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Abstract

The research on and application of artificial intelligence (AI) has triggered a com-
prehensive scientific, economic, social and political discussion. Here we argue that
statistics, as an interdisciplinary scientific field, plays a substantial role both for the
theoretical and practical understanding of Al and for its future development. Statis-
tics might even be considered a core element of Al. With its specialist knowledge
of data evaluation, starting with the precise formulation of the research question and
passing through a study design stage on to analysis and interpretation of the results,
statistics is a natural partner for other disciplines in teaching, research and practice.
This paper aims at highlighting the relevance of statistical methodology in the context
of Al development. In particular, we discuss contributions of statistics to the field of
artificial intelligence concerning methodological development, planning and design
of studies, assessment of data quality and data collection, differentiation of causality
and associations and assessment of uncertainty in results. Moreover, the paper also
discusses the equally necessary and meaningful extensions of curricula in schools and
universities to integrate statistical aspects into Al teaching.
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1 Introduction

The research on and application of artificial intelligence (Al) has triggered a com-
prehensive scientific, economic, social and political discussion. Here we argue that
statistics, as an interdisciplinary scientific field, plays a substantial role, both for the
theoretical and practical understanding of Al and for its further development.
Contrary to the public perception, Al is not a new phenomenon. Al was already
mentioned in 1956 at the Dartmouth Conference (Moor 2006; Solomonoff 1985), and
the first data-driven algorithms such as Perceptron (Rosenblatt 1958), backpropagation
(Kelley 1960) and the so-called ‘Lernmatrix’, an early neural system (Steinbuch 1961;
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Hilberg 1995), were developed in the 50s and 60s. The Lighthill Report in 1973 made
a predominantly negative judgment on Al research in Great Britain and led to the
fact that the financial support for Al research was almost completely stopped (the
so-called first AI winter). The following phase of predominantly knowledge-based
development ended in 1987 with the so-called second Al winter. A period of reduced
public interest and funding in Al began. Nonetheless, in 1988, Judea Pearl published
his book ‘Probabilistic Reasoning in Intelligent Systems’, for which he received the
Turing Award in 2011 (Pearl 1988). From the beginning of the 1990s, Al has been
developing again with major breakthroughs like Support Vector Machines (Cortes and
Vapnik 1995), Random Forest (Breiman 2001), Bayesian Methods (Zhu et al. 2017),
Boosting and Bagging (Freund and Schapire 1997; Breiman 1996), Deep Learning
(Schmidhuber 2015) and Extreme Learning Machines (Huang et al. 2006).

Today, Al plays an increasingly important role in many areas of life. International
organizations and national governments have currently positioned themselves or intro-
duced new regulatory frameworks for Al. Examples are, among others, the Al strategy
of the German government (Bundesregierung 2018), the statement of the Data Ethics
Commission (Data Ethics Commission of the Federal Government, Federal Min-
istry of the Interior, Building and Community 2019) from 2019 and the report of the
Nuffield Foundation in the UK (Nuffield Foundation 2019). Similarly, the European
Commission recently published a white paper on Al (European Commission 2020b).
Furthermore, regulatory authorities such as the US Food and Drug Administration
(FDA) are now also dealing with Al topics and their evaluation. In 2018, for example,
the electrocardiogram function of the Apple Watch was the first Al application to be
approved by the FDA (MedTechlIntelligence 2018).

There is no unique and comprehensive definition of artificial intelligence. Two
concepts are commonly used distinguishing weak and strong Al. Searle (1980) defined
them as follows: ‘According to weak Al, the principal value of the computer in the
study of the mind is that it gives us a very powerful tool. [...] But according to strong
Al the computer is not merely a tool in the study of the mind; rather, the appropriately
programmed computer really is a mind [...]’. Thus, strong Al essentially describes
a form of machine intelligence that is equal to human intelligence or even improves
upon it, while weak Al (sometimes also referred to as narrow Al) is limited to tractable
applications in specific domains. Following this definition, we will focus on weak Al in
this paper in the sense that we consider self-learning systems, which are solving specific
application problems based on methods from mathematics, statistics and computer
science. Consequently, we will focus on the data-driven aspects of Al in this paper.
In addition, there are many areas in Al that deal with the processing of and drawing
inference from symbolic data (Bock and Diday 2000; Billard and Diday 2006). In
contrast to standard data tables, symbolic data may consist of, e.g. lists, intervals, etc.
Thus, special methods for data aggregation and analysis are necessary, which will not
be discussed here.

As for Al there is neither a single definition nor a uniform assignment of methods
to the field of machine learning (ML) in literature and practice. Often, ML is con-
sidered a subset of Al approaches. Based on Simon’s definition from 1983 (Simon
1983), learning describes changes of a system in such a way that a similar task can be
performed more effectively or efficiently the next time it is performed. Bishop (2006)
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describes machine learning as the ‘automatic discovery of regularities in data through
the use of computer algorithms [...] . Following these concepts, we use Al in a very
general sense in this paper whereas ML is used to refer to more specific (statistical)
algorithms.

Often the terms Al and ML are mentioned along with Big Data (Gudivada et al.
2015) or Data Science, sometimes even used interchangeably. However, neither are
Al methods necessary to solve Big Data problems, nor are methods from Al only
applicable to Big Data. Data Science, on the other hand, is usually considered as
an intersection of computer science, statistics and the respective scientific discipline.
Therefore, it is not bound to certain methods or certain data conditions.

