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A Robust Spatial Autoregressive

Scalar-on-Function Regression with

t-distribution

Abstract

Modelling functional data in the presence of spatial dependence is of great practi-

cal importance as exemplified by applications in the fields of demography, economy

and geography, and has received much attention recently. However, for the classical

scalar-on-function regression (SoFR) with functional covariates and scalar responses,

only a relatively few literature is dedicated to this relevant area, which merits fur-

ther research. We propose a robust spatial autoregressive scalar-on-function regression

(RSSoFR) by incorporating a spatial autoregressive parameter and a spatial weight

matrix into the SoFR to accommodate spatial dependencies among individuals. The

t-distribution assumption for the error terms makes our model more robust than the

classical spatial autoregressive models under normal distributions. We estimate the

model by firstly projecting the functional predictor onto a functional space spanned

by an orthonormal functional basis and then presenting an expectation-maximization

(EM) algorithm. Simulation studies show that our estimators are efficient, and are

superior in the scenario with spatial correlation and heavy tailed error terms. A real

weather dataset demonstrates the superiority of our model to the SoFR in the case of

spatial dependence.

Keywords: EM algorithm; FPCA; Functional linear model; Spatial autoregressive

model; Spatial dependence; t-distribution
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1 INTRODUCTION

Functional data are high-dimensional structured data that vary over a continuous do-

main. Examples are datasets recorded densely over time, space or time-space, like

weather data, stock market data, trajectory data, diffusion tensor imaging (DTI) data

and mass spectrometry data. Functional data analysis (FDA), as a new area of statis-

tics, develops statistical methods to analyze information within functional data and has

been applied in many subject areas, such as biology, medical sciences, meteorology,

econometrics, finance, chemometrics and geophysics (Ramsay and Silverman (2002,

2005)). One of the most important tools in FDA is functional regression, including

scalar-on-function regression (SoFR), function-on-scalar regression and function-on-

function regression. In particular, the first one, i.e., the classical SoFR (Ramsay and

Dalzell (1991); Hastie and Mallows (1993); Hall and Horowitz (2007)) with scalar re-

sponses and functional covariates, is of great interest and has been extensively studied.

Let Y be a centered scalar response variable, and X(t) be a second-order stochastic

process on a compact interval Γ, E(X(t)) = 0 and E(
∫

Γ
X2(t)dt) < ∞. A SoFR

associates the functional predictor X(t) to the scalar response Y by

Y =

∫
Γ

X(t)β(t)dt+ ε, (1.1)

where β(t) is the unknown slope function, and ε is the random error term, which is

independent of X(t) and has zero mean and finite variance.

Regarding model (1.1), there has been a great deal of literature dedicated to its ex-

tensions, see Morris (2015) and Reiss et al. (2017) for reviews. According to the roles

the functional predictor X(t) plays in regression, the variants of the SoFR can be cat-

egorized into three groups, linear functional predictor regression, nonlinear functional

predictor regression and nonparametric functional regression. The first group involves

the generalized SoFR (Marx and Eilers (1999); James (2002)), the multi-level SoFR

(Crainiceanu et al. (2009); Goldsmith et al. (2012)), the functional mixture regres-

sion (Fang et al. (2011)) and the partial SoFR (Shin (2009)). For the second team,
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multivariate nonlinear regressions with scalar regressors have been extended to the

functional predictor case, such as the functional quadratic regression (Yao and Müller

(2010)), the single-functional index model (Ait-Säıdi et al. (2008)), the multiple-index

model with functional covariates (James and Silverman (2005)) and the continuously

additive model (Müller et al. (2013)). The last group, the nonparametric paradigm

of the SoFR, is initially studied by Ferraty and Vieu (2006). A key assumption in

the aforementioned literature is that individuals are mutually independent, which may

crumble. Yet researches concerning the SoFR with spatial dependence are relatively

rare.

In reality, however, spatially correlated data are very common. For example, unem-

ployment data (Topa (2001)) and housing prices data show spatial correlation, annual

precipitation of a city relates to it’s neighboring cities’. The characteristic of these data

is that the dependency of two spatial units is determined by the distance between them.

This distance can be either Euclidean or more general (Isard et al. (1970)), for exam-

ple, social distance, policy distance and economic distance. In spatial statistics and

spatial economics, an abundance of publications are devoted to analyze data with spa-

tial dependence (Cressie and Wikle (2015); Schabenberger and Gotway (2017); Anselin

(1998); Lesage and Pace (2009); Wang et al. (2019)). Discrete entities (areal data) and

continuous surfaces (point-referenced data) are the two main research objects (a dis-

tinction between them refers to Anselin (2002)). For the last few years, there are many

works fitting spatially correlated functional data, to name a few, Zhang et al. (2011),

Menafoglio and Secchi (2017), Nerini et al. (2010), Zhang et al. (2016), Giraldo et al.

(2017) and Aguilera-Morillo et al. (2017). We find these papers are either interested

in point-referenced data (for which kriging methods are commonly used) or related to

regressions with functional responses. Articles concerning fitting functional regressors

on scalar responses for discrete entities are relatively scanty. In this study, our interest

lies in the SoFR for areal data.

To better illustrate our motivation for implementing this research and its significance,

here is an application instance. We collected weather data from the China Meteorolog-
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ical Yearbook covering the period between 2005 and 2007. These data record monthly

mean temperatures and monthly total precipitation in 34 major cities in China. Our

aim is to investigate the effect of temperature on precipitation over these three years.

The SoFR (1.1) is popularly used to study this problem (see Ramsay and Silverman

(2005)). In the data preprocessing, we average the monthly temperatures and the

monthly precipitation over 3 years to get their means, and add up the mean monthly

total precipitation over 12 months to obtain the mean annual rainfall. The scalar

response is the logarithm of the mean annual total precipitation, and the functional

covariate is the mean monthly temperature. After applying the SoFR directly to the

weather data, we want to examine whether there is spatial dependence among the

residuals. The Moran’s I test statistic (Cliff and Ord (1972)) is employed (in Section 5

we explained why the weather dataset can be regarded as areal data instead of point-

referenced data). We find the resulting value of the Moran’s I statistic is 0.48, and the

p-value is smaller than 0.001, which indicates significant correlation exists among the

residuals of the SoFR.

Figure 1: The Moran Scatterplot of the residuals of the SoFR.

For further illustration, we display the Moran Scatterplot of the residuals in Figure 1,

from which it can be seen that there is approximately linear relationship between the

residuals and the spatially lagged residuals (i.e., ε and nWε, which are defined the

same as those in (2.1)) of the SoFR, which means the SoFR may be not appropriate for

spatially dependent data. This motivates the incorporation of spatial correlation in the

analyses of the SoFR. A detailed analysis of this weather dataset and the construction

4

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



of the weight matrix W can be found in Section 5.

When the predictor is scalar, instead of functional, linear regression models including

spatial autoregressive (SAR) model, spatial error model (SEM) and spatial Durbin

model (SDM) are frequently used to accommodate spatial dependence for areal data

(Lesage and Pace (2009)). It is straightforward to borrow concepts from the spatial

models for modelling functional data with lattice structure. As the SAR model is

representative among these spatial models and has been widely studied, we mainly

focus on the SAR model and formulate our new model. Applications of the SAR

model can be seen in Case (1991), Topa (2001), and Olubusoye et al. (2016), among

others. Estimation methods for the SAR model are described in Ord (1975), Lee

(2004), Kelejian and Prucha (2001), Lee (2007) and Lesage and Pace (2009). In an

SAR model, a spatial weight matrix is employed to quantify adjacent relations among

the observations, and an unknown spatial autoregressive parameter ρ is used to reflect

the strength of spatial dependence. We take the advantages of the SAR model and

incorporate the spatial correlation into the SoFR model using a spatial autocorrelation

parameter and a weight matrix.

