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Abstract
The δ-machine is a statistical learning tool for classification based on dissimilarities or
distances between profiles of the observations to profiles of a representation set, which
was proposed by Yuan et al. (J Claasif 36(3): 442–470, 2019). So far, the δ-machine
was restricted to continuous predictor variables only. In this article, we extend the
δ-machine to handle continuous, ordinal, nominal, and binary predictor variables. We
utilized a tailored dissimilarity function for mixed type variables which was defined by
Gower. This measure has properties of a Manhattan distance. We develop, in a similar
vein, a Euclidean dissimilarity function for mixed type variables. In simulation studies
we compare the performance of the two dissimilarity functions and we compare the
predictive performance of the δ-machine to logistic regression models. We generated
data according to twopopulation distributionswhere the type of predictor variables, the
distribution of categorical variables, and the number of predictor variables was varied.
The performance of the δ-machine using the two dissimilarity functions and different
types of representation set was investigated. The simulation studies showed that the
adjusted Euclidean dissimilarity function performed better than the adjusted Gower
dissimilarity function; that the δ-machine outperformed logistic regression; and that
for constructing the representation set, K -medoids clustering achieved fewer active
exemplars than the one using K -means clustering while maintaining the accuracy.
We also applied the δ-machine to an empirical example, discussed its interpretation
in detail, and compared the classification performance with five other classification
methods. The results showed that the δ-machine has a good balance between accuracy
and interpretability.
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1 Introduction

Classification is a process that assigns objects to categorical outcomes (James et al.
2013). Examples of classification problems include medical diagnosis, spam email
detection, and credit card fraud detection. A typical scenario is that we have an out-
come variable that we would like to predict based on a set of predictor variables.
Instead of building a classification rule on the set of predictor variables, we can build
a classification rule using the (dis)similarities between objects and a set of selected or
stored exemplars or prototypes, where an exemplar is an actual object of a category,
while a prototype is defined as an abstract average of the objects of a category (Nosof-
sky 1992; Ross and Makin 1999). The decision to classify a new object to a certain
category is based on the dissimilarities of the new object to the selected exemplars or
prototypes (Medin and Schaffer 1978).

Bergman and Magnusson (1997) called the predictor-based approach and the
dissimilarity-based approach as the variable-oriented approach and the person-
oriented approach. Specifically, in a variable-oriented approach, the analytical unit
is the variable, and the obtained results from a variable-oriented method are inter-
preted in terms of the constructed relations among the variables. By contrast, in a
person-oriented approach the analytical unit is the individual. Examples of person-
oriented approaches are latent class and latent profile analysis, and their longitudinal
extension, latent transition analysis (Hickendorff et al. 2018). These models can be
used to model the heterogeneity between and within individuals, e.g., examining sub-
groups of individuals. By contrast, variable-oriented approaches present all individuals
in a general model that is unable to deal with heterogeneity. Moreover, linear variable-
oriented methods, such as linear regression, are unable to find complex, non-linear
relations among the predictor variables. Although variable-oriented approaches exist
that do allow for non-linear patterns, the choices of non-linear patterns are still limited
(Hickendorff et al. 2018).

Yuan et al. (2019) proposed a statistical learning tool for classification based on
dissimilarities or distances between profiles of the objects on the predictor variables,
named the δ-machine. Objects is here a more general name than persons, i.e., a person-
oriented approach could also be termed an object-oriented approach. We use the terms
objects and persons interchangeable. By changing the basis of the classifier from
predictor variables to dissimilarities, it is possible to achieve non-linear classifica-
tion boundaries in the original predictor space. Because of its focus on profiles of
objects, the δ-machine is a person-oriented approach as contrasted with the more
usual variable-oriented approaches. Given a new object, the decision of assigning this
object to a specific class is determined by the dissimilarities of this object towards
the selected exemplars or prototypes. The δ-machine showed very promising predic-
tive performance (Yuan et al. 2019), i.e., it is competitive and often superior to other
classification methods including support vector machines (Cortes and Vapnik 1995),
the Lasso logistic regression (Tibshirani 1996), and classification trees (Breiman et al.
1984). Meanwhile the usage of the representation set in the δ-machine, containing
a small number of informative exemplars or prototypes, results in accurate person-
oriented models.
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The existing the δ-machine only considers continuous predictor variables. As many
real world data consist of a mix of binary, nominal, ordinal and continuous variables,
an extension of the δ-machine to mixed-type predictor variables is of great interest.
Gower’s (dis)similaritymeasure (Gower 1971) is commonly suggested inmultidimen-
sional scaling (Borg and Groenen 2005) when one needs to compute (dis)similarities
among objects described by mixed-type predictor variables. Gower’s dissimilarity
measure shows the properties of the Manhattan distance (see below). In a similar
vein, we propose an adjusted Euclidean dissimilarity function (AEDF) for mixed-
type data, which is an extension of the ordinary Euclidean distance function. Because
the Euclidean distance is one of the most popular and easily understandable distance
metrics for continuous predictor variables, the Euclidean distance is suggested as the
default measure in the δ-machine (Yuan et al. 2019). Various abbreviations frequently
used in the manuscript are listed in the Appendix along with their full forms for quick
reference.

We will distinguish between five types of variables: symmetric binary, asymmetric
binary, nominal, ordinal, and continuous (Cox and Cox 2000). The first four types of
variables are collectively called categorical variables and described as follows:

– symmetric binary, if the predictor variable X p has only two possible levels, where
each level is a label of a relatively homogeneous group; e.g. gender with categories
‘male’, ‘female’;

– asymmetric binary, if the predictor variable X p has only two possible levels, and
the two levels are not equally homogeneous; e.g. a variable represents the presence
or absence of a specific disease.We can say that two patients with this disease have
something in common, while it may not hold for two patients without the disease;

– nominal, if the predictor variable X p has a finite and discrete set of levels, but the
levels are not ordered; e.g. a variable represents the color of cars with categories
‘black’, ‘blue’, ‘red’ and ‘white’;

– ordinal, if the predictor variable X p has a finite and discrete set of levels, and
the levels are ordered, e.g. a variable with categories ‘strongly dislike’, ‘dislike’,
‘neutral’, ‘like’ and ‘strongly like’; The distances between levels are unknown but
the categories are ordered.

In this paper, we extend the δ-machine to handlemixed-type predictor variables.We
define two dissimilarity functions, the adjusted Gower dissimilarity functions (AGDF)
and the AEDF. Themain goals of this paper are to compare the predictive performance
of the δ-machine to logistic regression and to compare the predictive performance of
the δ-machinewith the two adjusted dissimilarity functions via simulation studies. This
paper is organized as follows. Section 2 briefly reviews the δ-machine and extends
it to handle mixed-type data. Section 3 presents simulation studies investigating the
performance of the δ-machine on mixed-type data, the comparison of the two adjusted
dissimilarity functions, and the comparison of different types of representation set. In
Sect. 4, we apply the δ-machine on an empirical example and compare it to five other
classification methods. In Sect. 5, we draw conclusions from the simulation studies
and the empirical example and discuss some limitations and open issues.
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2 The ı-machine

2.1 A brief review

We will first present the notation. The predictor matrix is represented as the I × P
matrix X , where P is the number of predictor variables and I is the number of
objects. Each row of the predictor matrix is called a row profile for object i , xi =
[xi1, xi2, . . . , xi P ]T, and the measurements are denoted by lower case letters, i.e. xi1
represents the measurement for object i on predictor variable X1. The outcomes for
the I objects are collected in y, a vector of length I . Our focus will be on binary
outcomes, i.e. y ∈ {0, 1}.