This paper aims at contributing to the current discussion about Al by highlighting the
relevance of statistical methodology in the context of Al development and application.
Statistics can make important contributions to a more successful and secure use of Al
systems, for example with regard to

1. Design (Sect. 3): bias reduction; validation; representativity; selection of variables

2. Assessment of data quality (Sect. 4): standards for the quality of diagnostic tests
and audits; dealing with missing values

3. Differentiation between causality and associations (Sect. 5): consideration of
covariate effects; answering causal questions; simulation of interventions

4. Assessment of certainty or uncertainty in results (Sect. 6): Increasing interpretabil-
ity; mathematical validity proofs or theoretical properties in certain Al contexts;
providing stochastic simulation designs; accurate analysis of the quality criteria
of algorithms in the AI context

The remainder of the paper is organized as follows: First, we present an overview of
Al applications and methods in Sect. 2. We continue by expanding on the points 1.—4.
in Sects. 3, 4, 5 and 6. We conclude with Sect. 7. There, we also discuss the increased
need for teaching and further education targeting the increase of Al-related literacy
(particularly with respect to the underlying statistical concepts) at all educational
levels.

2 Applications and methods of Al

Important categories of Al approaches are supervised learning, unsupervised learn-
ing and reinforcement learning (Sutton and Barto 2018). In supervised learning, Al
systems learn from training data with known output such as true class labels or
responses. Thus, the aim is to learn some function g : X — Y describing the rela-
tionship between an n x p matrix of given features X C X and the vector of labels
Y = (y1, ..., y,) C Y.Here, n denotes the number of observations, p is the number
of features and X and Y describe the input and output space, respectively. Examples
include, among others, support-vector machines, linear and logistic regression or deci-
sion trees. In contrast, unsupervised learning extracts patterns from unlabeled data, i.e.
without the y;s in the notation above. The most well-known examples include prin-
cipal component analysis and clustering. Finally, reinforcement learning originates
from robotics and describes the situation where an ‘agent’ (i.e. an autonomous entity
with the ability to act and direct its activity towards achieving goals) learns through
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trial-and-error search. Markov decision processes from probability theory play an
important role here (Sutton and Barto 2018). The input data to an Al algorithm can be
measured values such as stock market prices, audio signals, climate data or texts, but
may also describe very complex relationships, such as chess games. In the following,
we provide some specific examples of Al applications.

2.1 Applications of Al

Al has made remarkable progress in various fields of application. These include auto-
mated face recognition, automated speech recognition and translation (Barrachina et al.
2009), object tracking in film material, autonomous driving, and the field of strategy
games such as chess or go, where computer programs now beat the best human players
(Koch 2016; Silver et al. 2018).

Especially for tasks in speech recognition as well as text analysis and translation,
Hidden Markov models from statistics are used and further developed with great
success (Juang and Rabiner 1991; Kozielski et al. 2013) because they are capable of
representing grammars. Nowadays, automatic language translation systems can even
translate languages such as Chinese into languages of the European language family in
real time and are used, for example, by the EU (European Commission 2020a). Another
growing area for Al applications is medicine. Here, Al is used, e.g., to improve the
early detection of diseases, for more accurate diagnoses, or to predict acute events (Burt
et al. 2018; Chen et al. 2018), see also Friedrich et al. (2021) for a recent overview.
Directions for future developments include personalized medicine aiming at tailoring
treatments to patient subgroups (strata) or even individual patients (Hamburg and
Collins 2010; Blasiak et al. 2020; Schork 2019). Furthermore, official statistics uses
Al methods for classification as well as for recognition, estimation and/or imputation
of relevant characteristic values of statistical units (Beck et al. 2018; Ramosaj and
Pauly 2019b; Ramosaj et al. 2020; UNECE 2020; Thurow et al. 2021). In economics
and econometrics, Al methods are also applied and further developed, for example,
to draw conclusions about macroeconomic developments from large amounts of data
on individual consumer behavior (McCracken and Ng 2016; Ng 2018).

Despite these positive developments that also dominate the public debate, some
caution is advisable. There are a number of reports about the limits of Al e.g., in the
case of a fatal accident involving an autonomously driving vehicle (Wired.com 2019).
Due to the potentially serious consequences of false positive or false negative decisions
in Al applications, careful consideration of these systems is required (AInow 2020).
This is especially true in applications such as video surveillance of public spaces. For
instance, a pilot study conducted by the German Federal Police at the Siidkreuz sub-
urban railway station in Berlin has shown that automated facial recognition systems
for identification of violent offenders currently have false acceptance rates of 0.67%
(test phase 1) and 0.34% (test phase 2) on average (Bundespolizeiprasidium Potsdam
2018). This means that almost one in 150 (or one in 294) passers-by is falsely classified
as a violent offender. In medicine, wrong decisions can also have drastic and nega-
tive effects, such as an unnecessary surgery and chemotherapy in the case of wrong
cancer diagnoses. Corresponding test procedures for assessing such diagnostic tests
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Fig.1 Flow chart of study planning, design, analysis and interpretation

for medicine are currently being developed by regulators such as the US FDA (FDA
2019).

