagram is created using sublevel sets
in (f). Note the difference between the persistence diagrams in (d) and
(f). The persistence diagram created in (f) has noisy 1-dim features that
are not present in the persistence diagram created directly from the data
points.



6 VASILEIOS MAROULAS, CASSIE PUTMAN MICUCCI, AND ADAM SPANNAUS

(a) (b)

Figure 3. Consider two persistence diagrams, one given by the green
squares and another by the purple circles. (a) The Wasserstein distance
imposes a cost of 0.2 to the extra purple point (the `∞-distance to the
diagonal). (b) The dc

p distance imposes a penalty c on the point instead.

3. Stability Properties for dc
p distance

The stability of the dc
p distance is proved in this section. Stability of the distance under

investigation means that small perturbations in the underlying space result in small pertur-
bations of the generated persistence diagrams. Adopting the approach of estimating a point
cloud via a pertinent function, e.g., a kernel density estimator as in [14], persistence dia-
grams may be constructed using sublevel sets as in Fig. 2f and Remark 1. Their differences
can be computed using the Wasserstein and bottleneck distances. Using this functional
representation, stability of the Wasserstein and bottleneck distances has been shown in [10]
and [9] respectively, by verifying Lipschitz (and respectively Hölder) continuity of the map-
ping from the underlying function of the data to its persistence diagram in the bottleneck
and Wasserstein distances. Considering discrete point clouds whose distances shrink to
zero, Theorem 1 shows that the distance between persistence diagrams goes to zero as well.

Theorem 1 (Stability Theorem). Consider c > 0 and 1 ≤ p < ∞. Let A be a finite
nonempty point cloud in Rd . Suppose that {Ai}i∈N is a sequence of finite nonempty point
clouds such that dc

p(A, Ai) → 0 as i →∞. Let Xkand Xk
i be the k-dim persistence diagrams

created from the Vietoris-Rips complex for A and Ai respectively. Then dc
p(Xk, Xk

i ) → 0
as i →∞.

Note that Theorem 1 does not depend on a function created from the points such as a
kernel density estimator as in [14], but simply on the points themselves and the Vietoris-
Rips complex generated from these points. In fact, Theorem 1 shows that the mapping from
a point cloud to the persistence diagram of its Vietoris-Rips complex is continuous under
the dc

p distance. This continuous-type stability result is weaker than Lipschitz stability. In
order to prove Theorem 1, we first show that if the dc

p distance between the underlying point
clouds goes to 0, then eventually the size of the point clouds must be the same.

Lemma 6. Let A and Ai be as in Theorem 1 such that dc
p(A, Ai) → 0 as i → ∞. Then Ai

and A have the same number of points for i ≥ N0 for some N0 ∈ N.
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Proof. Denote by |A| the number of points in the point cloud A. Suppose that |Ai | , |A|
infinitely often. Since dc

p(A, Ai) → 0, for every ε > 0, there is an N ∈ N such that
i ≥ N implies that dc

p(A, Ai) < ε . Let ε = c
|A |+1 , noting that |A| is fixed. By assumption

|Ai | < |A|, |Ai | > |A|, or both, infinitely often. If |A| < |Ai |, then by Def. 5

(2) dc
p(A, Ai) ≥

(
cp
|Ai | − |A|
|Ai |

) 1
p

≥ c
|Ai | − |A|
|Ai |

.

The function h : N → R given by h(z) = z−|A |
z is strictly increasing. Whenever

|A| < |Ai |, we have |Ai | ≥ |A| + 1. The restriction of h to {|A| + 1, |A| + 2, |A| + 3, . . .}
achieves its minimum at |A| + 1. This shows that the RHS of Eq. (2) is greater than or
equal to c

|A |+1, whenever |A| < |Ai |, which by assumption happens infinitely often. This
contradicts dc

p(A, Ai) < ε for all i ≥ N . The case where |A| > |Ai | follows similarly.
� �

Lemma 7. Let A and Ai be as in Theorem 1. Suppose the points of each point cloud Ai

are ordered so that Ai = {aπi (1), aπi (2), . . . , aπi ( |A |)}, where πi is the permutation used to
calculate the dc

p distance between Ai and A as in Eq. (1). Let DA and DAi be the distance
matrices for the points of A and Ai respectively, i.e., the kl-th entry of DA is ‖ak − al ‖d .
Then,

(i) ‖DA − DAi ‖∞ → 0 as i →∞, and
(ii) for some N1 ∈ N, the order of the entries of the upper triangular portion of DA

and DAi is the same for i ≥ N1, up to permutation when either DA or DAi have
duplicate entries.