Besides the predictor matrix, there is a representation matrixR collecting the infor-
mation of R highly informative exemplars or prototypes on the P predictor variables.
There are several choices for the representation set. The simplest choice is to define
the complete training set as the representation set. Two other choices are to select
them through K -medoids clustering (Kaufman and Rousseeuw 1990) or K -means
clustering (MacQueen 1967). No matter which clustering method is chosen, it will
be applied separately on each outcome category. Subsequently, the representation set
is the collection of exemplars or prototypes on both outcome categories. With K -
medoids clustering, the resulting medoids are real existing objects; in other words, the
representation set is a collection of exemplars. In contrast, when applying K -means
clustering, the representation set is defined by prototypes. For example, Fig. 1 depicts
three types of representation sets for the same example data with two continuous pre-
dictor variables. When the representation set is equal to the training set, the entire
training set is collected in the representation set, i.e., all points in the figure. When
the representation set is selected by K -medoids clustering the representation set has
four exemplars (indicated by filled bullets), while the representation set selected by
K -means clustering has four prototypes (indicated by filled squares).

Suppose we have a dissimilarity function δ(·). The first step is to apply this dissim-
ilarity function on the predictor matrix and the representation matrix to calculate the
dissimilarity matrix. The pairwise dissimilarity between objects i from X and r from
R is a scalar dir , i.e.

dir = δ(xi , xr ).

The pairwise dissimilarities dir , (i = 1, . . . , I , r = 1, . . . , R), will be collected in
the I × R dissimilarity matrix D. Rows of the matrix D are given by

di = [di1, di2, . . . , di R]T,

collecting the dissimilarities of an object i towards the R exemplars/prototypes. The
dissimilarity matrix D defines an R-dimensional dissimilarity space (Pekalska and
Duin 2005).

The second step is to build a linear classifier by logistic regression with the Least
absolute shrinkage and selection operator (Lasso) (Tibshirani 1996; Friedman et al.
2010) on the R-dimensional dissimilarity space. The probability for a specific object
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Fig. 1 Examples of the three types of representation set in two dimensions. The triangle and the cross
denote objects in observed classes 0 and 1, respectively. The four filled bullets are the exemplars identified
by K -medoids clustering. The four filled squares are the prototypes determined by K -means clustering

will depend on the R dissimilarities to members of the representation set,

π(di ) = Pr(Y = 1|di ) = exp
(
α + dTi β

)

1 + exp
(
α + dTi β

) ,

where α represents the intercept, and β represents an R vector of regression coeffi-
cients, and π(di ) is the conditional probability that the outcome Y belongs to class 1
(i.e., π(di ) = Pr(Y = 1|di )) and 1 − π(di ) represents the probability of being class
0. The model can be fitted by minimizing the penalized binomial deviance (Friedman
et al. 2010). The resulting exemplars/prototypes for which βr �= 0 are called the active
exemplars/prototypes.

2.2 Extending the ı-machine tomixed-type data

2.2.1 The transformedmatrix

Given a mixed-type predictor matrix X of size I × P , we construct the transformed
matrix XM of size I × P�, where P� ≥ P . The matrix XM consists of two parts, the
first part is a group of indicator variables obtained from different types of categorical
variables, and the second part is a group of standardized continuous variables. Consider
a row profile of object i from a predictor matrix of five variables

xi = (xia, xis, xio, xin, xic)
T,
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Table 1 The indicator matrix
Gp of the nominal predictor
variable X p with 3 levels

X p Gp
gp1 gp2 gp3

Level 1 1 0 0

Level 2 0 1 0

Level 3 0 0 1

Table 2 The cumulative
indicator matrix Fp of the
ordinal variable X p with 3 levels

X p Fp
f p1 f p2

Level 1 0 0

Level 2 1 0

Level 3 1 1

where xia , xis , xio, xin , xic are values from asymmetric binary, symmetric binary,
ordinal, nominal, and continuous variables. The corresponding transformed rowprofile
of this object is

xMi = (bia, bis, fi1, . . . , fi,(k−1), gi1, . . . , gik, zic)
T,

where bia and bis are the values of the indicator variables from asymmetric binary,
symmetric binary variables respectively; { fi1, . . . , fi,(k−1)} and {gi1, . . . , gik} are the
values of the (cumulative) indicator variables from ordinal and nominal variables;
zic is a standardized continuous variable. The way of computing zic is dissimilarity
function-dependent.

Herewe present how to convert different types of categorical variables into indicator
variables.

– If the variable X p is binary (nomatter symmetric or asymmetric), X p is represented
by an indicator variable Bp with values of 0 and 1.

– If the variable X p is nominal with Kp levels, X p is represented by an indicator
matrix Gp of column size Kp. An example of constructing an indicator matrix is
given in Table 1, where gp1 , gp2 and gp3 are the indicator variables of the indicator
matrix Gp; This indicator matrix has a disjoint structure, that is, each row profile
from this matrix has a single occurrence of 1.

– If the variable X p is ordinal with Kp levels, X p is represented by a cumulative
indicator matrix Fp of column size (Kp−1) (see Table 2). This was called conjoint
coding in Heiser (1981, pp. 123–124).

2.2.2 Two adjusted dissimilarity functions

We will define two adjusted dissimilarity functions based on the transformed matrix
XM. The definitions of the pairwise adjusted Gower dissimilarity and the pairwise
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Table 3 Dissimilarities and
weights of the four possible
combinations of an asymmetric
binary variable

Object i Object r dGir p wir p

Presence Presence 0 1

Presence Absence 1 1

Absence Presence 1 1

Absence Absence 0 0

adjusted Euclidean dissimilarity between objects i and r are as follows

dGir =
∑P

p=1 wir pdGir p
∑P

p=1 wir p
, (1a)

dEir =
√√√√

P∑

p=1

(dEir p)
2, (1b)

where dGir p and (dEir p)
2 are the adjusted Gower dissimilarity and the squared adjusted

Euclidean dissimilarity between objects i and r on variable X p respectively. In Eq. (1a)
wir p = 1 if objects i and r can be compared on variable X p and wir p = 0 otherwise.
All types of variable have wir p = 1 except for asymmetric binary. Below we define
dGir p and (dEir p)

2 for the five types of predictor variables according to the order in
Sect. 1.

– If the variable X p is binary,

dGir p =
{
0 xip = xrp
1 xip �= xrp

, (2a)

(dEir p)
2 = (bip − brp)

2 =
{
0 xip = xrp
1 xip �= xrp

, (2b)

where bip and brp are the values of the indicator variable collected in the trans-
formed matrix XM for objects i and r . For the AEDF, symmetric and asymmetric
binary variables are treated in the same way. For the AGDF, the only difference
lies in wir p with the absence-absence matches.
Table 3 shows the four possible combinations that may occur for the two objects
on X p, and gives the values of wir p for these combinations accordingly. The last
row of Table 3 shows the irrelevance of the negative matches (wir p = 0). The
idea of the irrelevance of negative matches was proposed by Jaccard (1912) in the
well-known Jaccard similarity function.