We noticed that in the above spatial models, the residual terms are generally presumed

to follow normal distributions. This assumption is not realistic, as in applied problems

we often expect tails of the error distribution are longer than the those of the normal

distributions. Besides, when using the ordinary least squares (OLS) or maximum

likelihood estimation method to estimate the spatial models, the estimated parameters

can be largely affected by atypical points in dataset. Thus there is a need to consider

non-normality error term in the spatial linear models. Fortunately, t-distribution,

which has thick tails, provides an alternative. So we assume the residuals follow t-

distributions in our model. The proposed new model is named the robust spatial

autoregressive scalar-on-function regression (RSSoFR).

In this article, we presented a robust spatial functional linear model (RSSoFR), which

extends the independent SoFR to the spatial scenario where the responses are spatially

correlated. And by supposing the error terms follow t-distributions, the new model is
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more robust than the classical spatial models under normal distribution assumptions.

To estimate the RSSoFR, we firstly project the functional predictor onto a smaller

functional space spanned by orthonormal basis functions, then propose an expectation-

maximization (EM) algorithm to handle the spatial parameters. Two functional bases,

the functional partial-least squares (FPLS) basis and the functional principal compo-

nent (FPC) basis are considered. We also use a spatial cross-validation approach to

select models. The simulation results show that our estimation method performs bet-

ter than the SoFR with t-distributions when the spatial dependencies are present, and

the spatial functional linear model (SSoFR) with normal distributions when the error

terms have thick tails. We also use the RSSoFR to analyze a real weather dataset of

China, which proved to have better fit and prediction results than the SoFR.

Recently, Pineda-Ŕıos et al. (2019) put forward a functional SAR model with func-

tional predictors, scalar responses and spatially dependent errors, which accounts for

the spatial dependence among disturbances. Under the normality assumption, they

developed the least squares and maximum likelihood as the estimation methods of the

parameters. The differences between Pineda-Rı́os et al. (2019)’s paper and ours exist in

three folded. First, the two proposed models apply different ways to accommodate the

spatial dependence in regression; Second, the former assumes normality for the noise

term while the latter presumes t-distribution to deal with the possible non-normality

and thick tails; Finally, we proposed an EM algorithm to implement estimation.

The article is organized as follows. In Section 2, we formulate the new model. The

proposed estimation method is constructed based on orthonormal functional basis and

the EM algorithm in Section 3. The finite-sample performances of the proposed esti-

mators are evaluated through simulation studies in Section 4. Finally, in Section 5, we

use a real dataset to document the usefulness of this methodology. We conclude the

article with a discussion in Section 6.
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2 MODEL SPECIFICATION

2.1 Spatial autoregressive (SAR) model

Ord (1975) proposed a spatial autoregressive (SAR) model with parsimonious param-

eters. Assume {(xi, yi)}ni=1 are observed from n spatial units on a lattice, and denote

x =
(
x1, x2, · · · , xn

)′
, y = (y1, y2, · · · , yn)′. The SAR model is,

y = ρWy + xβ + ε, εi ∼ N(0, σ2) (2.1)

where W = (wii′)n×n is a pre-specified spatial weight matrix, in which wii′ represents

the weight between units i and i′, and ε = (ε1, · · · , εn)′ is the noise term, which is

independent of x, independently and identically follow normal distributions N(0, σ2).

ρ and β are the parameters to be estimated. Here, the scalar parameter ρ ∈ (−1, 1).

In model (2.1), the spatial weight matrixW is exogenous, with each entry wii′ assigned

a value according to the contiguity or distances between units i and i′ in different

contexts. For spatial contiguity matrices, the value of wii′ is binary,

wii′ =

1, i and i′ are neighboring

0, i and i′ are not neighboring

.

The assessment of neighbors relies on a known map indicating spatial arrangement of

points, which can be regular or irregular. On a regular grid, units are neighbors if

they share a border (rook case), a vertex (bishop case), or share either a border or a

vertex (queen case) (for more details refer to Anselin (1998)). In an irregularly spaced

case, units are also neighboring when they have common edges. In the case of knowing

geographical locations of spatial units, wii′ can be functions of distance dii′ between

two points. Popular choices are the inverse distance (IV) and the negative exponential

(NE) of distance,

wIVii′ =
1

dii′
, wNEii′ = e−dii′ . (2.2)

7

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



When the units are areal data, boundary length information can be also used to form

wii′ , see for example Decey (1968).

We mention some more general spatial matrices. In a social network, wii′ is normally

set to 1 if persons i and i′ are friends, 0 otherwise. Note that W is not necessarily a

symmetric matrix. For example on a social media Sina Weibo, person i is a follower

of person i′ but i′ does not follow i, we have wii′ = 1, wi′i = 0. Some economic factors

such as the GDP (Gross Domestic Product) and income can be also used to establish

W , for example, Case et al. (1993) used wii′ = 1
|INCi−INCi′ |

, where INCi is per capita

income in state i. More information for W refers to Isard et al. (1970) and Anselin

(1998).

In general, we standardize the spatial matrix W to be a row-normalized matrix; in this

matrix, the summation of the row elements is unity, and the entries on the diagonal

are zeros. About the interpretations of model (2.1), refer to Anselin (2002).

2.2 Robust spatial autoregressive scalar-on-function regres-

sion (RSSoFR)

Following Qu and Lee (2015), consider the spatial processes located on an unevenly

spaced lattice D ⊆ Rd, d ≥ 1. And we observe {(xi(t), yi)}ni=1 from n spatial units on

D. Here, xi(t)s are square integrable second-order stochastic processes defined on a

compact set Γ. Without loss of generality, we presume Γ is the unit, i.e. t ∈ [0, 1].

Denote x(t) =
(
x1(t), x2(t), · · · , xn(t)

)′
, we formulate the RSSoFR as

y = ρWy +

∫ 1

0

x(t)β(t)dt+ ε, εi ∼ t(ν) (2.3)

where W is pre-defined as the W in model (2.1), ε = (ε1, · · · , εn)′ independently and

identically follow t-distributions with freedom ν. Here, ν, β(t) and ρ ∈ [0, 1) are the

parameters to be estimated.

As mentioned previously, ρ is a scale parameter that reflects strength of the impacts
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from neighbours. Greater values of ρ indicate that yi is more strongly affected by its

neighbours. The W matrix can be pre-formed as the W pre-specified in model (2.1).

We use the inverse distance to construct W in Section 5 for real data analysis. The

proposed RSSoFR is more general than the SoFR and the SAR model.

• When ρ = 0, the RSSoFR reduces to an SoFR.

• When x(t) is free of t, the RSSoFR degenerates into an SAR model with t-

distributions.

To provide better insight onto the new model, we reformulate equation (2.3) as the

following equivalent expression,

y = (In − ρW )−1

∫ 1

0

x(t)β(t)dt+ (In − ρW )−1ε,

which shows how y is generated. We can know the mean of y given x(t) is E
(
y|x(t)

)
=

(In − ρW )−1
∫ 1

0
x(t)β(t)dt. Thus the spatial process of y is not stationary, i.e., the

mean of y depends on the spatial units’ locations through the functional covariate x(t).

The error terms (In − ρW )−1ε shows the residuals of yis are spatially correlated. As

each εi follows a t-distribution, the MLE method can not be used. We put forward an

EM algorithm to estimate the parameters in (2.3).

3 ESTIMATION METHOD

In this section, we first expand the functional predictor by orthogonal functional basis,

then present an EM algorithm to obtain the estimators of the spatial autocorrelation

parameter ρ, the slope function β(t), and the freedom parameter ν in the RSSoFR

(2.3).
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3.1 Expand the functional predictor by orthonormal basis

Note that, before estimating the parameters of our model, data representation methods,

such as smoothing and interpolation, should be used to convert discretely recorded data

xi(tj) to curves xi(t). And x(t),y are centered in advance.