Proof. (i) Let A = {a1, . . . ak}, Ai = {ai1, . . . a
i
k
}, and λiα = ‖aα − ai

πi (α)‖d for the
permutation πi in the dc

p distance between Ai and A. Suppose that dc
p(A, Ai) → 0. Note

that since c is fixed, then by Lemma 6, there is some Nc such that eventually dc
p(Ai, A) =(

1
|A | minπi ∈∏|A| ∑ |A |`=1 ‖a` − aπi (`)‖

p
d

) 1
p for i ≥ Nc . By assumption dc

p(A, Ai) → 0, which

shows that |A|−
1
p ‖λ‖p → 0 as i →∞. Thus ‖λi ‖p → 0 as i →∞.

Now, let E = DA − DAi .

‖E ‖∞ = max
k,l

��‖ak − al ‖d − ‖aik − ail ‖d
��

= max
k,l

��‖ak − al ‖d + ‖al − aik ‖d − ‖al − aik ‖d − ‖a
i
k − ail ‖d

��
≤

��‖ak − al ‖d − ‖al − aik ‖d
�� + ��‖aik − ail ‖d − ‖al − aik ‖d

��
≤ ‖ak − aik ‖d + ‖al − ail ‖d(3)

The last term in Eq. (3) goes to 0 as i →∞, proving (i).
(ii) Suppose that the m distinct upper triangular entries of DA are ordered from smallest
to largest, say dA

1 < dA
2 < · · · dA

m, where m ≤ |A|(|A| − 1)/2. For η ∈ {1, . . . ,m + 1} let
hη ⊂ [0,∞) be a sequence such that h1 < dA

1 < h2 < dA
2 < · · · < hm < dA

m < hm+1. Let
‖DA − DAi ‖∞ < h

2 , where h = minη1,η2∈{1,...,m+1}{|hη1 − hη2 |}. We show that there exists
a sequence gη such that |hη − gη | < 2h for each η ∈ {1, . . . ,m + 1} and hη < dA

j < hη+1

implies gη < dAi

j ≤ gη+1. Let hη < dA
j < hη+1, and suppose that it is not the case

that hη < dAi

j ≤ hη+1. Since ‖DA − DAi ‖∞ < h
2 , then either dAi

j ∈ (hη−1, hη] or
dAi

j ∈ (hη+1, hη+2]. If the first case is true, then take gη = dA
j −

h
2 . If the second,
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then take gη = dA
j +

h
2 . This proves the existence of the sequence. Now proceeding by

contradiction, if the lemma does not hold for some entries dA
j ∈ DA and dAi

j ∈ DAi , then
take ‖DA − DAi ‖∞ < 1

2 |dA
j − dAi

j |. � �

Proof of Theorem 1. By Lemma 6, take |Ai | = |A| without loss of generality. By Lemma 7
(i), ‖DA − DAi ‖∞ → 0 as i → ∞. If the Vietoris-Rips complex were computed at every
threshold value in [0,∞), then the birth and death times of all features of all dimensions
would be distances between points in the underlying point cloud (including the birth time
of 0 in the 0-dim diagram). Since the order of the entries of DA and DAi may be taken to
be the same from Lemma 7 (ii), the same number of simplices are formed in the complexes
for A and Ai for each dimension of simplex. Also, the labels of the simplices according to
the points of A and Ai are given from the permutation πi in Lemma 7 (i).

Now, for 0-dim it is clear that for the cardinalities of the persistence diagrams, |X0 | = |X0
i |

since for the sizes of their associated point clouds, |Ai | = |A|. For a higher dimensional
feature (k ≥ 1) to appear in the complex, wemust have that a certain number of the distances
are less than or equal to the threshold ε and a certain number of the distances are greater
than ε . Lemma 7 (ii) shows that although the thresholds where the features are created may
be different, the same number of features are formed in the Vietoris-Rips complexes of A
and Ai , and these features are formed in the same order and with the points that correspond
under πi .