– If the variable X p is nominal with Kp levels,

dGir p =
{
0 xip = xrp
1 xip �= xrp

, (3a)
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(dEir p)
2 =

Kp∑

k=1

(gipk − grpk)
2 =

{
0 xip = xrp
2 xip �= xrp

, (3b)

where gipk and grpk are the values of the K th indicator variable of the indicator
matrix Gp (see Table 1) collected in the transformed matrix XM for objects i and
r .

– If the variable X p is ordinal with Kp levels,

dGir p =
∑Kp−1

k=1 | fipk − frpk |
Kp − 1

, (4a)

(dEir p)
2 =

Kp−1∑

k=1

( fipk − frpk )
2, (4b)

where fipk and frpk are the values of the K th indicator variable of the cumulative
indicator matrix Fp (see Table 2) collected in the transformed matrix XM for
objects i and r .

– If the variable X p is continuous,

dGir p = |zGi p − zGrp|, where ZG
p = XG

p

r(X p)
, (5a)

(dEir p)
2 = (zEi p − zErp)

2, where ZE
p = (X p − μX p )

φX p

. (5b)

where ZG
p and ZE

p are the dissimilarity function-dependent standardized contin-
uous variable in the transformed matrix XM, and r(X p), φX p and μX p represent
the range, the standard deviation and the mean of the variable X p respectively.

2.2.3 Dissimilarity functions for purely categorical data

When all predictors are categorical, the predictormatrixX has a limited set of potential
row profiles. We store all possible row profiles in a new matrix, namely, the exemplar
matrix E. The dissimilarity matrix is calculated from the exemplar matrix. Therefore,
for a large categorical data set, we can generate a smaller dissimilarity matrix of
size that is equal to the number of all possible row profiles. Suppose that we have
I = 10, 000 and one ordinal predictor with three levels and one binary predictor.
Then the data cannot have more than 3× 2 = 6 different row profiles. The size of the
dissimilarity matrix, therefore, is 6 by R instead of 10,000 by R. The corresponding
response is not a vector y of length I but a 6 by 2 matrix Y, where the first column is
the number of “failures” and the second column is the number of “successes”.
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2.2.4 Selection of the representation set

Following Yuan et al. (2019), K -means clustering and K -medoids clustering can be
used to select the representation set, also for mixed-type. They applied the Partitioning
around medoids (PAM) algorithm (Kaufman and Rousseeuw 1990) for K -medoids
clustering. As PAM accepts any dissimilarity matrix, we can simply use the AEDF or
the AGDF. For K -means clustering, however, we need a specific adaptation to derive
the prototypes. Because the results of K -means clustering are prototypes rather than
exemplars, the indicator variables of a selected prototype do not have two values (i.e.,
0 and 1) but the average values from the data points from this cluster. Given a binary or
nominal variable, the AGDF checks if two objects have the same value on this variable.
For the average of the indicator variables, the values are unlikely to be 0 or 1. This
leads to the higher chance of obtaining dGir p = 1, because the prototype and an object
are unlikely to have the same value on this indicator variable. To solve this problem,
two approaches can be considered, (a) we round average indicator variables, or (b) we
treat the indicator variable as continuous variable. Specially, in approach (a), if the
value of an average indicator variable is 0.8, the new value for this indicator variable
is rounded to be 1 (as 0.8 > 0.5). However, for a nominal variable, we assign 1 to
the highest value of each row of the indicator matrix and set the rest to be 0s. We do
not directly round the values because it could have all zeros for a row of the indicator
matrix. It is impossible to happen to a nominal variable, because each object belongs
to a certain category. Whereas, for an ordinal variable, a row of all zeros means that
it belongs to the first category. After rounding (or) assigning, the obtained variables
have values of 0 and 1, and the AGDF can be applied. By contrast, in approach (b),
we directly apply the AGDF with the formula of the continuous variable, i.e. Eq. (5a).
Note that by taking all indicator variables as continuous, the property of asymmetric
binary variables for the AGDF is lost. Although for the AEDF we can simply apply
the average indicator variables in the defined equations, which falls in the proposed
approach (b), we still implement approach (a) to the AEDF to make a fair comparison.

To determine the number of clusters, we follow the idea of Yuan et al. Specifically,
for K -means clustering, they used an automatic stopping rule, similar to the decision
rule in Mirkin (1999) and Steinley and Brusco (2011). That is, the algorithm stops
searching for more clusters if the percentage of explained variance exceeds a user-
specific threshold. For PAM,Yuan et al. tried K from 2 to 10 and chose the best number
of clusters by the optimum average silhouette width.

2.3 Detailed theoretical comparison of the two adjusted dissimilarity functions

In this section we discuss the relationship between the two dissimilarity functions in
three possible situations: the data consist of only continuous predictor variables, only
categorical predictor variables, and mixed-types.
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2.3.1 Data consisting of only continuous predictors

In this situation, the pairwise adjusted Gower dissimilarity and the pairwise adjusted
Euclidean dissimilarity between objects i and r , i.e., Eqs. (1a) and (1b) become

dGir = 1

P

P∑

p=1

|xip − xrp|
r(X p)

, (6a)

dEir =
√√√
√

P∑

p=1

(xip − xrp)2

var(X p)
. (6b)

In Eq. (6a) the variables are feature scaled by the range (r(X p)) and then theManhattan
distance function is used to calculate the dissimilarities. Feature scaling is used to bring
all values into the range [0,1]. In Eq. (6b) the variables are first replaced by z-scores and
then the ordinary Euclidean distance function is used to calculate the dissimilarities.

2.3.2 Data consisting of only categorical predictors

In this situation, the predictors can be asymmetric binary, symmetric binary, nominal,
ordinal, or a mix of the four. A categorical predictor variable will be replaced by the
indicator matrix Gp or the cumulative indicator matrix Fp, or the binary indicator
variable Bp, according to its type. The square of the difference gives the same value
as the absolute value of the difference between indicator variables. For example, in
Eqs. (2a) and (2b), the results of (bip − brp)2 and |bip − brp| are equal. To make the
comparison simpler, we replace the squared difference with the absolute difference in
the AEDF.

– If the data consist of purely symmetric binary predictor variables,

dGir = 1

P

P∑

p=1

|bip − brp|, (7a)

dEir =
√√√√

P∑

p=1

|bip − brp|. (7b)

In this situation, the result of the AGDF is proportional to the squared AEDF.
– If the data consist of purely asymmetric binary predictor variables, the pairwise
adjusted Gower dissimilarity is

dGir =
∑P

p=1 wir p|bip − brp|
∑P

p=1 wir p
, (8)
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where wir p = 0 for negative matches. The pairwise adjusted Euclidean dissim-
ilarity is the same as Eq. (7b). In this situation, the results of the AGDF are not
proportional to the squared AEDF because of the negative match-related wir p.

– If the data consist of purely nominal predictor variables,

dGir = 1

P

P∑

p=1

dGir p, dGir p =
{
0 xip = xrp
1 xip �= xrp,

(9a)

dEir =
√√
√√

P∑

p=1

(dEir p)
2, (dEir p)

2 =
{
0 xip = xrp
2 xip �= xrp

, (9b)

Eq. (9b) is the square root of the sum of 0s and 2s, whereas Eq. (9a) is that the
sum of 0s and 1s divided by the number of variables. Therefore in this situation,
the results of the AGDF are also proportional to the squared AEDF.

– If the data consist of purely ordinal predictor variables,

dGir = 1

P

P∑

p=1

∑Kp−1
k=1 | fipk − frpk |

(Kp − 1)
, (10a)

dEir =

√√√√√
P∑

p=1

Kp−1∑

k=1

| fipk − frpk |. (10b)

For the special case that all ordinal predictors have K levels, the results of the
AGDF are proportional to the squared AEDF.