A standard method to handle the functional predictor in the SoFR is expressing the

curves by a linear combination of orthonormal basis functions. We also firstly expand

the functions in (2.3) so that the functional term
∫ 1

0
x(t)β(t)dt can be represented

by finite real vectors. Suppose {φj(t)}∞j=1 is a standard orthogonal basis of L2 space,

which is composed of square integrable functions. Then xi(t) and β(t) can be written

as xi(t) =
∑∞

j=1 aijφj(t) and β(t) =
∑∞

j=1 bjφj(t), where aij =
∫ 1

0
xi(t)φj(t)dt, bj =∫ 1

0
β(t)φj(t)dt. Moreover,

∫ 1

0
xi(t)β(t)dt =

∑∞
j=1 aijbj by orthogonality. Denote aj =

(a1j, a2j, . . . , anj)
′, we can rewrite model (2.3) as

y = ρWy +
∞∑
j=1

ajbj + ε, (3.1)

which is easier to cope with under the numerical vectors framework. In practice, the

estimation of β(t) is an ill-posed problem. Regularization procedure is thus needed.

Some authors add a penalty term in the objective function to put constraints on β̂(t)

(Cardot et al. (2003); Crambes et al. (2009)). Here, we project x(t) and β(t) onto a

finite dimensional space spanned by m basis functions {φj(t)}mj=1. Therefore, expression

(3.1) has the truncated form

y ≈ ρWy +
m∑
j=1

ajbj + ε. (3.2)

Regarding the orthonormal functional basis φj(t)s, we can use the Fourier basis, the

FPC basis (Dauxois et al. (1982); James et al. (2000); Li and Hsing (2010)) and the

FPLS basis (Preda and Saporta (2005); Preda et al. (2007); Preda and Saporta (2007);

Aguilera et al. (2010); Delaigle and Hall (2012)). Here, we both introduce the FPC

basis and the FPLS basis in the process of estimation. As these two bases are adaptive
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to properties of data, whereas other bases independent of data will make it hard to

decide which m terms should be included in the truncated RSSoFR (3.2).

3.1.1 Functional principal component (FPC) basis

Let K(s, t) denote the covariance function of X(t), i.e. K(s, t) = Cov(X(t), X(s)). By

Mercer’s theorem, the spectral decomposition of K(s, t) is then K(s, t) =
∑∞

j=1 λjϕj(s)

ϕj(t), where λ1 > λ2 > · · · > 0 are eigenvalues and {ϕj(t)}∞j=1 are the corresponding

orthogonal eigenfunctions. According to the Karhunen-Loève expansion, X(t) can be

expanded as X(t) =
∑∞

j=1 ajϕj(t), where ajs are uncorrelated random variables with

mean zero and variance E(a2
j) = λj, aj =

∫ 1

0
X(t)ϕj(t)dt.

For the observations {yi, xi(t)}ni=1, the empirical version ofK(s, t) is K̂(s, t) = 1
n

∑n
i=1 xi(s)

xi(t). Moreover, it can be shown that K̂(s, t) =
∑n

j=1 λ̂jϕ̂j(s)ϕ̂j(t), where λ̂j and

ϕ̂j(t) are the estimators of ϕj(t) and λj, respectively. For the ith observation xi(t),

the estimator of aij is then âij =
∫ 1

0
xi(t)ϕ̂j(t), and xi(t) can be written as xi(t) =∑n

j=1 âijϕ̂j(t). Similarly, based on the estimated orthonormal functional basis {ϕ̂j(t)}nj=1,

β(t) has the expansion β(t) =
∑n

j=1 b̃jϕ̂j(t) with b̃j =
∫ 1

0
β(t)ϕ̂j(t)dt. Therefore, the

sample counterpart of (3.2) is

y ≈ ρWy +
m∑
j=1

âj b̃j + ε. (3.3)

where âj = (â1j, â2j, · · · , ânj)′.

3.1.2 Functional partial-least squares (FPLS) basis

In the analysis of numerical data, the partial-least squares (PLS) regression is an

efficient alternative to the principal component regression (PCR) by taking the response

variable y onto account. Like the PCR, the PLS regression also provides a set of

orthogonal basis functions. De Jong (1993) has proved that with the same number

of components, the PLS regression has a better fit than the PCR. Especially when a

large proportion of the variations of xi(t)s do not explain the responses y, the PLS

regression has competitive advantages over the FPC regression.
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Here, to form the FPLS basis functions, we first neglect the autoregressive term ρWy

of (2.3), which means building the basis without considering spatial correlation. Then,

use an iterative process introduced by Preda and Saporta (2005) to get the basis.

Supposing we construct m FPLS basis functions, the main steps are,

(1) Begin from l = 1. Also write xl(t) = x(t), yl = y.

(2) Obtain a square integrable weight function ωl(t) evaluated by ωl(t) = E[ylxl(t)]
‖E[ylxl(t)]‖

,

which maximizes Cov
‖ωl(t)‖=1

(
yl,
∫ 1

0
xl(t)ωl(t)dt

)
, where ‖·‖ is the norm, i.e., ‖ωl(t)‖ =√∫ 1

0
ω2
l (t)dt.

(3) Regress xl(t) and yl on al, separately, where al =
∫ 1

0
xl(t)ωl(t)dt. That is xl(t) =

pl(t)al + εxl (t) and yl = qlal + εyl , where pl(t) = E[xl(t)al]
‖al‖2

, ql = E[ylal]
‖al‖2

.

(4) Stop when l = m. Otherwise, set xl+1(t) = εxl (t), yl+1 = εyl , and back to step 2.

The set of weight functions {ωj(t)}mj=1 is the FPLS basis. And the orthogonal com-

ponents a1, . . . ,am are the regressors aj of the truncated model (3.2). In practice,

we compute E[ylxl(t)], E[xl(t)al] and E[ylal] by their empirical versions. Denote âj

as the estimator of aj, we have the same expression as (3.3), which is the truncated

empirical form of (3.1).

3.2 An EM algorithm for the truncated RSSoFR

In this subsection we focus on (3.3) and propose an EM algorithm to estimate ρ, b =

(b̃1, b̃2, · · · , b̃m)′ and ν. Defining A = (âij)n×m, the expression (3.3) can be written as

y ≈ ρWy +Ab+ ε. (3.4)

It is not easy to directly write out the probability density function of y based on the

noise term as ε = (ε1, · · · , εn)′ independently and identically follow t-distributions.

However, we know the fact that a t-distribution can be regarded as a scale mixture of

normal distributions, i.e., if ui follows a gamma distribution f(ui) = 1
Γ( ν

2
)
(ν

2
)
ν
2 (ui)

ν
2
−1e−

ν
2
ui ,

and εi | ui ∼ N(0, σ
2

ui
), then the marginal density f(εi) of εi is a t-distribution with

12
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freedom ν and scale parameter σ,

f(εi) =
Γ(ν+1

2
)σ−1

(πν)
1
2 Γ(ν

2
){1 + ε2

σ2ν
} 1

2
(ν+1)

.

Thus by introducing latent variables u = (u1, u2, . . . , un)′, which are independent of

x(t) and independently and identically distributed (i.i.d.), we put forward an EM

algorithm to estimate (3.4).

Given u, (3.4) can be expressed as

y | u ≈ (In − ρW )−1(Ab+ σU−
1
2η)

η ∼ N(0, In), U = diag(u)

where η = (η1, η2, . . . , ηn)′. Then the complete log-likelihood function for y and u is

lnL(θ;y,u) = ln f(y|u) +
n∑
i=1

ln f(ui)

= −n
2

ln(2π)− 1

2
ln |Σy| −

1

2
(y − µy)′Σ−1

y (y − µy) +
n∑
i=1

ln f(ui),

(3.5)

where θ = (ρ, b, σ2, ν), µy and Σy are the mean and the covariance of y, respectively,

µy = (In − ρW )−1Ab,

Σy =
(
(In − ρW )−1

)′ · σ2 ·U−1 · (In − ρW )−1.