2.2 Methods for Al and the role of statistics

Even though many of the contributions to Al systems originate from computer science,
statistics has played an important role throughout. Early examples occurred in the
context of realizing the relationship between backpropagation and nonlinear least
squares methods, see, e.g., Warner and Misra (1996). Important ML methods such as
random forests (Breiman 2001) or support vector machines (Cortes and Vapnik 1995)
were developed by statisticians. Others, like radial basis function networks (Chen et al.
1991), can also be considered and studied as nonlinear regression models in statistics.
Recent developments such as extreme learning machines or broad learning systems
(Chen and Liu 2018) have close links to multiple multivariate and ridge regression,
i.e. to statistical methods. The theoretical validity of machine learning methods, e.g.,
through consistency statements and generalization bounds (Gyorfi et al. 2002; Vapnik
1998), also requires substantial knowledge of mathematical statistics and probability
theory.

To capture the role and relevance of statistics, we consider the entire process of
establishing an Al application. As illustrated in Fig. 1, various steps are necessary
to examine a research question empirically. For more details on these steps see, e.g.,
Weihs and Ickstadt (2018). Starting with the precise formulation of the research ques-
tion the process then runs through a study design stage (including sample size planning
and bias control) to the mathematical formulation (e.g. as an optimization problem)
and the numerical analysis. Finally, the results must be interpreted. Al often focuses on
the step of data analysis while the other stages receive less attention or are even ignored.
This may result in critical issues and possibly misleading interpretations, such as sam-
pling bias or the application of inappropriate analysis tools requiring assumptions not
met by the chosen design.

3 Statistical approaches for study design and validation

The design of a study and the data to be considered is the basis for the validity of
the conclusions. Unfortunately, Al applications often use data that were collected for
a different purpose (so-called secondary data, observational studies). The collection
and compilation of secondary data is in general not based on a specific purpose or
a research question. Instead, it is collected for other purposes such as accounting or
storage purposes. A typical case is the scientific use of routine data. For example, the
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Al models in a recent study about predicting medical events (such as hospitalization)
are based on medical billing data (Lin et al. 2019). Another typical case concerns
convenience samples, that is, samples that are not randomly drawn but instead depend
on ‘availability’. Well-known examples are online questionnaires, which only reach
those people who visit the corresponding homepage and take the time to answer the
questions. The concept of knowledge discovery in databases (Fayyad et al. 1996) very
clearly reflects the assumption that data are regarded as a given basis from which
information and knowledge can be extracted by Al procedures. This is contrary to the
traditional empirical research process, in which empirically testable research ques-
tions are derived from theoretical questions by conceptualizing and operationalizing.
Importantly, the resulting measurement variables are then collected for this specific

purpose.
3.1 Validation

Statistics distinguishes between two types of validity (Shadish et al. 2002):

1. Internal validity is the ability to attribute a change in an outcome of a study to the
investigated causes. In clinical research, e.g., this type of validity is ensured through
randomization in controlled trials. Internal validity in the context of Al and ML
can also refer to avoiding systematic bias (such as systematically underestimated
risks).

2. External validity is the ability to transfer the observed effects and relationships to
larger or different populations, environments, situations, etc. In the social sciences
(e.g. in the context of opinion research), an attempt to achieve this type of validity
is survey sampling, which comprises sampling methods that aim at representative
samples in the sense of Gabler and Héder (2018), see also Kruskal and Mosteller
(1979a,b,c, 1980).

These validation aspects are important, but different traditions exist for Al algo-
rithms and statistics: While ML has a longstanding benchmarking tradition and often
uses many datasets for evaluation, statistics tends to rely on theory and simulations
augmented by one or two convincing data examples. Here, statistics makes use of
probabilistic models in order to reflect a diversity of real life situations. In addition to
mathematical validity proofs and theoretical investigations, detailed simulation studies
are carried out to evaluate the methods’ limits (by exceeding the assumptions made)
and finite sample properties in situations where certain properties can only be proven
asymptotically. This statistical perspective provides useful insights.

Concepts and guidelines for designing, structuring and reporting simulation studies
have a longstanding tradition in medical statistics, see for example Burton et al. (2006),
Friede et al. (2010), Benda et al. (2010), Morris et al. (2019).

A particular challenge for validation of Al systems are the ever faster development
cycles which require continuous investigations. This can even be aggravated when
turning to development processes of mobile apps or online learning systems such as
recommender systems in online shopping portals. Here, the developments are dynamic,
de facto never ending processes, which therefore require continuous validation.
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Another important factor for the validity and reliability of a study is the sample size
(Meng 2018). For high-dimensional models, an additional factor is ‘sparsity’: In many
applications, the input data for the Al techniques are very high-dimensional, i.e. a large
number of variables p (also called features) are observed with diverse ranges of pos-
sible values. In addition, non-linear relationships with complex interactions are often
considered for prediction. It is well known that high-dimensional data are difficult to
handle if sample sizes are small, i.e. if p > n. However, even with sample sizes in the
order of millions, the problem of the curse of dimensionality arises (Bellman 1957),
because data is thin and sparse in a high-dimensional space, i.e. only few variables are
related to the outcome. Therefore, learning the structure of the high-dimensional space
from these thin data typically requires an enormous amount of training data. Through
statistical models and corresponding mathematical approximations or numerical sim-
ulations, statisticians can assess the potentials and limits of an Al application for a
given number of cases or estimate the necessary number of cases in the planning stage
of a study. This is not routine work; instead, it requires advanced statistical training,
competence, and experience.