In summary, if the data consist of purely symmetric binary, or purely nominal, or
purely ordinal variables with same levels, the result of the AGDF is proportional to
the squared AEDF.

2.3.3 Data consisting of continuous and categorical predictors

Suppose that the data consist of P1 continuous predictors and P2 categorical predictors,
so that P = P1 + P2. The AGDF and the AEDF are the sum of the continuous part
and the categorical part as shown in the previous two situations. More specifically,
the AGDF between two objects is the sum of the Manhattan distances of the P1
continuous predictors and the adjusted Gower dissimilarities of the P2 categorical
predictors. The AEDF between two objects is the squared root of the sum of the
squared ordinary Euclidean distances of the P1 continuous predictors and the squared
adjusted Euclidean dissimilarities of the P2 categorical predictors.
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3 Simulation studies

The main goals of the simulation studies are to show the predictive performance of
the δ-machine in comparison to logistic regression models and to compare the two
adjusted dissimilarity functions under two main situations: data with mixed-type and
data with purely categorical variables. Two logistic regression models are used as
reference methods: logistic regression with (LR+) and without two-way interactions
(LR). The comparison of logistic regression and the δ-machine is to show the difference
between building a classifier in the predictor space (i.e., variable-oriented approach)
and building it in the dissimilarity space (i.e., person-oriented approach).

3.1 Data generation

We first generate data with binary outcomes and continuous predictors, and then con-
vert the continuous predictors into categorical ones according to different conditions.
In the conversion process, the underlying relationships between predictors and the
outcomes are maintained. Therefore, despite the different conditions for predictor
variables, the relationships are similar on the same problem so that we can make
comparisons across different types of predictor variables on the same problem.

We consider two of the three artificial problems studied in Yuan et al. (2019): the
four blocks problem and the Gaussian ordination problem (see Fig. 2). Because Yuan
et al. (2019) found the δ-machine had very good predictive performance on the third
problem, we do not include it here. For the four blocks problem, the data have a pure
interaction between the predictor variables, that is, no main effects. The predictor
variables are independent and identically generated from the uniform distribution in
the range [−2, 2]. An observation with a higher product of predictor variables (i.e.∏P

p=1 xip) has a higher chance to be assigned to class 1. For the Gaussian ordination
problem, the relationship between the outcome and the predictor variables is single
peaked in the multivariate space. The predictor variables are independent and iden-
tically generated from the uniform distribution in the range [−2, 2]. An observation
with a higher sum of squares of predictor variables (i.e.

∑P
p=1 x

2
i p) has a higher chance

to be assigned to class 1 (see Yuan et al. 2019 for details).
We convert continuous predictors into categorical ones. We consider three types of

categorical variables, ordinal, nominal and binary. We distinguish between balanced
and unbalanced categorical variables, where in the balanced condition the objects are
evenly distributed among the levels whereas in the unbalanced condition they are
not. Suppose that the original data have two continuous predictor variables. To obtain
mixed-type data, the first continuous variable is converted to ordinal with balanced
levels, and the second variable keeps unchanged.We use the set of quantiles {1/3, 2/3}
to categorize the first variable X1, and the objects are equally assigned to the three
levels (see Fig. 3a). Similarly, to categorize X1 as ordinal with unbalanced levels, the
set of quantiles {1/2, 5/6} is applied. In this situation X1 still has a clear ordering but
the objects are unequally distributed across levels (see Fig. 3b). To convert the first
variable X1 into nominal with balanced levels, we use the same sets of quantiles as the
ordinal ones, but we reverse the levels of predictors. For instance, the objects of X1
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Fig. 2 Examples of two artificial problems in two dimensions. The triangle and the cross denote the object
classified as class 0 and class 1 respectively. The lines are the decision boundaries in each problem

smaller than the first quantile are still assigned to the first level, but the second level
and the third level are reversed, i.e., {A,C, B} (see Fig. 3c). Likewise, a continuous
variable can be categorized to nominal with unbalanced levels using the set quantiles
{1/2, 5/6}. We recode X1 to binary data in two ways: unbalanced and balanced. In
the unbalanced case we dichotomize on the 0.2 quantile (see Fig. 3d); In the balanced
case we dichotomize on the 0.5 quantile (see Fig 3e). The converted predictor variable
has two possible values, where the levels of A and B stand for the values of 1 and 0
respectively.

3.2 Five simulation studies

Simulation studies 1 to 3 evaluate the performance on data with mixed-type pre-
dictor variables. Simulation studies 4 and 5 evaluate the performance on data with
purely categorical predictor variables. Specifically, in Study 1 we consider data with
ordinal/nominal and continuous predictor variables. The generated data vary in the
following factors: the number of predictor variables, the type of categorical variables,
and the distribution of categorical variables (see Table 4). In Study 2 we generate data
with binary and continuous predictor variables. We investigate the performance of the
asymmetric and symmetric measures in the adjusted Gower dissimilarity function.
The factors in Table 4 are used except the last row. In Study 3, we generate data with
15 predictor variables which are a mix of ordinal, nominal, binary, and continuous
variables. Moreover, we investigate different ways of selecting the representation set.
Three selection methods are considered: (a) use the training set; (b) use PAM; (c)
use K -means clustering (using both thresholds ve = 0.5 and 0.9). As discussed in
Sect. 2.2.4, we proposed two approaches for K -means clustering for the data with
mixed-type predictor variables. We will apply both approaches. In Study 4 and 5 we
generate purely categorical predictor variables, where in Study 4 the data have two
ordinal/nominal predictors and in Study 5 two binary predictor variables.

All generated data have size of 500. We split the data randomly into two parts (2/3
and 1/3) referred to as a training set and a test set. The performance results are reported
in terms of misclassification rate (MR) on the test set. We do not use other criteria to
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Fig. 3 Five examples of partition for the four blocks problem. The triangle and the cross denote the object
classified as class 0 and class 1. The vertical lines are the quantiles of X1. The labels from A to C refer to
the levels of the categorical predictor. The variable X2 is always continuous. a and b The first continuous
predictor X1 is converted into an ordinal predictor of (un)balanced levels. c The predictor X1 is converted
into a nominal predictor of balanced levels. d and e The predictor X1 is converted into unbalanced and
balanced binary predictors respectively

Table 4 Summary of factors and levels for simulation Study 1–2

Factor # Levels

Artificial problem 2 Four blocks, Gaussian ordination

Number of predictor variables 2 2, 5

Distribution of categorical predictor 2 Balanced, unbalanced

Type of categorical predictor (only for Study 1) 2 Ordinal (3 levels), Nominal (3 levels)

The last row is the extra factor for simulation study 1

evaluate the performance, because the generated data have balanced outcomes. For
each condition we use 100 replications. The performance is the average MR over 100
replications.
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Table 5 The results obtained from Study 1 for the two problems

Problem m t b v m : t m : b m : v

(a) Estimated effect size η2 for each model component.

Four blocks 0.32 0.00 0.00 0.26 0.00 0.00 0.24

Gaussian ordination 0.62 0.00 0.02 0.01 0.00 0.01 0.02

Problem LR LR+ δ_Gower δ_Euc

(b) The average misclassification rate of the four methods.