Denote the constant term in (3.5) by C, the complete log-likelihood function is

lnL(θ;y,u) =C +
1

2

n∑
i=1

lnui −
n

2
lnσ2 + ln |In − ρW | −

ε′Uε

2σ2

+
n∑
i=1

{
(
ν

2
− 1) lnui −

ν

2
ui − ln Γ(

ν

2
) +

ν

2
ln
ν

2

}
.

(3.6)

Where ε = y − ρWy − Ab. Observing the above, if we known U , the estimators

of ρ, b, σ2 are directly obtained by the quasi-maximum likelihood estimation method

13
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introduced by Lee (2004). And the freedom ν can be also estimated by maximizing

the last term in (3.6), i.e.

n∑
i=1

{
(
ν

2
− 1) lnui −

ν

2
ui − ln Γ(

ν

2
) +

ν

2
ln
ν

2

}
.

However, u is missing data, and next we present the EM algorithm.

In E-step, given the kth estimate of θ, the computation of E
(

lnL(θ;y,u|y,θ(k))
)

comes down to compute E(u|y,θ(k)) and E(
∑n

i=1 lnui|y,θ(k)). Note that the fact

that the conditional distribution of ui given εi is also a gamma distribution G(ν1, ν2),

where ν1 = 1
2
(ν + 1), ν2 = 1

2
(ν +

ε2i
σ2 ), and we have E(ui|εi) = ν+1

ν+(ε2i )/(σ
2)

. Hence

E(u|y,θ(k)) =
( ν(k) + 1

ν(k) + δ
(k)
1

,
ν(k) + 1

ν(k) + δ
(k)
2

, . . . ,
ν(k) + 1

ν(k) + δ
(k)
n

)′
, δ

(k)
i =

(ε2i )
(k)

(σ2)(k)
.

We also have

E
( n∑
i=1

lnui|y,θ(k)
)

=
n∑
i=1

{
ψ
(ν(k) + 1

2

)
− ln

(ν(k) + δ
(k)
i

2

)}
,

where ψ(s) = ∂ ln Γ(s)
∂s

is the Digamma function.

And in M-step, the (k + 1)th estimate of θ maximizes

E
(

lnL(θ;y,u|y,θ(k))
)
∝
{
ν

2
E
( n∑
i=1

lnui|y,θ(k)
)
− ν

2
τnE(u|y,θ(k))− n ln Γ(

ν

2
)+

n
ν

2
ln
ν

2
− n

2
ln(σ2) + ln |In − ρW | −

ε′E(U |y,θ(k))ε

2σ2

}
,

where τn is an n-dimensional vector of ones, E(U |y,θ(k)) = diag
(
E(u|y,θ(k))

)
. Thus

we can get ν(k+1) by maximizing

ν

2
E
( n∑
i=1

lnui|y,θ(k)
)
− ν

2
τnE(u|y,θ(k))− n ln Γ(

ν

2
) + n

ν

2
ln
ν

2
.
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And obtain {ρ(k+1), b(k+1), (σ2)(k+1)} by maximizing

n

2
ln(σ2) + ln |In − ρW | −

ε′E(U |y,θ(k))ε

2σ2
. (3.7)

Observing the above if ρ is known, b(k+1) and (σ2)(k+1) are respectively,

b(k+1)(ρ) =
(
A′E(U |y,θ(k))A

)−1(
A′E(U |y,θ(k))y − ρA′E(U |y,θ(k))Wy

)
(σ2)(k+1)(ρ) =

1

n

(
y − ρWy −Ab(k+1)(ρ)

)′ · E(U |y,θ(k)) ·
(
y − ρWy −Ab(k+1)(ρ)

)
.

(3.8)

Thus similar to the quasi-maximum likelihood estimation method (Lee (2004)), we

substitute b(k+1)(ρ) and (σ2)(k+1)(ρ) onto (3.7) and drop the constant term. Then

ρ(k+1) is the solution of

arg max
ρ

{
− n

2
ln
(
(σ2)(k+1)(ρ)

)
+ ln |In − ρW |

}
.

The optimization of the above refers to Ord (1975). Once ρ(k+1) is obtained, replacing

ρ with ρ(k+1) in (3.8) yields b(k+1) and (σ2)(k+1), respectively.

The estimator of θ is finally obtained by repeating E-step and M-step until max{|ρ(k+1)−

ρ(k)|, |b(k+1) − b(k)|, |(σ2)(k+1) − (σ2)(k)|} is within a given threshold. And β̂(t) can be

reconstructed by the estimator of b, i.e. b̂ = (b̂1, · · · , b̂m). That is

β̂(t) =
m∑
j=1

b̂jφ̂j(t). (3.9)

For clarity, we summarize the main steps of the estimation procedure in Algorithm 1.

3.3 Choosing the truncation parameter for the RSSoFR

We introduce two ways to determine the truncation parameter m. The first is the

percentage of variance explained (PVE) for predictors, which is often adopted for the

FPC basis. The second is based on cross validation, which is a more general approach.
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Algorithm 1 Main steps of the estimation procedure

1: Represent the functional predictor and the slope function using the FPLS basis or
the FPC basis. In this step, after an appropriate truncation parameter is given,
the RSSoFR approximates an SAR model with t-distributions whose covariates are
the component scores of xi(t)s, as shown in (3.4).

2: Determine the estimators for ρ, b, σ2, ν in (3.4) by the EM algorithm.

E-step : Calculate u
(k+1)
i and (lnui)

(k+1).

u
(k+1)
i = E(ui|y,θ(k)) =

ν(k) + 1

ν(k) + δ
(k)
i

(lnui)
(k+1) = E(lnui|y,θ(k)) = ψ

(ν(k) + 1

2

)
− ln

(ν(k) + δ
(k)
i

2

)
where ψ(s) is the Digamma function, δ

(k)
i =

(ε2i )
(k)

(σ2)(k)
and ε

(k)
i is the ith element

of y − ρ(k)Wy −Ab(k).
M-step : Update the parameters {ν(k), ρ(k), b(k), (σ2)(k)}.

ρ(k+1) = arg max
ρ

{
− n

2
ln
(
(σ2)(k+1)(ρ)

)
+ ln |In − ρW |

}
b(k+1) =

(
A′U (k+1)A

)−1(
A′U (k+1)y − ρ(k+1)A′U (k+1)Wy

)
(σ2)(k+1) =

1

n

(
y− ρ(k+1)Wy−Ab(k+1)

)′ ·U (k+1) ·
(
y− ρ(k+1)Wy−Ab(k+1)

)
ν(k+1) = arg max

ν

n∑
i=1

{ν
2

(lnui)
(k+1) − ν

2
u

(k+1)
i − ln Γ(

ν

2
) +

ν

2
ln
ν

2

}
where U (k+1) = diag

(
(u

(k+1)
1 , · · · , u(k+1)

n )′
)
.

3: Reconstruct the estimator for β(t) in the RSSoFR. The slope function is con-
structed using the FPLS basis or the FPC basis mentioned in Step 1 and the
coefficient b̂ estimated in Step 2, as shown in (3.9). The other estimators are
obtained directly from Step 2.

To compare the new RSSoFR with the SSoFR and the SoFR in the numerical exper-

iments, we use the first method to determine m. If the PVE is set to be 80%, the

truncation parameter m is subject to min
l
{(
∑l

j=1 λ̂j)/(
∑n

j=1 λ̂j) ≥ 80%}.

In a non-spatial scenario, cross-validation method is commonly conducted by each

time extracting an object from data as test set, and using the remaining as training

set to predict the extracted one. In a spatial context, cross validation can be also

applied but notice that the modification of spatial structure resulting from removing

16
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one unit should be considered. Denote the objects in training set as in-sample units,

whose dependent variable Ys and independent variables Xs are both observed, and the

objects in test set as out-sample units, whose observed variable is explanatory variable

Xo and the response Yo is unknown, which need to be predicted. We call the problem

of predicting Yo using Xs, Xo and Ys the out-of-sample prediction.