If Xk = {x1, x2, . . . , x |Xk |} and Xk
i = {x1, x2, . . . , x |Xk

i |
}, then we have that |Xk | = |Xk

i |
and that dc

p(Xk, Xk
i ) < 2h. Thus dc

p(Xk, Xk
i ) → 0 as i →∞. � �

To provide a practical way to control c in computing the dc
p distance of Eq. (1) and

consequently compute the possible fluctuations of the dc
p distance, a probabilistic upper

bound, which relies on least squares, is provided. Specifically, the following analysis
gives predictions on the number of 1-dim holes represented in the persistence diagram,
which we denote by b1. The parameter b1 relies on the number of connected components
(or equivalently the number of points in the point cloud) represented in the persistence
diagram, denoted by b0.

Definition 8 ([33]). The kissing number in Rd is the maximum number of nonoverlapping
unit spheres that can be arranged so that each touches another common central unit sphere.

Lemma 9 ([17]). For a finite point cloud with no more than ρ points in Rd under the
Euclidean distance, let Md(ρ) denote the maximum possible number of 1-dim holes in the
Vietoris-Rips complex for the point cloud for a given threshold. Then
(4) Md(ρ) ≤ (Kd − 1)ρ.

Proposition 10. Consider a point cloud in Rd with ρ points and its associated persistence
diagram. Let B1 denote the possible range of the number of 1-dim holes b1. Then B1 is
such that {0, 1, . . . , b ρ2 c − 1} ⊆ B1 ⊆ {0, 1, . . . , 1

2 (Kd − 1)ρ2(ρ− 1)}, i.e., the possible range
of b1 is expanding as the number of points, b0, in the point cloud increases.

Proof. We first show the inclusion {0, 1, . . . , b ρ2 c − 1} ⊆ B1. To form a point cloud with
ρ points that has b1 = 0, simply take the ρ points and arrange them on a line. To form
a point cloud with ρ points that has b1 = b ρ2 c − 1, arrange the ρ points in two rows each
with b ρ2 c points. Set the spacing between adjacent points in each of the rows to be 1 and
then place the two rows directly beside each other so that for each point in the first row,
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(a) (b)

Figure 4. An example of 8-point arrangements to visualize the proof of
Proposition 10. (a) A 3-hole configuration vs. (b) a 2-hole configuration.

there is exactly one point in the second row at a distance of 1. Adding edges appropriately
creates b1 = b ρ2 c − 1 squares with side length 1. Thus, creating the Vietoris-Rips complex
and corresponding diagram gives b1 = b ρ2 c − 1. For an illustration of the arrangement,
see Fig. 4a.

To form a point cloud with ρ points that has b1 ∈ {1, 2, . . . b ρ2 c − 2}, arrange 2(b1 + 1)
points in two rows as in Fig. 4a. Arrange the other ρ − 2(b1 + 1) points in a line with
the minimum distance from any points in the line to points of the two rows such that it is
greater than or equal to 1. Then exactly b1 holes are formed from the two rows, with no
holes formed by the line. For an illustration, see Fig. 4b.

Next, we verify the inclusion B1 ⊆ {0, 1, . . . , 1
2 (Kd − 1)ρ2(ρ − 1)}. By Lemma 9, the

number of 1-dim holes in the Vietoris-Rips complex for a fixed radius ε for the point cloud
is bounded above by (Kd − 1)ρ. The homology of the Vietoris-Rips complex changes
at most

(ρ
2
)
times as the radius ε increases due to the maximum of

(ρ
2
)
distinct distances

between points in the point cloud. Therefore, there can be at most 1
2 (Kd − 1)ρ2(ρ − 1)

1-dim holes formed over the entire evolution of the Vietoris-Rips complex. This gives the
desired bound of b1 ≤ 1

2 (Kd − 1)ρ2(ρ − 1). � �

Now, let N point clouds be generated from some process, and N corresponding per-
sistence diagrams be created. For each persistence diagram Xk

i , k ∈ {0, 1}, i = 1, . . . , N ,
record the cardinality bi0 of the 0-dim diagram and the cardinality bi1 of the 1-dim dia-
gram. Let b0 ∈ RN×2 be the predictor matrix whose rows are [1 bi0] and b1 ∈ RN be
the vector of responses with entries bi1. Proposition 10 gives that the possible range of
b1 is increasing as b0 grows, which yields that an increase in variance as b0 grows may
be present, i.e., heteroscedasticity exists. Thus the analysis of the change in number of
1-dim holes as the size of the point cloud changes needs to account for heteroscedasticity
in order to capture the non-constant variance behavior. Therefore to estimate the number
of 1-dim holes, we use weighted least squares as in [13]. If W ∈ RN×N is the weight
matrix W = diag(a1, . . . , aN ), then a weighted least-squares regression can be found for
b1 = b0γ + ε , where εi ∼ N(0, σ2

i ). The approximation is then given by b0γ̂ = b1,
with γ̂ = (b0

TWb0)−1b0
TWb1. In turn, Proposition 11 provides bounds from prediction

intervals using weighted least squares for the dc
p distance.