Four blocks 0.50 (0.05) 0.38 (0.12) 0.49 (0.04) 0.37 (0.10)

Gaussian ordination 0.40 (0.05) 0.42 (0.05) 0.31 (0.03) 0.30 (0.04)

Note: (a) The method related effect sizes which are larger than or equal to 0.06 are underlined. m, t , b, v,
m : b, m : t , m : v are abbreviations of the method, the type of categorical predictor, the distribution of
categorical predictor, the number of predictor variables and their interaction terms with the method factor
respectively
(b) Best results are bold. The standard deviations are shown in brackets. LR, LR+, δ_Gower, δ_Euc are
abbreviations of logistic regression, logistic regression with two-way interactions, the δ-machine using the
AGDF, and the AEDF, respectively

The results of the simulationswill be analyzed using analysis of variance (ANOVA),
and statistics for factors and their interactionswill be tested. The two artificial problems
will be analyzed separately. To assess the effect size of the factors and their interactions,
η squared (η2) (Cohen 1973) is used, which ranges from 0 to 1. A common rule of
thumb is that η2 values of 0.01, 0.06, 0.14 represent a small, a medium and a large
effect size, respectively (Cohen 1988, pp. 280–287).

To perform the studies, we use the open source statistical analysis software R
(R Core Team 2015). All source code is available at (https://osf.io/9gz3j/?view_
only=d04da7c14c2e46999c32720f65a7a054).

3.3 Results

3.3.1 Study 1: Nominal/ordinal and continuous predictor variables

The results obtained fromANOVA are shown in Table 5a. For the four block problems,
the method effect was large (η2 = 0.32), showing that applying different methods
had large effect on the MR. Table 5b shows that logistic regression with two-way
interactions (LR+) and the δ-machine with the AEDF had the lowest misclassification
rates (0.38 and 0.37). Using these two methods instead of LR and the δ-machine with
the AGDF the MR deceases sharply. The interaction between the method factor and
the number of predictor variables (m : v) had a large effect size. Figure 4 illustrates the
effect size of the (m : v) interaction. As the number of predictor variables increases,
the difference between the four methods disappears.

For the Gaussian ordination problem, the method factor had a large effect on the
MRs. The δ-machine, regardless of the dissimilarity function, had significantly lower
MRs than logistic regression. The interaction between the method factor and the dis-
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Fig. 4 Box plots of the misclassification rate for logistic regression with (LR+) and without two-way
interactions (LR) and the δ-machine with the AGDF (Gower) and the AEDF (Euclidean) on the data of two
predictors (left panel) and the data of five predictors (right panel)

tribution of categorical predictor (m : b) and the interaction between themethod factor
and the number of predictor variables (m : v) had only small effect sizes (η2 > 0.01).

In this study, for the four blocks problem, the δ-machine using the AEDF had lower
MRs than the AGDF. The δ-machine had competitive MRs to logistic regression. As
the number of predictor variables increases, all methods failed to make accurate pre-
dictions. For theGaussian ordination problem, the two adjusted dissimilarity functions
had similar MRs. The δ-machine had lower MRs than logistic regression regardless
the chosen dissimilarity function.

3.3.2 Study 2: Binary and continuous predictor variables

As for the AGDF, there are two ways of treating binary variables, in this study we have
five methods instead of four: logistic regression with (LR+) and without interactions
(LR), the δ-machine using the AGDF asymmetric binary (δ_Gower_asy), using the
AGDF symmetric binary (δ_Gower_sy), and using the AEDF (δ_Euc). For the four
block problem, the δ-machine using the AEDF, the AGDF asymmetric binary and
logistic regression with two-way interactions (LR+) had the lowestMR (see Table 6a).
The method factor (m) had a large effect size, also reflecting that using different
methods had large influences on MRs. The interaction between the method and the
number of predictor variables (m : v) had a large effect size. Figure 5 illustrates
the interaction (m : v) that as the number of predictors increases, the difference in
terms of MR between these methods has vanished. When the data have five predictor
variables, all methods failed to make accurate predictions. For the Gaussian ordination
problem, the δ-machine had significant lower MR than logistic regression regardless
of the dissimilarity function chosen.
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Fig. 5 Box plots of the misclassification rate for logistic regression with (LR+) and without two-way
interactions (LR) the δ-machine with the AGDF (Gower_asy and Gower_sy) and the AEDF (Euc) on the
data of two predictors (left panel) and the data of five predictors (right panel)

Table 7 Description of the
predictor variables in Study 3

Variable Type Level Quantiles

X1 Binary 2 0.5/0.5

X2 Binary 2 0.5/0.5

X3 Binary 2 0.2/0.8

X4 Binary 2 0.2/0.8

X5 Ordinal 4 0.25/0.25/0.25/0.25

X6 Ordinal 4 0.25/0.25/0.25/0.25

X7 Nominal 3 1/3/1/3/1/3

X8 Nominal 3 1/3/1/3/1/3

X9–X15 Numerical –

3.3.3 Study 3: Fifteen mixed-type predictor variables

The results obtained from Studies 1 and 2 showed that for the four blocks problem
when the number of predictor variables was 5, all methods failed to make accurate
predictions. Therefore, we do not further consider the four block problem in the cur-
rent study, but only the Gaussian ordination problem with 15 mixed-type predictor
variables. A description of the predictor variables is given in Table 7.

Table 8 summarizes the results obtained from this study. The δ-machine using the
AEDF had the lowest MR (0.33), but the difference between the two adjusted dissim-
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ilarity functions was small (0.01). The δ-machine had lower misclassification rates
than logistic regression (MR > 0.4) regardless of the dissimilarity function chosen.

The comparison of the different representation sets is shown in Parts I, II and III.
Overall, the δ-machine using the training set as representation set had slightly lower
MR than using the other types. However, the obtained models had many more active
exemplars or prototypes, which makes the obtained models difficult to interpret. The
models obtained from a smaller representation set, especially the representation set
selected by PAM, were sparser than the ones using the training set. The δ-machine
using the AEDF and PAM had a comparable misclassification rate (0.35) and the
smallest number of active exemplars (7.27) compared to the δ-machine using the
other types. The δ-machine using K -means clustering did not decrease the number
of active prototypes. For the two approaches of K -means clustering, we found that
the average misclassification rates were very similar, whereas using approach (a) had
fewer active prototypes than using approach (b).

In conclusion, the δ-machine outperformed logistic regression. The two adjusted
dissimilarity functions had similar performance in this study.Using a smaller represen-
tation set, e.g., a representation set selected byPAMhad a comparablemisclassification
rate but far fewer active exemplars.

3.3.4 The case of purely categorical data

We also performed two simulation studies with purely categorical data, to compare
the two dissimilarity functions. One was on data with two nominal or two ordinal
predictors. The other was on data with two binary predictors. It turned out that in both
studies the δ-machine using the AEDF had a better performance than the AGDF on
the four blocks problem. For the Gaussian ordination problem, these two dissimilarity
functions showed similar results. Compared to logistic regression, the δ-machine per-
formed equally well. In conclusion, for purely categorical data, it is recommended to
use the AEDF in the δ-machine. The δ-machine had the same performance as logistic
regression, which is therefore the preferred method.

4 Application

The δ-machine is illustrated using theStatlog heart data. TheStatlog heart data contains
270 objects, who were patients referred for coronary arteriography at the Cleveland
Clinic (Detrano et al. 1989). Each patient was described by 13 predictor variables.
Six predictors are continuous; one predictor is ordinal; three predictors are binary,
and three predictors are nominal (see Table 9). The outcome variable refers to the
presence or absence of heart disease. For more details about this data set see Detrano
et al. (1984). This data set is available from the UCI repository of machine learning
database (Dheeru and Karra Taniskidou 2017).