Goulard et al. (2017) discussed the out-of-sample prediction for the SAR model and

concluded the “BP” predictor, which is based on Goldberger formula, behaves well

among other existing predictors. The calculation formula of the BP predictor is

Ŷ BP
o = Ŷ TC

o −Q−1
o Qos(Ys − Ŷ TC

s ), Ŷ TC = (In − ρ̂W )−1Xβ̂ =

Ŷ TC
s

Ŷ TC
o

 ,

where Q is the precision matrix and

Q =
1

σ̂2
(In − ρ̂(W ′ +W ) + ρ̂2W ′W ) =

Qs Qso

Qos Qo

 .

In all, we use a spatial cross-validation method, which employs the BP predictor, to

select the number of components. Specifically, we extract one observation at a time

from the dataset and use the remaining to predict it. When all the observations in the

dataset have been extracted once, we define the following cross-validated prediction

error (PE) for truncation parameter m,

PE(m) =
1

n

n∑
i=1

(yi − ŷmi )2, (3.10)

where ŷmi is the predicted yi using m components and n− 1 observations. For all the

alternatives of m, we choose the one with the smallest PE.
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4 SIMULATION STUDY

Several simulation studies are conducted to evaluate the finite-sample performances of

the proposed estimators for ρ, ν, β(t). All of the computations were carried out in the

R environment, and we used the R packages ‘spdep’, ‘fda’ and ‘fda.usc’ to implement

the proposed procedure.

Because the spatial dependence and the t-distribution are of interest in this study, we

compare the proposed RSSoFR with the following two models

(a) The SoFR with i.i.d. t-distributions

y =

∫ 1

0

x(t)β(t)dt+ ε, εi ∼ t(ν). (4.1)

(b) The SSoFR with i.i.d. normal distributions

y = ρWy +

∫ 1

0

x(t)β(t)dt+ ε, εi ∼ N(0, σ2). (4.2)

These three models are estimated all by firstly expanding the functional regressor using

the FPC basis. Here we set the PVE to be identical to 80%. Then we have

(1) The SSoFR (4.2) approximates an SAR model with i.i.d. normal distributions,

which can be estimated by the quasi-maximum likelihood estimation method (Lee

(2004)).

(2) The SoFR (4.1) approximates an ordinary multivariate linear model with i.i.d. t-

distributions, which can be estimated by the EM algorithm (Peel and McLachlan

(2000)).

Regarding β̂(t) for the three models, they can be reconstructed by the basis func-

tions as that showed by (3.9). Different degrees of spatial effects are considered,

ρ = {0, 0.5, 0.8}. Note that when ρ = 0, the SSoFR (2.3) reduces to the SoFR (4.1).

As for the spatial scenario, we adopt the rook matrix by randomly apportioning n

agents on a regular square grid of cells; each agent is located on a cell. In this context,

18

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



if the grid has R rows and T columns, then the sample size n = R × T . Units that

share an edge are neighbours. This definition ensures the units in the inner field of the

grid have four neighbours, the units in the corners have two neighbours, and the units

along the boarders have three neighbours. Therefore, the spatial matrix is an adjacent

matrix with each entry wii′ = 1 if units i and i′ are neighbours and wii′ = 0 otherwise.

We set n = {10× 15, 15× 20, 20× 30} in the simulation. The spatial weight matrix is

row-normalized in all cases.

For the functional part of equation (2.3), we employ the same form as the functions in

the SoFR by Hall and Horowitz (2007). Specifically, we generate the simulation data

y = (y1, y2, · · · , yn)′ using

y = (In − ρW )−1
(∫ 1

0

x(t)β(t)dt+ 0.5ε
)

(1) εi ∼ N(0, 1), εi ∼ t(1), εi ∼ t(3)

(2) ρ = 0, ρ = 0.5, ρ = 0.8

The functional predictor x(t) = (x1(t), x2(t), · · · , xn(t))′ is produced with values of

xi(t) independently generated by xi(t) =
∑50

j=1 ajZjϕj(t), where aj = (−1)j+1j−γ/2

with γ = 1.1 and 2, respectively; Zj ∼ U [−
√

3,
√

3] and ϕj(t) =
√

2 cos(jπt). Similarly,

the coefficient function β(t) is generated according to β(t) =
∑50

j=1 bjϕj(t), where

b1 = 0.3 and bj = 4(−1)j+1j−2, j ≥ 2. Note that the eigenvalues of the covariance

function K̂(u, v) play a vital role in determining the estimation accuracy of β(t). We

consider two cases. In case 1, γ = 1.1, where the eigenvalues are well spaced and the

slope function can be accurately estimated. In case 2, γ = 2, where the closely spaced

eigenvalues can cause the estimator β̂(t) to display poor performance.

The experiment is repeated 500 times in each setting. And we suppose xi(t)s are

observed on 101 equispaced points, i.e. tj = 0, 1
100
, · · · , 99

100
, 1. The selected number of

components are {7, 8, 9} for γ = 1.1 and 2 for γ = 2. We assess the behaviour of the

estimator ρ̂ in terms of the mean bias and its standard deviation. Concerning β̂(t),

we evaluate its performances in terms of the integrated mean-square error IMSE =

19

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



∫ 1

0
(β̂(t)−β(t))2dt. We summarize the estimation results for ρ in Table 1, β(t) in Table

2 and ν in Table 3. Examination of Table 1-3 leads to the following conclusions.

Table 1: The biases and its standard deviations (in brackets) of ρ̂.

γ = 1.1 γ = 2

ρ εi n RSSoFR SSoFR SoFR RSSoFR SSoFR SoFR

0 normal 150 −0.0059
(0.0887)

−0.0035
(0.0769)

– −0.0086
(0.0969)

−0.0055
(0.0862)

–

300 −0.0025
(0.0608)

−0.0027
(0.0526)

– −0.0033
(0.0646)

−0.0021
(0.0571)

–

600 −0.0009
(0.0429)

−0.0004
(0.0362)

– −0.0011
(0.0479)

−0.0006
(0.0435)

–

0 t(1) 150 0.0002
(0.0266)

−0.0145
(0.0828)

– −0.0009
(0.0291)

−0.0165
(0.0884)

–

300 0.0004
(0.0127)

−0.0092
(0.0600)

– −0.0003
(0.0137)

−0.0090
(0.0552)

–

600 −0.0006
(0.0067)

−0.0042
(0.0345)

– −0.0003
(0.0071)

−0.0009
(0.0338)

–

0 t(3) 150 −0.0059
(0.0801)

−0.0055
(0.0865)

– −0.0050
(0.0862)

−0.0101
(0.0952)

–

300 −0.0061
(0.0550)

−0.0094
(0.0596)

– −0.0020
(0.0640)

0.0000
(0.0708)

–

600 −0.0021
(0.0398)

−0.0011
(0.0467)

– −0.0026
(0.0450)

−0.0033
(0.0511)

–

0.5 normal 150 −0.0121
(0.0733)

−0.0103
(0.0622)

– −0.0129
(0.0775)

−0.0114
(0.0682)

–

300 −0.0078
(0.0500)

−0.0058
(0.0430)

– −0.0039
(0.0554)

−0.0021
(0.0495)

–

600 −0.0041
(0.0362)

−0.0030
(0.0315)

– −0.0021
(0.0404)

−0.0014
(0.0346)

–

0.5 t(1) 150 −0.0016
(0.0220)

−0.0192
(0.0765)

– 0.0016
(0.0217)

−0.0146
(0.0674)

–

300 −0.0012
(0.0111)

−0.0085
(0.0464)

– −0.0005
(0.0096)

−0.0077
(0.0487)

–

600 −0.0002
(0.0062)

−0.0053
(0.0364)

– 0.0000
(0.0052)

−0.0034
(0.0296)

–

0.5 t(3) 150 −0.0105
(0.0712)

−0.0177
(0.0754)

– −0.0190
(0.0785)

−0.0218
(0.0815)

–

300 −0.0036
(0.0467)

−0.0069
(0.0533)

– −0.0082
(0.0504)