Thus, statistics can help in collecting and processing data for subsequent use in
Al pipelines. Basic statistical techniques that are relevant for this aspect include, for
example, the modeling of the data generating process, restrictions on data sets (Rubin
2008), and factorial design of experiments, which is a controlled variation of factors
highlighting their respective influence. In addition, the various phases in the devel-
opment of a diagnostic test are well known in statistics (Pepe 2003), with (external)
validation on independent data playing a crucial role. In many Al applications, how-
ever, the final evaluation phase on external data is never reached, since the initial
algorithms have been replaced in the meantime. Also, statistical measures of quality
such as sensitivity, specificity, ROC curves and calibration are used in the evaluation of
Al methods. And finally, statistics can help in the assessment of uncertainty (Sect. 6).

3.2 Representativity

The naive expectation that sufficiently large data automatically leads to representativity
is wrong (Meng 2018; Meng and Xie 2014). A prominent example is Google Flu
(Lazer et al. 2014), where flu outbreaks were predicted on the basis of search queries:
it turned out that the actual prevalence of the flu was overestimated considerably.
Another example is Microsoft’s chatbot Tay (Davis 2016; Wolf et al. 2017), which
was designed to mimic the speech pattern of a 19-year-old American girl and to learn
from interactions with human users on Twitter: after only a short time, the bot posted
offensive and insulting tweets, forcing Microsoft to shut down the service just 16
hours after it started. And yet another example is the recently published Apple Heart
Study (Perez et al. 2019), which examined the ability of Apple Watch to detect atrial
fibrillation: there were more than 400,000 participants, but the average age was 41
years, which is particularly problematic in view of atrial fibrillation occurring almost
exclusively in people over 65 years of age.
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Fig.2 Simpson’s paradox for continuous data: a positive trend is visible for both groups individually (red
and blue), but a negative trend (dashed line) appears when the data are pooled across groups (Wikipedia
2020) (color figure online)

3.3 Bias

If careful data collection is not accounted for, spurious correlations and bias can falsify
the conclusions. Many forms of bias exist, such as selection, attribution, performance,
and detection bias. While bias in the context of statistics usually refers to the deviation
between the estimated and the true value of a parameter, there are also other concepts
such as cognitive biases or, as Ntoutsi et al. (2020) putit ‘the inclination or prejudice of
a decision made by an Al system which is for or against one person or group, especially
in a way considered to be unfair’. A classic example of such falsification is Simpson’s
paradox (Simpson 1951), which describes a reversal of group-specific trends when
subgroups are disregarded, see Fig. 2. Further examples are biases inflicted by how
the data are collected, such as length time bias (Porta 2016) or prejudices introduced
by Al see Ntoutsi et al. (2020) for a recent overview of this topic.

Statistics provides methods and principles for minimizing bias. Examples include
the assessment of the risk of bias in medicine (Higgins et al. 2011), stratification,
marginal analyses, consideration of interactions, meta-analyses, and techniques specif-
ically designed for data collection such as (partial) randomization, (partial) blinding,
and methods of so-called optimal designs (Karlin and Studden 1966). Statistics also
provides designs that allow for the verification of internal and external validity (Bartels
et al. 2018; Braver and Smith 1996; Roe and Just 2009).

3.4 Model stability and reproducibility

Whether there is interest in a model for prediction or in a descriptive model, model
stability, i.e. the robustness of the model towards small changes in the input values,
plays an important role. Variable selection methods are used to derive descriptive
models and model complexity has an important influence on the choice of the methods.
In arecent review of variable selection procedures, Heinze et al. (2018) emphasize the
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Fig.3 Datarelevancy and quality are equivalent components of a fit-for-purpose real-world data set. Figure
according to Duke-Margolis (2018)

important role of stability investigations. This issue is also mentioned in Sauerbrei et al.
(2020) as one of the main target parameters for the comparison of variable selection
strategies. Statistical concepts have been introduced by Meinshausen and Biihlmann
(2010) as well as in the context of random forests (Breiman 2001).

Conscientiously sticking to the principles mentioned above and adhering to a previ-
ously defined study design also counteracts the so-called replication crisis (Pashler and
Wagenmakers 2012). In this methodological crisis, which has been ongoing since the
beginning of the 2010s, it has become clear that many studies, especially in medicine
and the social sciences, are difficult or impossible to reproduce. Since reproducibility
of experimental results is an essential part of scientific methodology (Staddon 2017),
an inability to replicate the studies of others can have grave consequences for many
fields of science. The replication crisis has been particularly widely discussed in psy-
chology and medicine, where a number of efforts have been made to re-investigate
previous findings in order to determine their reliability (Begley and Ellis 2012; Makel
et al. 2012). A related issue is transparency. While this is an important concept in
any empirical analysis, it has especially become an issue discussed in the context of
Al applications, see for example Flake and Fried (2020), Haibe-Kains et al. (2020),
Simons et al. (2017).