Proposition 11. Suppose N point clouds are generated from a process, and N correspond-
ing persistence diagrams are created. For each persistence diagram Xk

i , k ∈ {0, 1}, record
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the cardinality of the 0-dim diagram bi0 and of the 1-dim diagram bi1. Let b0 ∈ RN×2 be
the predictor matrix whose rows are [1 bi0] and b1 ∈ RN be the vector of responses of bi1.
Assume the model b1 = b0γ + ε , where εi ∼ N(0, σ2

i ) depends on the value of the input
bi0. Let X1 and Y1 be persistence diagrams generated from the same process as b0 with
|X0 | = µ. Considering the (1 − α) · 100%-level prediction interval for b1, the distance
dc
p(X1,Y1) is bounded above by(

min
π∈Πm

n∑̀
=1

min(c, ‖x1
` − y1

π(`)‖∞)
p + cp2t1−α,N−2s

√
[1 µ](b0

TWb0)−1[1 µ]T + µ
) 1

p

.

Proof. Prediction intervals can be constructed for the cardinality of a 1-dim diagram
for an instance of point cloud size b0

∗ using standard results on weighted least squares.
Specifically, for level (1 − α) · 100% a prediction interval for the new response b̂1

∗
is

sought. To calculate this interval for a new response from the mean predicted response

b̂1
∗
= γ̂b0

∗, note that b̂1
∗−b1

∗ has the distribution b̂1
∗−b∗1

Var(b̂1
∗−b1

∗)
∼ tN−2.Also,Var(b̂1

∗−b1
∗) =

Var(ε )[1 b0
∗](b0

TWb0)−1[1 b0
∗]T+Var(ε)

w∗ , wherew∗ = 1
b∗0
, theweight corresponding to b0

∗.

Prediction intervals for b∗1 are thus b̂1
∗±t1−α/2,N−2s

√
[1 b0

∗](b0
Tb0)−1[1 b0

∗]T + b0
∗,where

s2 = ε̂T Wε̂
N−2 , the unbiased estimator for Var(ε ), using the residuals ε̂ . Thus the cardinality

difference term in the calculation of the dc
p distance as in Eq. (1) is bounded above by the

length of the prediction interval with (1 − α) · 100%-level confidence. Substituting this
length into Eq. (1) gives the result. � �

4. Classification of Materials Data

Here we describe the dc
p-distance based classification of crystal structures of high-

entropy alloys (HEAs) using atom probe tomography (APT) experiments. Recall that
the building blocks of HEAs are either body-centered cubic (BCC) or face-centerd cubic
(FCC). Topological considerations are a natural fit for this problem since BCC and FCC
crystal structures enjoy a different atomic configuration within a unit cell. Indeed, the BCC
structure has one atom at its center, but the FCC contains a void (recall Figs. 1a and 1b).
This distinction is important from the viewpoint of persistent homology.

However, topology alone is insufficient to distinguish between noisy and sparse BCC
and FCC lattice structures accurately. If we count the number of atoms in a unit cell
(see Figs. 1a and 1b) one may see that a BCC unit cell has two atoms, one at the center and
1/8th of an atom at the unit cell’s corners, as it shares part of these corner atoms with its
neighboring cells. Similarly, an FCC unit cell has four atoms; the same 1/8th of the corner
atoms plus one-half of each of the six atoms on the cell’s faces. In both cases, the atoms
on the faces and lattice points are shared with the cell’s neighbors and are only counted as
a proportion contributing to the unit cell.