−0.0089
(0.0557)

–

600 −0.0021
(0.0309)

−0.0016
(0.0346)

– −0.0024
(0.0354)

−0.0059
(0.0393)

–

0.8 normal 150 −0.0132
(0.0482)

−0.0094
(0.0396)

– −0.0204
(0.0523)

−0.0179
(0.0439)

–

300 −0.0085
(0.0312)

−0.0076
(0.0272)

– −0.0114
(0.0380)

−0.0103
(0.0333)

–

600 −0.0038
(0.0217)

−0.0031
(0.0186)

– −0.0040
(0.0253)

−0.0037
(0.0216)

–

0.8 t(1) 150 −0.0018
(0.0243)

−0.0230
(0.0502)

– −0.0025
(0.0150)

−0.0192
(0.0465)

–

300 −0.0002
(0.0061)

−0.0113
(0.0375)

– −0.0006
(0.0059)

−0.0113
(0.0308)

–

600 0.0001
(0.0028)

−0.0077
(0.0263)

– −0.0001
(0.0029)

−0.0075
(0.0219)

–

0.8 t(3) 150 −0.0138
(0.0453)

−0.0151
(0.0455)

– −0.0140
(0.0475)

−0.0181
(0.0521)

–

300 −0.0054
(0.0293)

−0.0073
(0.0338)

– −0.0067
(0.0321)

−0.0099
(0.0362)

–

600 −0.0038
(0.0196)

−0.0052
(0.0227)

– −0.0041
(0.0220)

−0.0052
(0.0251)

–

(1) In Table 1 for ρ̂, the biases are small and the standard deviations display a decrease

pattern as sample size increases. When εi ∼ t(1), ρ̂ of the RSSoFR always performs
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Table 2: The empirical average IMSE and its standard deviations (in brackets) of β̂(t).

γ = 1.1 γ = 2

ρ εi n RSSoFR SSoFR SoFR RSSoFR SSoFR SoFR

0 normal 150 0.1386
(0.0567)

0.1267
(0.0531)

0.1377
(0.0549)

0.1727
(0.0776)

0.1695
(0.0755)

0.1723
(0.0773)

300 0.0788
(0.0346)

0.0721
(0.0316)

0.0786
(0.0342)

0.1418
(0.0455)

0.1403
(0.0451)

0.1417
(0.0454)

600 0.0419
(0.0168)

0.0383
(0.0153)

0.0418
(0.0168)

0.1279
(0.0246)

0.1273
(0.0243)

0.1279
(0.0247)

0 t(1) 150 0.2676
(0.1497)

30034
(565196)

0.2632
(0.1431)

0.2080
(0.0932)

431
(6064)

0.2084
(0.0934)

300 0.1524
(0.0752)

12790
(192370)

0.1513
(0.0745)

0.1569
(0.0523)

1356
(17250)

0.1568
(0.0521)

600 0.0755
(0.0336)

4633
(71726)

0.0754
(0.0337)

0.1350
(0.0267)

43476
(593702)

0.1349
(0.0266)

0 t(3) 150 0.1841
(0.0885)

0.3278
(0.2543)

0.1832
(0.0875)

0.1923
(0.0859)

0.2204
(0.1064)

0.1917
(0.0859)

300 0.0998
(0.0456)

0.1845
(0.1220)

0.0996
(0.0452)

0.1499
(0.0500)

0.1648
(0.0604)

0.1500
(0.0501)

600 0.0535
(0.0218)

0.0970
(0.0700)

0.0534
(0.0218)

0.1290
(0.0250)

0.1369
(0.0327)

0.1290
(0.0250)

0.5 normal 150 0.1366
(0.0590)

0.1231
(0.0520)

0.1984
(0.0904)

0.1742
(0.0787)

0.1719
(0.0786)

0.1946
(0.0882)

300 0.0761
(0.0321)

0.0698
(0.0281)

0.1184
(0.0544)

0.1410
(0.0465)

0.1394
(0.0461)

0.1540
(0.0501)

600 0.0430
(0.0171)

0.0395
(0.0158)

0.0687
(0.0268)

0.1271
(0.0255)

0.1265
(0.0255)

0.1385
(0.0288)

0.5 t(1) 150 0.2822
(0.1471)

2827
(25820)

1.1746
(0.9887)

0.2104
(0.0960)

3744
(49109)

0.4115
(0.3345)

300 0.1543
(0.0820)

3862
(49921)

0.6101
(0.3746)

0.1596
(0.0525)

22641
(488421)

0.2519
(0.1293)

600 0.0740
(0.0335)

9897
(192399)

0.3027
(0.1699)

0.1345
(0.0261)

134
(1001)

0.1836
(0.0591)

0.5 t(3) 150 0.1940
(0.0929)

0.3148
(0.1809)

0.3114
(0.1594)

0.1891
(0.0861)

0.2216
(0.1347)

0.2164
(0.0981)

300 0.1042
(0.0470)

0.1808
(0.1095)

0.1722
(0.0826)

0.1483
(0.0472)

0.1630
(0.0576)

0.1676
(0.0560)

600 0.0531
(0.0224)

0.0926
(0.0591)

0.0908
(0.0388)

0.1289
(0.0241)

0.1376
(0.0329)

0.1420
(0.0283)

0.8 normal 150 0.1432
(0.0636)

0.1298
(0.0581)

0.6378
(0.3425)

0.1759
(0.0803)

0.1734
(0.0799)

0.3524
(0.1792)

300 0.0763
(0.0296)

0.0697
(0.0264)

0.4035
(0.1882)

0.1425
(0.0455)

0.1407
(0.0450)

0.2884
(0.1148)

600 0.0416
(0.0168)

0.0377
(0.0149)

0.2581
(0.0978)

0.1288
(0.0248)

0.1282
(0.0246)

0.2494
(0.0652)

0.8 t(1) 150 0.2877
(0.2352)

1071
(7593)

10.7320
(24.6818)

0.2029
(0.0916)

737
(10172)

3.0490
(9.5959)

300 0.1518
(0.0730)

2446
(19969)

4.4654
(4.5632)

0.1540
(0.0508)

932
(12959)

1.0579
(1.0765)

600 0.0782
(0.0394)

7359
(101428)

1.9833
(1.3628)

0.1343
(0.0267)

628
(7479)

0.6228
(0.5507)

0.8 t(3) 150 0.1819
(0.0920)

0.3356
(0.5530)

0.8924
(0.5139)

0.1877
(0.0833)

0.2223
(0.1090)

0.4125
(0.2617)

300 0.0989
(0.0472)

0.1779
(0.1357)

0.5534
(0.2888)

0.1470
(0.0505)

0.1623
(0.0561)

0.3185
(0.1527)

600 0.0524
(0.0216)

0.0899
(0.0580)

0.3368
(0.1328)

0.1294
(0.0256)

0.1362
(0.0298)

0.2671
(0.0917)

better than that of the SSoFR. And when εi follows N(0, 1) or t(3), ρ̂ of the two

models behave similarly.

(2) In Table 2 compare β̂(t) of the RSSoFR and the SoFR. In case ρ = 0, RSSoFR’s

β̂(t) approximates the SoFR’s. But in case ρ 6= 0, β̂(t) of the RSSoFR has much

smaller IMSE than that of the SoFR has. Moreover, as ρ increases, the differences
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Table 3: The estimates and its standard deviations (in brackets) of ν.