Quite some papers compared classification methods using the Statlog heart data
(Şahan et al. 2005; Brown 2004; Kotsiantis and Pintelas 2004). In these studies, Clas-
sification trees andNaiveBayeswere commonly considered good candidate classifiers.
Naive Bayes, particularly, often achieved the best predictive performance. Kotsiantis
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Table 8 The average results of the compared methods in Study 3

Part Representation set Method MR Act.Exp

I Training δ_Euc 0.33 (0.04) 66.08 (56.13)

δ_Gower_asym 0.34 (0.04) 27.74 (11.27)

δ_Gower_sym 0.34 (0.04) 26.12 (7.58)

II PAM δ_Euc 0.35 (0.04) 7.27 (4.77)

δ_Gower_asym 0.36 (0.04) 10.45 (4.62)

δ_Gower_sym 0.38 (0.04) 7.97 (4.19)

III K -means_ve = 0.5 δ_Euc_approach (a) 0.35 (0.04) 35.45 (8.82)

δ_Gower_asym_approach (a) 0.35 (0.04) 21.42 (9.21)

δ_Gower_sym_approach (a) 0.35 (0.04) 23.70 (8.89)

δ_Euc_approach (b) 0.36 (0.04) 40.33 (3.24)

δ_Gower_approach (b) 0.35 (0.04) 24.92 (10.47)

K -means_ve = 0.9 δ_Euc_approach (a) 0.35 (0.04) 122.13 (71.22)

δ_Gower_asym_approach (a) 0.34 (0.04) 31.45 (15.22)

δ_Gower_sym_approach (a) 0.34 (0.04) 30.55 (15.42)

δ_Euc_approach (b) 0.37 (0.04) 163.05 (46.18)

δ_Gower_approach (b) 0.35 (0.04) 40.22 (23.80)

IV LR 0.43 (0.04)

LR+ 0.49 (0.04)

Best results are bold. The standard deviations over the 100 replications are shown in brackets. The δ_Euc,
δ_Gower_asym, δ_Gower_sym, LR, LR+ are abbreviations of the δ-machine using the AEDF, using the
AGDF (asymmetric and symmetric measure), logistic regression without and with two-way interactions.
Training, PAM, K -means_ve = 0.5, and K -means_ve = 0.9 are abbreviations of the representation set
using the complete training set, the representation set selected by PAM and by K -means clustering with
the threshold as 0.5 and 0.9 respectively. The approaches (a) and (b) are the two approaches that proposed
for K -means clustering for mixed-type data (see Sect. 2.2.4 for details). MR and Act.Exp are abbreviations
of misclassification rate and the number of active exemplars or prototypes. The cells of Act.Exp of logistic
regression are left blank, because they used all the available predictors for classification

and Pintelas (2004) showed that the difference between singleNaiveBayes and ensem-
ble methods like bagging (Breiman 1996), Adaboost (Freund and Schapire 1996),
Multiboost (Webb 2000), and DECORATE (Melville and Mooney 2003) were not
substantial, although generally these sophisticated methods were slightly more accu-
rate than a single classifier (Opitz and Maclin 1999).

The aims of this application are to compare the two adjusted dissimilarity func-
tions in the δ-machine, to compare the δ-machine to five other classification methods,
to present how the choice of the representation set influences the performance of
the δ-machine, and to interpret the results of the δ-machine from a person-oriented
perspective.

The five classificationmethodswe compare the δ-machine to are logistic regression,
Lasso logistic regression, SVM with radial basis kernel (SVM(RBF)), Classification
trees, andNaiveBayes. To show the comparison of a linear classifier in the dissimilarity
space versus the predictor space, we compare logistic regression and the Lasso with
the δ-machine. For logistic regression, we only consider the main effects model. SVM
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Table 9 Descriptions of variables in Statlog heart data

Variable Type Level Possible values

1 Age Numerical – Min. = 29; Max. = 77

2 Gender Binary 2 Male; Female

3 CPT: Chest pain type Nominal 4 Typical angina;
Atypical angina;
Non-anginal pain;
Asymptomatic

4 RBP: Resting blood
pressure

Numerical – Min. = 94; Max. = 200

5 SC: Serum cholesterol
in mg/dl

Numerical – Min. = 126; Max. =
564

6 FBS: Fasting blood
sugar > 120 mg/dl

Binary 2 Yes; No

7 RECG: Resting
electrocardiographic
results

Nominal 3 Normal; Having ST-T
wave abnormality;
Showing probable
or definite left
ventricular
hypertrophy by
Estes’ criteria

8 MHT: Maximum
heart rate achieved

Numerical – Min. = 71; Max. = 202

9 EIA: Exercise
induced angina

Binary 2 Yes; No

10 ST: ST depression
induced by exercise
relative to rest

Numerical – Min.= 0; Max. = 6.2

11 Slope: The slope of
the peak exercise ST
segment

Ordinal 3 Upsloping; Flat;
Downsloping

12 MVC: Number of
major vessels that
appeared to contain
calcium

Numerical – Min. = 0; Max. = 3

13 Thal: Exercise
thallium defects

Nominal 3 Normal; Fixed;
Reversible

14 y: Heart disease Binary 2 Absence (150);
Presence (120)

is considered a good candidate because of its high generalization performance (James
et al. 2013, p. 337). Parameter tuning is performed by a grid search over the two tuning
parameters using 10-fold cross validation. Classification trees and Naive Bayes are
considered because they were commonly applied on this dataset.

Because the data set hasmixed continuous and categorical variables, hereweexplain
how the different classificationmethods treat the categorical variables.We have shown
how the δ-machine handles mixed-type data for the two dissimilarity functions. For
logistic regression, Lasso logistic regression, and support vector machines, we do

123



896 B. Yuan et al.

not further distinguish categorical predictors but simply treated them as nominal and
represent them with indicator matrices (Hsu et al. 2003). For Classification trees, a
nominal predictor variable with K levels is ordered with the proportion falling in
outcome class 1. Then this nominal variable is split as if it was an ordinal variable.
In this way, the search for the best split is reduced from 2K−1 − 1 to K − 1 splits
(Ripley 1996; Breiman et al. 1984). For an ordinal predictor variable with K levels,
there are K −1 different possible splits (Breiman et al. 1984). Naive Bayes accepts all
types of predictors (Friedman et al. 2009, pp. 210–211). Among all the classification
methods, only the δ-machine using the AGDF distinguishes between symmetric and
asymmetric binary predictors. For this data set, the three binary predictor variables are
gender, fasting blood sugar> 120mg/dl (FBS), and exercise induced angina (EIA). For
the adjusted Gower dissimilarity function, the gender variable is treated as symmetric
and the remaining two are treated as asymmetric, because the two levels of gender
are equally homogeneous while the two levels of FBS and EIA are not. For example,
considering the two levels of the variable EIA, we can say that the patients with angina
have something in common, but that does not hold for the patients without angina.

In order to compare the predictive performance, we randomly split the data into
a training (n = 170) and a test set (n = 100) and repeat this procedure ten times.
We consider the area under the receiver operating characteristic (ROC) curve (AUC)
(Fawcett 2006), MR and the sparsity of the models as the criteria. The average MR,
AUC and sparsity over ten runs are computed on the test sets. To illustrate the inter-
pretation we use one of these ten replications and develop the interpretational rules in
detail.