Another way to see this difference in cardinality is by plotting the number of connected
components against the number of holes for both BCC and FCC crystal structures. Figs. 7c
and 7d depict that FCC structures have larger point clouds, and consequently, a greater num-
ber of connected components. Observe in Fig. 6 that the number of connected components
and 1-dim holes are greater in the FCC diagrams than the BCC diagrams. Consequently,
we must account for more than just homological differences when considering persistence
diagrams derived from these atomic neighborhoods. Variability in the size of the underlying
point clouds must be considered, as verified in Proposition 11. Given the salient topological
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Figure 5. Image of APT data with atomic neighborhoods shown in
detail on the left and right. Each pixel represents a different atom, the
neighborhood of which is considered. Certain patterns with distinct
crystal structures exist, e.g., the orange region is copper-rich (left), but
overall no pattern is identified. Putting a single atomic neighborhood
under a microscope, the true crystal structure of the material, which
could be either BCC (Fig. 1a) or FCC (Fig. 1b), is not revealed. This
distinction is obscured due to experimental noise.

and cardinality differences between these two crystal structures, we seek to classify their
associated persistence diagrams via these essential differences. To that end, we consider
the dc

p distance given in Eq. (1).
In the numerical experiments, the point clouds (atomic neighborhoods) are extracted

from a sample containing approximately 10,000 atoms. We remove atoms, to create
spasity, and add Gaussian noise to the larger sample mirroring those levels found in true
APT experimental data. To create these neighborhoods, we consider a fixed volume around
each atom in the perturbed sample and those atoms within the volume are recorded for our
classification methodology. Here we consider N = 1, 000 synthetic atomic neighborhoods
(NBCC = 500 BCC structures and NFCC = 500 FCC structures) with noise and sparsity
levels similar to those found in true APT experiments. Let q = (q1, . . . , qM )T be the atoms’
positions within an atomic neighborhood. Applying the persistent homology machinery of
Section 2, one obtains the associated persistence diagram denoted by Xq , see Fig. 6. For our
classification problem, we are interested in the conditional probability, π̃j = P(Yi = j | Xi),
of the persistence diagram Xi being in class Yj , for j = 0 (BCC) or j = 1 (FCC). To that
end, we consider a logistic regression model,

(5) log
(

π̃j

1 − π̃j

)
= α +

L∑
i=1

ϕi(Σi),

where ϕi is some pertinent smooth function, and Σ ∈ RN×8 is the feature matrix whose ith

row is

(6) Σi = (E0
i,B,E

1
i,B,Var0

i,B,Var1
i,B,E

0
i,F,E

1
i,F,Var0

i,F,Var1
i,F ).
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(a) (b)

Figure 6. Example of persistence diagrams generated by (a) a BCC
lattice, and (b) FCC lattice. The data has a noise standard deviation
of τ = 0.75 and 67% of the atoms are missing. Note that the BCC
diagram has two prominent (far from the diagonal) points representing
1-dim holes and fewer connected components and 1-dim holes than does
the FCC diagram.

τ c-value Accuracy

0.0 0.01 99%
0.25 0.05 99.4%
0.75 0.03 96.5%
1.0 0.13 96.4%

Table 1. The atomic positions in the APT data is N(0, τ2) distributed
with 67% of the atoms missing. We employ the dc

p classifier, where c
has been optimized in each noise level case. The accuracy in the 10-fold
cross validation is listed in the third column.

For any persistence diagram Xk
i with k-dimensional homology (k = 0, 1),

Eki,B =
1

NBCC

∑NBCC

j=1 dc
p(Xk

i , Xk
j ) and Varki,B =

1
NBCC−1

∑NBCC

j=1 (dc
p(Xk

i , Xk
j ) − Eki,B)2 re-

spectively yield the average and variance of the distance between Xk
i and the collection of

all BCC persistence diagrams. Similarly, Eki,F and Varki,F are the average and variance of
the distance between Xk

i and the collection of all FCC persistence diagrams.
We perform 10-fold cross validation on the 1,000 synthetic crystal structures. In other

words, the data is divided randomly into 10 folds, and 9 folds of the data are used as a
training set. For any unknown crystal structure in the remaining fold, the feature vector of
the unknown crystal structure is computed according to Eq. (6) and used as input for the
decision tree classifier. Similarly, the other 9 folds are each used once as test sets employing
the same procedure. The tree finds the best fit for the features from the additive model in
Eq. (5) and returns the class of the unknown structure.