γ = 1.1 γ = 2

ρ εi n RSSoFR SSoFR SoFR RSSoFR SSoFR SoFR

0 normal 150 4.0080
(0.0892)

– 4.0080
(0.1549)

4.0260
(0.1593)

– 4.0420
(0.2105)

300 4.0040
(0.0632)

– 4.0040
(0.0632)

4.0000
(0.0000)

– 4.0000
(0.0000)

600 4.0000
(0.0000)

– 4.0000
(0.0000)

4.0000
(0.0000)

– 4.0000
(0.0000)

0 t(1) 150 1.7960
(0.4635)

– 1.8260
(0.4474)

1.8560
(0.4557)

– 1.8820
(0.4477)

300 1.8720
(0.3462)

– 1.8880
(0.3281)

1.8880
(0.3401)

– 1.8920
(0.3355)

600 1.9560
(0.2053)

– 1.9620
(0.1914)

1.9620
(0.1914)

– 1.9660
(0.1814)

0 t(3) 150 3.2300
(0.4213)

– 3.2360
(0.4250)

3.1660
(0.3725)

– 3.2040
(0.4034)

300 3.1380
(0.3452)

– 3.1440
(0.3514)

3.1260
(0.3322)

– 3.1580
(0.3651)

600 3.0880
(0.2836)

– 3.1080
(0.3107)

3.0640
(0.2450)

– 3.0960
(0.2949)

0.5 normal 150 4.0060
(0.1342)

– 4.0320
(0.1872)

4.0180
(0.1331)

– 4.0500
(0.2601)

300 4.0020
(0.0447)

– 4.0000
(0.0000)

4.0000
(0.0000)

– 4.0000
(0.0000)

600 4.0000
(0.0000)

– 4.0000
(0.0000)

4.0000
(0.0000)

– 4.0000
(0.0000)

0.5 t(1) 150 1.7800
(0.4817)

– 1.9580
(0.6520)

1.8460
(0.4457)

– 1.9640
(0.6321)

300 1.9100
(0.2934)

– 1.9340
(0.5120)

1.8840
(0.3388)

– 1.8900
(0.5200)

600 1.9540
(0.2097)

– 1.8900
(0.3978)

1.9700
(0.1708)

– 1.8600
(0.3959)

0.5 t(3) 150 3.2520
(0.4346)

– 3.4940
(0.5005)

3.1960
(0.3974)

– 3.4460
(0.4976)

300 3.1360
(0.3431)

– 3.5140
(0.5003)

3.0900
(0.2865)

– 3.3760
(0.4849)

600 3.0680
(0.2520)

– 3.4600
(0.4989)

3.0700
(0.2554)

– 3.3920
(0.4887)

0.8 normal 150 4.0020
(0.0775)

– 4.0540
(0.2349)

4.0120
(0.1260)

– 4.0520
(0.2478)

300 4.0000
(0.0000)

– 4.0060
(0.0773)

4.0020
(0.0447)

– 4.0120
(0.1090)

600 4.0000
(0.0000)

– 4.0000
(0.0000)

4.0000
(0.0000)

– 4.0000
(0.0000)

0.8 t(1) 150 1.7960
(0.4458)

– 2.2380
(0.7891)

1.8460
(0.4457)

– 2.2240
(0.7791)

300 1.8880
(0.3157)

– 2.2120
(0.6928)

1.9060
(0.2989)

– 2.1300
(0.7114)

600 1.9540
(0.2097)

– 2.0380
(0.6398)

1.9660
(0.1814)

– 2.0280
(0.6261)

0.8 t(3) 150 3.2240
(0.4173)

– 3.8120
(0.4012)

3.1760
(0.3812)

– 3.7780
(0.4160)

300 3.1140
(0.3181)

– 3.8760
(0.3299)

3.0800
(0.2716)

– 3.8520
(0.3555)

600 3.0820
(0.2746)

– 3.9580
(0.2008)

3.0580
(0.2340)

– 3.8720
(0.3344)

in the IMSE between the RSSoFR and the SoFR also raise. Thus we conclude that

overall our RSSoFR behaves better than the SoFR.

(3) In Table 2 observe β̂(t) of the RSSoFR and the SSoFR. We can find under normal

distributions, our proposed method performs basically consistent with the SSoFR.

Whereas under t-distributions with thick tails, the RSSoFR produces better results
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for β(t) than the SSoFR. Thus the RSSoFR is more robust than the SSoFR.

(4) From Table 2, we can also find the IMSE of β̂(t) of the RSSoFR decreases with the

increasing sample size. Besides, β(t) is more accurately estimated given γ = 1.1

than γ = 2 when the other simulation parameters are held equal, as the case in

Hall and Horowitz (2007). The estimation results for ν are presented in Table 3.

Figure 2: The estimated β(t) vs. the true β(t) when n = 600, γ = 1.1, ρ = 0, 0.5, 0.8
and εi ∼ N(0, 1), t(1), t(3) respectively.

To show the performances of β̂(t) intuitively, for each case we select one result from 500

repetitions when n = 600, γ = 1.1, ρ = 0, 0.5, 0.8 and εi ∼ N(0, 1), t(1), t(3). Figure

2 displays the estimated β̂(t) vs. the true value of β(t) for the RSSoFR, the SSoFR

and the SoFR. From the figure, we can draw the similar conclusions for β(t) as those

derived from Table 2. In addition, we have also implemented numerical experiments

with the FPLS basis used for the functional regressor expansion, which leads to the
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similar conclusions as those from results with the FPC basis in Table 1-3. For sake of

space, we do not report the corresponding results and will illustrate the FPLS basis in

the real data analysis. To sum up, our proposed model performs better than the SoFR

and is more robust than the SSoFR, which provides a competitive alternative for the

existing methods in FDA.

5 REAL DATA ANALYSIS

In this section, we revisit the weather dataset presented in Section 1 to assess the

application of the RSSoFR. Specifically, we add records that correspond to the weather

data for 2008 derived from the China Meteorological Yearbook. In this dataset, records

from 2005 to 2007 serve as training set while those from 2008 serve as test set. Note

that each of the involved 34 Chinese cities covers a large area with the average land size

around 16147 km2, and each observation represents the global picture of the monthly

mean temperature and monthly total precipitation across the whole city instead of the

particular point, which integrates records from tens or even hundreds of meteorological

stations in that city area rather than only one weather station (that is commonly

treated as point-referenced data). From this perspective, here the dataset can be

viewed as areal data instead of point-reference data. We compare the RSSoFR with

the SoFR by their fitting and prediction results.

During preprocessing, we smooth the discrete temperature records xi(tj), i = 1, 2, . . . , 34, tj =

1
12
, 1

6
, . . . , 11

12
, 1 (each j represents a month) using the Epanechnikov Kernel to get xi(t).

Figure 3 (left) presents the functional predictors.

Let the response yi be the logarithm of the mean annual total precipitation for the ith

city. We build the RSSoFR model as

yi = ρ
∑
i 6=i′

wii′yi′ +

∫ 1

0

xi(t)β(t)dt+ εi, (5.1)
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Figure 3: The temperature curves of 34 cities in training set (left), the eigenvalues of
the sample covariance function (right).

where wii′ is the weight between city i and i′. We also build the SoFR as

yi =

∫ 1

0

xi(t)β(t)dt+ εi (5.2)

to enable comparison with the RSSoFR.

The spatial weight matrix W = (wii′)n×n is formed by the reciprocal of the distance

dii′ between centers of two cities, i.e.,

wii′ =
1

dii′
,

where dii′ is computed using the haversine formula based on longitudes and latitudes

of cities’ centers. Besides, we considered two influence factors that may effect model

(5.1)’s performances during the process of constructing W . The first is the thresh-

old distance d0 (in kilometers). We know if city i is very far from city i′, the spatial

dependence between them will be very small. Thus we set wii′ = 0 if dii′ > d0. The

second is the number of the nearest neighbors k. For any city i, there exists compe-

titions among weights wii′ , i
′ = 1, · · · , 34. Suppose city i has many close neighbors

i1, · · · , in0 , max{dii1 , · · · , diin0} < d0 and n0 is relatively great, then it is very impor-

tant to determine the value of k. As the smaller k is, the greater each wii′ becomes,

i.e., the stronger influence each neighbor i′ has on city i.
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Table 4: The values of the Moran’s I statistic under different values of k and d0.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

d0 (km) 613.5 626.0 626.0 626.0 613.5 625.4 625.4 613.5

Moran’s I 0.746 0.801 0.732 0.753 0.754 0.747 0.741 0.743

We choose the W under which the Moran’s I statistic takes the greatest value. Set

k = {1, 2, 3, 4, 5, 6, 7, 8}. And for each k, we search a d0 where the value of the Moran’s

I statistic is the greatest. Table 4 displays the results for different values of k. It can be

seen W with k = 2 and d0 = 626.0 is the best option. We also found this W performs

better than the spatial weight matrix formed by the negative exponential of distance

(2.2). Figure 4 presents the locations of 34 major cities on map of China based on

the longitudes and the latitudes of the cities’ centers. Because Urumchi and Lhasa

are located far from the other cities (all the distances are greater than 1250 km), we

remove their records from the weather dataset. Note that W is row-normalized after

construction.