4 Statistics for the assessment of data quality

‘Data is the new oil of the global economy.” According to, e.g., the New York Times
(New York Times 2018) or the Economist (The Economist 2017), this credo echoes
incessantly through start-up conferences and founder forums. This metaphor is not
only popular but false. First of all, data in this context corresponds to crude oil, which
needs further refining before it can be used. In addition, the resource crude oil is
limited. ‘For a start, while oil is a finite resource, data is effectively infinitely durable
and reusable’ [Bernard Marr in Forbes (2018)]. All the more important is a responsible
approach to data preprocessing (Fig. 3).

Ensuring data quality is of great importance in all analyses, according to the pop-
ular slogan ‘Garbage in, garbage out.” As already mentioned in the previous section,
we mainly use secondary data in the context of Al In Al, the process of operational-
ization is often replaced by the ETL process: ‘Extract, Transform, Load’ (Theodorou
et al. 2017). Relevant measurements are to be extracted from the data lake(s), then
transformed and finally loaded into the (automated) analysis procedures. Many Al
procedures are thereby expected to be able to distill relevant influencing variables
from high-dimensional data.
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The success of this procedure fundamentally depends on the quality of the data.
In line with Karr et al. (2006), data quality is defined here as the ability of data
to be used quickly, economically and effectively for decision-making and evalua-
tion (Karr et al. 2006). In this sense, data quality is a multi-dimensional concept
that goes far beyond measurement accuracy and includes aspects such as relevance,
completeness, availability, timeliness, meta-information, documentation and, above
all, context-dependent expertise (Duke-Margolis 2018, 2019). In official statistics,
relevance, accuracy and reliability, timeliness and punctuality, coherence and compa-
rability, accessibility and clarity are defined as dimensions of data quality (European
Statistical System 2019).

Increasing automation of data collection, e.g., through sensor technology, may
increase measurement accuracy in a cost-effective and simple way. Whether this will
achieve the expected improvement in data quality remains to be checked in each
individual application. Missing values are a common problem of data analyses. In
statistics, a variety of methods have been developed to deal with these, including
imputation procedures, or methods of data enhancement (Rubin 1976; Seaman and
White 2013; Van Buuren 2018). The Al approach of ubiquitous data collection allows
the existence of redundant data, which can be used in a preprocessing step with appro-
priate context knowledge to complete incomplete data sets. However, this requires a
corresponding integration of context knowledge into the data extraction process.

The data-hungry decision-making processes of Al and statistics are subject to a
high risk with regard to relevance and timeliness, since they are implicitly based on
the assumption that the patterns hidden in the data should perpetuate themselves in
the future. In many applications, this leads to an undesirable entrenchment of existing
stereotypes and resulting disadvantages, e.g., in the automatic granting of credit or the
automatic selection of applicants. A specific example is given by the gender bias in
Amazon’s Al recruiting tool (Dastin 2018).

In the triad ‘experiment - observational study - convenience sample (data lake)’,
the field of AI, with regard to its data basis, is moving further and further away
from the classical ideal of controlled experimental data collection to an exploration of
given data based on pure associations. However, only controlled experimental designs
guarantee an investigation of causal questions. This topic will be discussed in more
detail in Sect. 5. Causality is crucial if the aim of the analysis is to explain relationships
such as the function g : X — Y linking the feature vector {xq, ..., x,} C X to the
outcome {y1, ..., y,} C Y. There are, however, other situations where one might not
be primarily interested in causal conclusions. Good prediction, for example, can also
be obtained by using variables that are not themselves causally related to the outcome
but strongly correlated with some causal predictor instead.

Exploratory data analysis (Tukey 1962) provides a broad spectrum of tools to visu-
alize the empirical distributions of the data and to derive corresponding key figures.
This can be used in preprocessing to detect anomalies or to define ranges of typical val-
ues in order to correct input or measurement errors and to determine standard values.
In combination with standardization in data storage, data errors in the measurement
process can be detected and corrected at an early stage. This way, statistics helps to
assess data quality with regard to systematic, standardized and complete recording.
Survey methodology primarily focuses on data quality. The insights gained in statisti-
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cal survey research to ensure data quality with regard to internal and external validity
provide a profound foundation for corresponding developments in the context of Al
Furthermore, various procedures for imputing missing data are known in statistics,
which can be used to complete the data depending on the existing context and exper-
tise (Rubin 1976; Seaman and White 2013; Van Buuren 2018). Statisticians have dealt
intensively with the treatment of missing values under different development pro-
cesses [non-response, missing not at random, missing at random, missing completely
at random (Rubin 1976; Molenberghs et al. 2014)], selection bias and measurement
error (Keogh et al. 2020; Shaw et al. 2020).

Another point worth mentioning is parameter tuning, i.e. the determination of
so-called hyperparameters, which control the learning behavior of ML algorithms:
comprehensive parameter tuning of methods in the Al context often requires very
large amounts of data. For smaller data volumes it is almost impossible to use such
procedures. However, certain model-based (statistical) methods can still be used in
this case (Richter et al. 2019).