For our numerical experiments, the persistence diagrams are constructed using the C++
Ripser software, and the scikit-learn decision tree implementation. The studies [31, 35]
estimate that approximately 65% of the data is missing. However, an estimate of the
experimental noise is not provided. In fact, as noted by [23, 30], the noise varies between
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(a) (b)

(c) (d)

Figure 7. Top: Number of connected components (in this case atoms),
b0, against the number of 1-dim homological features, b1, of the persis-
tence diagrams. One can see the presence of heteroscedasticity since the
variance of b1 increases as b0 increases. Bottom: Same as in top but
using a quadratic transformation of the predictor variable, along with the
weighted least squares fit line and 95% prediction intervals provided by
Proposition 11.

experiments and specimens. Our synthetic data replicates this resolution by drawing from
a Gaussian [16, 29, 32], N(0, τ2), with four different levels of variance to give a more
representative approximation of true APT datasets. Computing the dc

p distances with p = 2
to imitate typical Euclidean distance, we find different values of c via a grid search for
these four different levels of variance, τ2, in both 0- and 1-dim homology, employing a
different dataset than is used for the classification. In each case, a geometric sequence of 10
values between 0.01 and 1 is taken into account. The results and the associated algorithmic
accuracy are presented in Table 1.

As a comparison the feature matrix in Eq. (6) is also calculated using the Wasserstein
distance, choosing p = 2. Moreover, we adopt a counting classifier which takes into account
only the number of points in an atomic neighborhood as the input feature in the tree classifier.
Our dc

p classifier successfully dichotomizes these 1,000 persistence diagrams generated by
BCC and FCC lattice structures at better than 96% accuracy, where accuracy is measured
as (1 - Misclassification rate). The dc

p classifier outperforms both the Wasserstein and the
counting classifier, see Fig. 8. These results demonstrate that using just the differences
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Figure 8. 10-fold cross validation accuracy scores for dc
p (red), Wasser-

stein (blue), and counting (green) classifiers, plotted against different
standard deviations, τ, (see Table 1) of the normally distributed noise of
the atomic positions. In each instance, the sparsity has been fixed at 67%
of the atoms missing, as in a true APT experiment.

in cardinality between the two classes of crystal structures is insufficient to distinguish
between them.

As demonstrated in Proposition 11, there is a relationship between the number of
connected components, b0, (number of atoms in this case) and the number of 1-dim
homological features, b1, in the persistence diagrams Figs. 7a and 7b demonstrate this
relationship, as well as the presence of heteroscedasticity between b0 and b1, also verified
by the Breusch-Pagan test [2] with a p−value of 9.3 × 10−54 for FCC cells and a p−value
of 2.01 × 10−47 for BCC cells. Figs. 7a and 7b also provide 95% prediction intervals for
b1 based on the weighted least squares regression analysis of Proposition 11. To that end,
this exact fine balance between the number of atoms in a neighborhood and the associated
topology created by the positions of these atoms in the cubic cell is captured by the dc

p

distance.

5. Conclusions

This work combined statistical learning and topology to classify the crystal structure of
high entropy alloys using atom probe tomography (APT) experiments. These APT exper-
iments produce a noisy and sparse dataset, from which we extract atomic neighborhoods,
i.e., atoms within a fixed volume forming a point cloud, and apply the machinery of Topo-
logical Data Analysis (TDA) to these point clouds. Viewed through the lens of TDA, these
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point clouds are a rich source of topological information. Indeed, employing persistent
homology, we summarized the shape of these atomic neighborhoods and classified their
crystal structures as either BCC or FCC. The classifier was based on features derived from
the new distance on persistence diagrams, denoted herein by dc

p . This distance is differ-
ent from all other existing distances on persistence diagrams in that it explicitly penalizes
differences in cardinality between diagrams.

We proved a stability result for the dc
p distance, demonstrating that small perturbations of

the underlying point clouds resulted in small changes to the dc
p distance. We also provided

guidance for the choice of the c parameter by looking at confidence bounds using a function
of the cardinalities of the persistence diagrams.

The classification results presented herein could aid materials science researchers by
providing a previously unavailable representation of the local atomic environment of high
entropy alloys from APT data. The methodology need not be limited to a binary choice
between BCC and FCC, e.g., entropy-stabilized oxides [34] are amenable to APT character-
izations and our process could be generalized to those materials as well. Moreover, as APT
experiments produce datasets on the order of 10 million atoms, materials science research
has moved into the realm of big data, and the necessary computational and modelling tools
have yet to be developed for this regime according to [20]. The dc

p classifier, coupled with
our ongoing research of quantifying local atomic distributions as in [36], aims to recover
global atomic structure of high entropy alloys.
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