Figure 4: The locations of 34 major cities on map of China based on the longitudes
and the latitudes of the cities’ centers.

Figure 3 (right) shows the eigenvalues of the sample covariance function. The eigen-

values clearly decay quickly, and the first eigenvalue accounts for 98.6% of the total

variance. Therefore, we consider using one component in the RSSoFR. As the FPLS

basis behaves better than the FPC basis in this dataset, we employ the FPLS basis
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for both the RSSoFR and the SoFR to make a comparison. The fitted and predicted

results of the RSSoFR and the SoFR are summarized in Table 5. Figure 5 shows the

related consequences.

Figure 5: The Moran Scatter plot of the residuals of the RSSoFR (top-left), the esti-
mated β(t) of the RSSoFR and the SoFR (top-right), the fitted error of the RSSoFR
and the SoFR (bottom-left), and the predicted error of the RSSoFR and the SoFR
(bottom-right), respectively.

Table 5: The fitting and prediction results of the RSSoFR and the SoFR.

models ρ̂ Moran’s I statistic(residuals) MSE(fitted error) MSE(prediction error) ν̂

SoFR — 0.487 0.128 0.114 —
RSSoFR 0.675 -0.14 0.088 0.076 15

Firstly, we discuss the fitting results of the RSSoFR and the SoFR. Recall from Section

1 that significant spatial correlation presents among the residuals of the SoFR. We can

see from Table 5 that the value of the Moran’s I statistic of the residuals of the RSSoFR

27

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



is small (−0.14), which suggests a majority of spatial correlation in the residuals has

been removed. Figure 5 (top-left) shows the Moran Scatterplot of the residuals of

the RSSoFR. As for the fitted values, the MSE of the RSSoFR is nearly half of that

of the MSE of the SoFR, where MSE =
√

1
n

∑n
i=1(ŷi − yi)2. Thus, the RSSoFR

fits the mean total annual precipitation better than the SoFR. Figure 5 (bottom-

left) presents boxplots of the residuals of the RSSoFR and the SoFR. Regarding the

estimated parameters, ρ̂ is 0.705, which is also very significant with its p-value smaller

than 0.001. The slope functions of the RSSoFR and the SoFR are provided in Figure

5 (top-right). We can find the two estimated curves have similar shapes, and β̂(t) of

the RSSoFR is smoother than that of the SoFR. We conclude that the precipitation

is much more strongly influenced by the temperatures during spring and winter than

in the other seasons. Then we focus on the prediction results. The predicted error

of the RSSoFR is 0.076 while that of the SoFR is 0.114, which indicates the RSSoFR

has better prediction performance than the SoFR. Figure 5 (bottom-right) presents

boxplots of the prediction error under the RSSoFR and the SoFR.

6 CONCLUSION AND DISCUSSION

The SoFR is popular in studies of links between a scalar response and functional

predictors. However, the existing SoFR cannot address the dependencies in a cross-

sectional spatial scenario. We propose a robust spatial autoregressive scalar-on-function

regression that incorporates a spatial lagged term into the SoFR to accommodate the

spatial dependence and allows for thick tailed noise term. An estimation method

based on basis expansion and EM algorithm is developed to obtain the estimators

of the spatial autoregressive parameter and the slope function. Specifically, the FPC

basis and the FPLS basis can be applied and the spatial cross-validation method is

introduced to choose the truncation parameter. Our simulation study demonstrates the

consistency of the proposed estimators. In particular, the new model performs better

than the SoFR when the spatial correlation is present, and the SSoFR when the error
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term has thick tails. An examination of a real dataset illustrates the superiority of the

RSSoFR over the SoFR. In short, the robust spatial autoregressive scalar-on-function

regression model with t-distribution presented in this paper constitutes a practical

statistical tool for modelling the spatial dependent data with functional covariates and

scalar response that complements the widely popular spatial autoregressive scalar-on-

function regression with normality assumption and may help to further understanding

in many fields of applied research.

We discussed the RSSoFR under the assumption that only one functional predictor

is involved. The RSSoFR with multiple functional predictors also deserve attention.

Based on the estimation method introduced in Section 3, the methods presented here

can be easily generalized to the RSSoFR with multiple functional predictors.

One referee raised concerns about the model uncertainty. Honestly, apart from the

estimation method, the problem of statistical inference is also of great interest as it

provides an overall assessment of the association of the functional covariates with the

responses (β(t), ρ), as well as the whole model; however, it remains challenging due

to the infinite dimensionality of the functional covariates. To overcome this issue, a

natural strategy is to reduce the dimension. With representing the functional covariates

and the coefficient function by linear combinations of a set of basis functions, the

testing problem for β(t) reduces to the hypothesis testing under a classical linear model.

Along with this line, there is a plethora of literature that develops statistical methods.

For example, Su et al. (2017) proposed a Wald-type test with varying thresholds in

selecting the number of PCs for the functional covariates; Garca-Portugus et al. (2014)

introduced the projected Cramér-von Mises (PcVM) test-a testing method which is

derived by using random projection, and whose null distribution is approximated by

bootstrap. We refer the reader to Tekbudak et al. (2019) for an extensive comparison

of testing methods in scalar-on-function regression.

However, in the current paper we adopt the EM algorithm to implement the estimation

procedure, which cannot obtain the corresponding standard errors of the proposed esti-

mators. A common practice is to compute the standard errors of the proposed estima-
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tors via the bootstrap. There are some existing methods for estimating the standard

error of an estimator obtained from the EM algorithm. For example, Louis (1982)

developed a formula for computing the observed information matrix in terms of the

complete and missing information matrices, while the calculation of the missing infor-

mation involves the conditional expectation of the outer product of the complete-data

score vector; Jamshidian and Jennrich (2000) proposed to use numerical differentiation

to yield the Hessian matrix. After obtaining the standard errors, one may follow the

analogous methods to perform the statistical inference for the proposed model. In-

vestigations along this direction may be of interest and merit further research but are

beyond the scope of the paper.
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Tekbudak, M. Y., Alfaro-Córdoba, M., Maity, A., and Staicu, A.-M. (2019). A compar-

ison of testing methods in scalar-on-function regression. AStA Advances in Statistical

Analysis, 103(3), 411–436.

Topa, G. (2001). Social Interactions, Local Spillovers and Unemployment. The Review

of Economic Studies, 68(2), 261–295.

Wang, H., Gu, J., Wang, S., and Saporta, G. (2019). Spatial partial least squares au-

toregression: Algorithm and applications. Chemometrics and Intelligent Laboratory

Systems, 184, 123 – 131.

Yao, F. and Müller, H.-G. (2010). Functional quadratic regression. Biometrika, 97(1),

49–64.

Zhang, J., Clayton, M. K., and Townsend, P. A. (2011). Functional concurrent linear

regression model for spatial images. Journal of Agricultural, Biological, and Envi-

ronmental Statistics, 16(1), 105–130.

Zhang, L., Baladandayuthapani, V., Zhu, H., Baggerly, K. A., Majewski, T., Czerniak,

B. A., and Morris, J. S. (2016). Functional CAR models for large spatially correlated

functional datasets. Journal of the American Statistical Association, 111(514), 772–

786.

35

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 