5 Distinguishing between causality and association

Only afew decades ago, the greatest challenge of Al research was to program machines
to associate a potential cause to a set of observable feature values, e.g. through Bayesian
networks (Pearl 1988). The rapid development of Al in recent years (both in terms
of the theory and methodology of statistical learning processes and the computing
power of computers) has led to a multitude of algorithms and methods that have now
mastered this task. One example are deep learning methods, which are used in robotics
(Levine et al. 2018) and autonomous driving (Teichmann et al. 2018), as well as in
computer-aided detection and diagnostic systems [e.g., for breast cancer diagnosis
(Burt et al. 2018)], drug discovery in pharmaceutical research (Chen et al. 2018) and
agriculture (Kamilaris and Prenafeta-Boldd 2018). With their often high predictive
power, Al methods can uncover structures and relationships in large volumes of data
based on associations. Due to the excellent performance of Al methods in large data
sets, they are also frequently used in medicine to analyze register and observational
data that have not been collected within the strict framework of a randomized study
design (Sect. 3). However, the discovery of correlations and associations (especially
in this context) is not equivalent to establishing causal claims.

An important step in the further development of Al is therefore to replace associa-
tional argumentation with causal argumentation. Pearl (2010) describes the difference
as follows: ‘An associational concept is any relationship that can be defined in terms
of a joint distribution of observed variables, and a causal concept is any relationship
that cannot be defined from the distribution alone.’

Even the formal definition of a causal effect is not trivial. The fields of statistics and
clinical epidemiology, for example, use the Bradford Hill criteria (Hill 1965) and the
counterfactual framework introduced by Rubin (1974). The central problem in obser-
vational data are covariate effects, which, in contrast to the randomized controlled trial,
are not excluded by design and whose (non-)consideration leads to distorted estimates
of causal effects. In this context, a distinction must be made between confounders,
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(@) confounder (b) coliider (c) Mediator
distorted association when distorted association when
controling for collider controling for mediator
Confounder Treatment Outcome Treatment Outcome
Treatment Outcome Collider Mediator

distorted association when failing
to control for confounder

Fig.4 Covariate effects in observational data, according to Catalogue of bias collaboration (2019)

colliders, and mediators (Pearl 2009). Confounders are unobserved or unconsidered
variables that influence both the exposure and the outcome, see Fig. 4a. This can distort
the effects of exposure if naively correlated. Fisher identified this problem in his book
‘The Design of Experiments’ published in 1935. A formal definition was developed in
the field of epidemiology in the 1980s (Greenland and Robins 1986). Later, graphical
criteria such as the Back-Door Criterion (Greenland et al. 1999; Pearl 1993) were
developed to define the term confounding.

In statistics, the problem of confounding is taken into account either in the design
(e.g., randomized study, stratification, etc.) or evaluation [propensity score methods
(Cochran and Rubin 1973), marginal structural models (Robins et al. 2000), graphical
models (Didelez 2007)]. In this context, it is interesting to note that randomized studies
(which have a long tradition in the medical field) have recently been increasingly
used in econometric studies (Athey and Imbens 2017; Duflo et al. 2007; Kohavi et al.
2020). In the case of observational data, econometrics has made many methodological
contributions to the identification of treatment effects, e.g., via the potential outcome
approach (Rosenbaum 2017, 2002, 2010; Rubin 1974, 2006) as well as the work on
policy evaluation (Heckman 2001).

In contrast to confounders, colliders and mediators lead to distorted estimates of
causal effects precisely when they are taken into account during estimation. Whereas
colliders represent common consequences of treatment and outcome (Fig. 4b), medi-
ators are variables that represent part of the causal mechanism by which the treatment
affects the outcome (Fig. 4c). Especially in the case of longitudinal data, it is therefore
necessary to differentiate in a theoretically informed manner which relationships the
covariates in the observed data have with the treatment and outcome variables, thus
avoiding bias in the causal effect estimates by (not) having taken them into account.

By integrating appropriate statistical theories and methods into Al, it will be possi-
ble to answer causal questions and simulate interventions. In medicine, e.g., questions
such as “What would be the effect of a general smoking ban on the German health care
system’ could then be investigated and reliable statements could be made, even with-
out randomized studies which would not be possible here. Pearl’s idea goes beyond
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the use of ML methods in causal analyses (which are used, for example, in connection
with targeted learning (Van der Laan and Rose 2011) or causal random forest (Athey
and Imbens 2015)). His vision is rather to integrate the causal framework (Pearl 2010)
described by him with ML algorithms to enable the machines to draw causal conclu-
sions and simulate interventions.

The integration of statistical methods to detect causality in Al also contributes to
increasing its transparency and thus the acceptance of Al methods, since a reference
to probabilities or statistical correlations in the context of an explanation is not as
effective as a reference to causes and causal effects (Miller 2019).

6 Statistical approaches for evaluating uncertainty and
interpretability

Uncertainty quantification is often neglected in Al applications. One reason may be
the above discussed misconception that ‘Big Data’ automatically leads to exact results,
making uncertainty quantification redundant. Another key reason is the complexity of
the methods which hampers the construction of statistically valid uncertainty assess-
ments. However, most statisticians would agree that any comprehensive data analysis
should contain methods to quantify the uncertainty of estimates and predictions. Its
importance is also stressed by the American statistician David B. Dunson who writes
that: ‘it is crucial to not over-state the results and appropriately characterize the (often
immense) uncertainty to avoid flooding the scientific literature with false findings.’
(Dunson 2018).