The Lasso is implemented in theglmnet package (Friedman et al. 2010a). Support
vectormachines andNaiveBayes are implemented in thee1071 package (Meyer et al.
2014), andClassification trees are implemented in the rpart package (Therneau et al.
2015).

4.1 Predictive performance

Table 10 displays the average results of the ten replications, where in Part I we com-
pare the two dissimilarity functions. The results show that using the adjusted Euclidean
dissimilarity function had a slightly lower MR than the adjusted Gower dissimilarity
function. The AGDF had less active exemplars than the AEDF, however the differ-
ence was marginal. Therefore, the δ-machine using these two dissimilarity functions
performed similarly on this data set.

Parts I and IV of Table 10 show the comparison of the δ-machine to the five other
classification methods on the three criteria. Among all the methods, Naive Bayes
achieved the lowest MR, followed by the δ-machine, the Lasso and SVM (RBF),
but the difference was minor (0.01). In addition, these four methods had the same
AUC value. Logistic regression had moderate results (MR = 0.21), but showed large
standard deviations (0.09). Classification trees had the worst results (MR = 0.26). The
δ-machine had sparser models than SVM. The average number of support vectors
was 103, while for the δ-machine the number of active exemplars was around 11 for
both dissimilarity functions. Lasso selected on average 12.3 predictors. Classification
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trees had on average four splits, showing that the models can be well interpreted. The
sparsity of logistic regression and Naive Bayes are left blank in the table, because they
used all the available predictors for classification.

Parts II and III of Table 10 lists the results obtained from the δ-machine using smaller
representation sets selected by either PAM or K -means. The δ-machine using PAM
had remarkable results. That is, the averageMR and AUCwere equal to the δ-machine
using the entire training set (see Part I), but the models had on average only 5.0 and
8.30 active exemplars. Compared with the sparsest method, Classification trees, the δ-
machine using PAM had smaller MR and higher AUC. The representation set selected
by K -means clustering performed less well. In Part III we show the comparison of the
two proposed approaches for K -means. For the AEDF, using approach (a) had similar
MRs and AUCs to approach (b), but with a smaller number of active prototypes. For
the AGDF, using approach (a) resulted in lower MRs and higher AUCs.

Our findings from this empirical example can be summarized as follows. The δ-
machine using two dissimilarity functions performed similarly on this data set. The δ-
machine provided a good balance between sparsity and prediction accuracy compared
to the other methods we considered. Using a smaller representation set (selected by
PAM) can result in a sparser model but still comparable prediction performance. We
recommend to use approach (a) for K -means clustering.

4.2 Interpretation of the obtained the ı-machinemodel

As given in Table 10, the δ-machine using a smaller representation set (selected by
PAM) resulted in sparsermodels, andmeanwhile had the samepredictive performances
as the one used the entire training set. Here we present a detailed interpretation of the
model with K -medoids clustering using the Euclidean distance on the first replication.
In this case, there are two active exemplars: Patient 155who has no disease, and Patient
164 who has the disease. Table 11 gives an overview of the values of the predictor
variables for these two active exemplars. The estimated model is

logit[p(xi )] = 1.95 + 0.93 × di,155 − 1.34 × di,164, (11)

where di,155 and di,164 are pairwise dissimilarities of object i towards to the two
objects with row profiles x155 and x164, receptively. With every unit increase in the
dissimilarity towards patient 155 the log odds of having the heart disease go up by
0.93. With every unit increase in the dissimilarity towards observation 164 the log
odds go down by 1.34. In other words, if a patient is more dissimilar to the patient
155, he or she has a higher probability to get the heart disease. If a patient is more
dissimilar to the patient 164, he or she has a lower probability to get the heart disease.

The prediction of the label of participants in the test set was based on the dissimi-
larities towards these two active exemplars. Figure 6 gives the 2D dissimilarity space
built on these two active exemplars, and the the straight line is the estimated decision
boundary. The coordinates of the patients from the test set are the pairwise dissimi-
larities of the patients towards the two active exemplars. The triangle and the cross
denote the patients classified as “absence" and “presence" of the disease respectively,
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Table 11 Descriptions of variables of patients x155 and x164

Patient 155 Patient 164

Age 51 58

Gender Female Male

CPT Non-anginal pain Asymptomatic

RBP 130 128

SC 256 259

FBS No No

RECG Left ventricular hypertrophy Left ventricular hypertrophy

MHT 149 130

EIA No Yes

ST 0.5 3.0

Slope Upsloping Flat

MVC 0 2

Thal Normal Reversable defect

y Absence Presence

which are the observed class labels. If a case falls above the decision line it is classi-
fied as healthy (disease is absent), whereas if the case falls below the decision line it
will be classified as diseased (disease is present). Despite some overlap, we can see a
clear separation of the patients with or without the disease. The model with only two
exemplars had good accuracy (MR = 0.15), which suggests that the efficiency of using
the dissimilarities as predictors can be high. Furthermore, because the dissimilarity
space could separate the objects relatively well, these two exemplars are well chosen.

Using dissimilarities as predictor variables makes it difficult to see the value of
the original variables. Therefore, Yuan et al. used variable importance measures by
using a permutation test approach, similar to the importance measure for random
forests (Breiman 2001). Besides investigating the importance of a particular predictor
variable, Yuan et al. used partial dependence plots (Friedman 2001; Berk 2008) to
interpret the marginal relationship between predictor variables and the response (Yuan
et al. 2019). For this data set, the variable importance plot suggests that the important
predictors areMVC,ST,CPTandGender (see Fig. 7). The other predictors are ofminor
importance. Subsequently, we made the partial dependence plots for the predictor
variables considered to be important. The partial dependence plot of MVC illustrates
the positive relationship between the number of major vessels that appeared to contain
calcium and the presence of heart disease. The more major vessels contained calcium
the higher probability to have coronary heart disease. The levels of CPT from one
to four stand for typical angina, atypical angina, non-anginal pain, asymptomatic,
respectively. The results showed that asymptomatic patients were more likely to have
coronary heart disease than symptomatic patients. The partial dependence plot of ST
illustrates the positive relationship between the number of ST depression included by
exercise relative to rest and the presence of heart disease (Fig. 8).

123



900 B. Yuan et al.

Fig. 6 The patients from the test set are represented in a 2D dissimilarity space, where the coordinates
are the pairwise dissimilarities of the patients from the test set towards the two active exemplars x155 and
x164. The triangle and the cross denote the patients labeled as “absence" and “presence” of the disease
respectively. The straight line is the decision line of making predictions

5 Conclusions and discussions

The δ-machine is a classification technique based on dissimilarities towards proto-
types. There are essentially three steps of the δ-machine: (1) clustering is performed
to each outcome class in order to select highly informative exemplars or prototypes;
(2) a dissimilarity matrix is calculated between profiles of the objects and the profiles
of the selected exemplars or prototypes; (3) penalized logistic regression is fitted on
the dissimilarity space. Step (1) is not compulsory in terms of the purpose of analysis;
clustering results in a smaller representation set, which could result in a lower number
of active exemplars in the final step and therefore may lead to a sparser model.