In fact, in order to achieve the main goal of highly accurate predictions, assumptions
about underlying distributions and functional relationships are deliberately dropped
in Al applications. On the one hand, this allows for a greater flexibility of the proce-
dures. On the other hand, however, this also complicates an accurate quantification
of uncertainty, e.g., to specify valid prediction and confidence regions for target vari-
ables and parameters of interest. As Bithlmann and colleagues put it: ‘The statistical
theory serves as guard against cheating with data: you cannot beat the uncertainty
principle.’ (Biithlmann and van de Geer 2018). In recent years, proposals for uncer-
tainty quantification in Al methods have already been developed by invoking Bayesian
approximations, bootstrapping, jackknifing and other cross-validation techniques,
Gaussian processes, Monte Carlo dropout etc., see e. g., Gal and Ghahramani (2016),
Garnelo et al. (2018), Osband et al. (2016), Srivastava et al. (2014), Wager et al. (2014).
However, their theoretical validity (e.g., that a prediction interval actually covers future
values 95% of the time) has either not been demonstrated yet or has only been proven
under very restrictive or at least partially unrealistic assumptions.

In contrast, algorithmic methods could be embedded in statistical models. While
potentially less flexible, they permit a better quantification of the underlying uncer-
tainty by specifying valid prediction and confidence intervals or allow for a better
interpretation of the results. We give two examples: In time-to-event analyses math-
ematically valid simultaneous confidence bands for cumulative incidence functions
can be constructed by combinations of nonparametric estimators of Kaplan-Meier or
Aalen-Johansen-type and algorithmic resampling (Bluhmki et al. 2018; Dobler et al.
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2017). Similarly, in the context of time series prediction, hybrid combinations of arti-
ficial neural networks with ARIMA models or within hierarchical structures allow for
better explainability (Aburto and Weber 2007; Wickramasuriya et al. 2019).

Moreover, the estimated parameters of many Al approaches (such as deep learn-
ing) are difficult to interpret. Pioneering work from computer science on this topic is,
for example, Valiant (1984, 2013), for which Leslie Valiant was awarded the Turing
Award in 2010. Further research is nevertheless needed to improve interpretability.
This also includes uncertainty quantification of patterns identified by an Al method,
which heavily rely on statistical techniques. A tempting approach to achieve more
interpretable Al methods is the use of auxiliary models. These are comparatively sim-
ple statistical models which, after adaptation of a deep learning approach, describe
the most important patterns represented by the AI method and potentially can also be
used to quantify uncertainty (Molnar 2019; Peltola 2018; Ribeiro et al. 2016a,b). In
fact, as in computational and statistical learning theory (Gyorfi et al. 2002; Kearns and
Vazirani 1994; Vapnik 1998), statistical methods and Al learning approaches can (and
should) complement each other. Another important aspect is the model complexity
which can, e.g., be captured by entropies (such as VC dimensions) or compression
barriers (Langford 2005). These concepts as well as different forms of regularization
(Tibshirani 1996; Wager et al. 2013; Zaremba et al. 2014), i.e. the restriction of the
parameter space, allow to recognize or even to correct an overfitting of a learning pro-
cedure. Here, the application of complexity reducing concepts can be seen as a direct
implementation of the Lex Parsimoniae principle and often increases the interpretabil-
ity of resulting models (Ross et al. 2017; Tibshirani 1997). In fact, regularization and
complexity reducing concepts are an integral part of many Al methods. However, they
are also basic principles of modern statistics, which were already proposed before
their introduction to Al. Examples are given in connection with empirical Bayesian or
shrinkage methods (Rover and Friede 2020). In addition to that, Al and statistics have
numerous concepts in common which give rise to an exchange of methods in these
fields.

Furthermore, uncertainty aspects also apply to quality criteria (e.g., accuracy, sensi-
tivity and specificity) of Al algorithms. The corresponding estimators are also random
but their uncertainty is usually not quantified at all.

Statistics can help to increase the validity and interpretability of AI methods by
providing contributions to the quantification of uncertainty. To achieve this, we can
assume specific probabilistic and statistical models or dependency structures which
allow comprehensive mathematical investigations (Athey et al. 2019; Bartlett et al.
2004; Devroye et al. 2013; Gyorfi et al. 2002; Scornet et al. 2015; Wager and Athey
2018; Ramosaj and Pauly 2019a), e.g., by investigating robustness properties, proving
asymptotic consistency or (finite) error bounds. On the other hand this also includes the
elaboration of (stochastic) simulation designs (Morris et al. 2019) and the specification
of easy to interpret auxiliary statistical models. Finally, it allows for a detailed analysis
of quality criteria of Al algorithms.
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7 Conclusion and discussion

Al has been a growing research area for years, and its development will probably
continue in the coming decades. In addition to ethical and legal problems, there are
still many open questions regarding the collection and processing of data. Statistical
methods must be considered as integral part of Al systems, from the formulation of
the research questions, the development of the research design, through the analysis
up to the interpretation of the results. Particularly in the field of methodological devel-
opment, statistics can, e.g., serve as multiplier and strengthen the scientific exchange
by establishing broad and strongly interconnected networks between users and devel-
opers.

In the context of clinical trials, statistics also provides guidelines for important
aspects of trial design, data analysis and reporting. Many of these guidelines are
currently being extended for Al applications, e.g. the TRIPOD statement (Collins et al.
2015; Collins and Moons 2019) or the CONSORT and SPIRIT guidelines (Liu et al.
2020; Rivera et al. 2020). Moreover, initiatives such as STRATOS (STRengthening
Analytical Thinking for Observational Studies, https:/stratos-initiative.org/) aim to
provide guidance for applied statisticians and other data analysts with varying levels
of statistical education.

As acore element of Al statistics is the natural partner for other disciplines in teach-
ing, research and practice. Therefore, it is advisable to incorporate statistical aspects
into Al teaching and to bridge the gap between the two disciplines. This begins with
school education, where statistics and computer science should be integral elements of
the curricula, and continues with higher education as well as professional development
and training. By developing professional networks, participating methodologists can
be brought together with users/experts to establish or maintain a continuous exchange
between the disciplines. In addition to AI methods, these events should also cover the
topics of data curation, management of data quality and data integration.

Statistics is a broad cross-scientific discipline. Statisticians provide knowledge and
experience of all aspects of data evaluation: starting with the research question through
design and analysis to the interpretation. In particular, the following contributions of
statistics to the field of artificial intelligence can be summarized:

1. Methodological development: The development of Al systems and their theoretical
underpinning has benefited greatly from research in computer science and statis-
tics, and many procedures have been developed by statisticians. Recent advances
such as extreme learning machines show that statistics also provides important
contributions to the design of Al systems, for example, by improved learning
algorithms based on penalized or robust estimation methods.

2. Planning and design: Statistics can help to optimize data collection or preparation
(sample size, sampling design, weighting, restriction of the data set, design of
experiments, etc.) for subsequent evaluation with Al methods. Furthermore, the
quality measures of statistics and their associated inference methods can help in
the evaluation of Al models.

3. Assessment of data quality and data collection: Exploratory data analysis provides
a wide range of tools to visualize the empirical distribution of the data and to derive
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appropriate metrics, which can be used to detect anomalies or to define ranges of
typical values, to correct input errors, to determine norm values and to impute
missing values. In combination with standardization in data storage, errors in the
measurement process can be detected and corrected at an early stage. With the
help of model-based statistical methods, comprehensive parameter tuning is also
possible, even for small data sets.

4. Differentiation of causality and associations: In statistics, methods for dealing
with covariate effects are known. Here, it is important to differentiate theoreti-
cally informed between the different relationships covariates can have to treatment
and outcome in order to avoid bias in the estimation of causal effects. Pearl’s
causal framework enables the analysis of causal effects and the simulation of
interventions. The integration of causal methods into Al can also contribute to the
transparency and acceptance of Al methods.

5. Assessment of certainty or uncertainty in results: Statistics can help to enable or
improve the quantification of uncertainty in and the interpretability of Al meth-
ods. By adopting specific statistical models, mathematical proofs of validity can
also be provided. In addition, limitations of the methods can be explored through
(stochastic) simulation designs.

6. Conscientious implementation of points 2 to 5, including a previously defined
evaluation plan, also counteracts the replication crisis (Pashler and Wagenmak-
ers 2012) in many scientific disciplines. This aspect does not only hold for Al
applications, but generally concerns all empirical studies.

7. Education, advanced vocational training and public relations: With its specialized
knowledge, statistics is the natural partner for other disciplines in teaching and
training. Especially in the further development of methods of artificial intelligence,
statistics can strengthen scientific exchange.

With respect to some points raised in this paper, a few comments are in place. First,
as mentioned in the introduction there is no unique definition of AI or ML according
to the literature and distinguishing between the two is not easy. A broader consensus in
the scientific community is necessary to facilitate common discussions. Second, as an
anonymous referee commented, it might be helpful to distinguish between different
frameworks concerning data and problems. The proposal is to distinguish between
(a) problems and data with random or partly random aspects and (b) problems with a
deterministic background such as graph theoretical structures or optimum configura-
tions. While the first is a natural field of application for statistics, the second may also
benefit from statistical approaches, e.g. concerning robustness or sensitivity. A related
issue concerns the fact that the evaluation of AI methods must be seen in the context
of the corresponding application. In life sciences and medicine we often assume the
existence of some underlying ‘ground truth’ which needs to be estimated. Thus, mod-
eling concepts such as bias or accuracy can be used for evaluation. In other areas such
as economy or marketing, the idea rather is to derive a somewhat ‘useful” or ‘effective’
strategy from the data. In such a situation, statistics can still be used for evaluation,
for example by making predictions and comparing their accuracy with the observed
data.
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Another important aspect concerns the combination of data and results obtained
from different studies. In evidence based medicine, systematic reviews and meta-
analyses play akey role in combining results from multiple studies to give a quantitative
summary of the literature. In contrast, meta-analysis methods to combine results
from Al applications have not been developed yet. Initiatives to enable the sharing
of data and models in Al include federated learning and software frameworks such
as DataSHIELD (DataSHIELD 2018; Gaye et al. 2014), which enables remote and
nondisclosive analysis of sensitive data, see also Bonofiglio et al. (2020). Thus, both
fields could profit from an exchange of methods in this context.

The objective of statistics related to Al must be to facilitate or enable the interpre-
tation of data. As Pearl puts it: ‘Data alone are hardly a science, regardless how big
they get and how skillfully they are manipulated’ (Pearl 2018). What is important is
the knowledge gained that will enable future interventions.
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