In this paper, we extended the δ-machine to handle mixed-type predictor vari-
ables. We defined two dissimilarity functions, the adjusted Gower and the adjusted
Euclidean dissimilarity functions (the AGDF and the AEDF). Five simulation studies
were conducted to compare the performance of the δ machine with the two adjusted
dissimilarity functions. Furthermore, we compared the performance of the δ-machine
to logistic regression with and without interactions. We also studied how the selection
of the representation set influences the performance of the δ-machine. The general
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Fig. 7 Variable importance plot for the δ-machine using the adjusted Euclidean dissimilarity. The represen-
tation set was selected by PAM. The horizontal lines on the variable importance plot are the 95% confidence
intervals. The variable names are written on the y-axis

Fig. 8 Partial dependence plots of probabilities on the variables MVC, CPT, and ST for the δ-machine.
The plots correspond to the solution of the δ-machine using the adjusted Euclidean dissimilarity, where the
representation set was selected by PAM. The vertical lines on the partial dependence plots present the 95%
confidence intervals
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conclusions drawn from these studies are: (1) the δ-machine using the AEDF had
better performance than using the AGDF; (2) the δ-machine using PAM to construct a
representation set results in sparser models than using K -means clustering or using the
complete training set; (3) the predictive performance of the δ-machine in comparison
to logistic regression models was superior for mixed type data but inferior for purely
categorical predictors.

The δ-machine is a person-oriented approach and offers a different perspective of
interpretation (i.e. via the relations between objects/persons) than variable-oriented
approaches such as logistic regression (i.e. via the relations between original predictor
variables). In the empirical example, we have compared the predictive performance
of the Lasso on the original predictor space (variable-oriented) with the δ-machine
which is the Lasso on the dissimilarity space (person-oriented). The Lasso built on
the original predictor space had on average 12.3 regression coefficients, which is not
easy to interpret. On the contrary, the δ-machine using a representation set selected by
PAM had on average five exemplars showing sparser models. Moreover, the selected
exemplars (patients) may be potentially useful in a further study.

The dissimilarity function is important for the predictive performance of the δ-
machine. When a good dissimilarity function is determined, the discriminatory power
of the dissimilarities might be large (Pekalska et al. 2001). The two adjusted dissimi-
laritymeasures are themodified functions of theManhattan distance and the Euclidean
distance formixed-type predictor variables. TheManhattan distance and the Euclidean
distance are two special cases of the Minkowski distance,

d(xi , xr )Min =
⎛

⎝
P∑

p=1

dMin
ir p

⎞

⎠

1
ω

=
⎛

⎝
P∑

p=1

|xip − xrp|ω
⎞

⎠

1
ω

,

where ω(≥ 0) is called the Minkowski exponent, which equals 1 for the Manhattan
distance and 2 for the Euclidean distance.

The Minkowski distance with other ω values could also be implemented in the
δ-machine. However, some modifications of their equations are required to adopt
for mixed-type predictor variables. More specifically, the definitions of the adjusted
functions for different types of variables should be defined accordingly. Meanwhile,
the way of standardizing continuous variables also needs to be decided such as to use
z-scores (e.g., the AEDF) or to use each continuous variable divided by the range
(e.g., the AGDF). For instance, suppose that ω = 3, for different types of categorical
variables, the definitions between objects i and r are given below
If the variable X p is binary,

dMin
ir p = |bip − brp|3 =

{
0 xip = xrp
1 xip �= xrp

. (12a)

If the variable X p is nominal with Kp levels,
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dMin
ir p =

Kp∑

k=1

|gipk − grpk |3 =
{
0 xip = xrp
2 xip �= xrp

. (12b)

If the variable X p is ordinal with Kp levels,

dMin
ir p =

Kp−1∑

k=1

| fipk − frpk |3. (12c)

In multidimensional scaling, a common strategy is to try out many Minkowski expo-
nent values and then to choose the one with the lowest stress (Okada and Shigemasu
2010). Okada and Shigemasu proposed a new Bayesian method for the estimation
of the Minkowski exponent. We believe that the idea of considering the Minkowski
exponent as a parameter can be applied in the δ-machine. The performance of the
δ-machine may improve, but the computational cost will increase dramatically.

A particular data set may have its own data-specific (dis)similarity function, i.e., the
optimal dissimilarity function is application dependent. We used two types of artificial
problems to evaluate the performance of the δ-machinewith the two dissimilarity func-
tions. The four blocks problem creates data containing high-order interaction terms,
and the Gaussian ordination problem creates data containing quadratic terms. For the
four blocks problem, the AGDF in the δ-machine failed to make accurate predictions
while the AEDF not. The AGDF treats symmetric binary and nominal in the sameway,
therefore the AGDF had the same performance in these two cases. By contrast, using
the asymmetric binary measure had different performances. Because the asymmetric
binary measure discards the absent-absent matches, it breaks the link with the nominal
measure. Therefore, it may bring extra information to achieve lower MRs. This could
be the reason that the AGDF with asymmetric binary had satisfactory results on the
four blocks problem. For the Gaussian ordination problem, both dissimilarity func-
tionsworkedwell. TheAEDF showed good predictive performances in both problems,
therefore, we consider it as the default dissimilarity function.

We would like to point out two issues for these two tailored dissimilarity functions.
First, we choose a straightforward way to code categorical variables into indicator
matrices. The pairwise dissimilarities are computed from the (cumulative) indicator
matrices. However, for ordinal variables, the underlying assumption is that the numer-
ical distance between each level is equal. In other words, ordinal variables are treated
as continuous by taking the orderings of levels as the integers. This assumption may
not hold for some real world data. Some form of optimal scaling could be used to
replace categorical variables by optimally quantified variables (Meulman et al. 2019).
In optimal scaling, each categorical predictor variable is replaced by a set of quan-
tifications. Instead of creating dummy variables, optimal quantifications are assigned
directly to the categories of the predictor. Second, for binary variables, for the ease
of computation of the AEDF, we did not include asymmetric binary condition as the
AGDF.

The δ-machine takes the dissimilarities as the predictor variables in the Lasso rather
than the original predictor variables. By doing so, the original predictor matrix is dis-
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carded. Another option is to concatenate the dissimilarity matrix and the original
predictor matrix and build a classifier on the resulting matrix. The resulting clas-
sifier might have better predictive performance in some applications. However, the
resulting model cannot be interpreted from a person-oriented nor a variable-oriented
perspective; but it becomes a hybrid perspective.

The approach of Huang (1997, 1998) is very similar to our way to extend K -means
clustering, i.e., first construct the transformedmatrixXM and later apply the clustering
methods on it. Huang proposed a K -prototypes algorithm which is based on K -means
clustering. The K -prototypes algorithm removes the limitation of K -means clustering
of accepting only numerical variables. The essence of this algorithm lies in the way
of treating a mix of continuous variables and categorical variables. Huang proposed
a distance measure defined by a sum of squared Euclidean distances of continuous
variables and sample mismatch measures of categorical variables, i.e.,

dHir = d(xi , xr )H =
Q∑

m=1

(xim − xrm)2 + λ

P∑

m=Q+1

dis(xim, xrm),

where the first Q variables are continuous and the other variables are categorical.
The function dis() is a simple mismatch measure where if the two objects xi and xr
have the same value on the categorical variable Xm , dis(xim, xrm) = 0, otherwise
dis(xim, xrm) = 1. The parameter λ controls the weights between the groups of
continuous and categorical variables. For example, if λ = 0 the distance measure
only takes the group of numerical variables into account. The differences between our
extension and Huang’s are

– the sum of the squared dissimilarities (Huang’s) versus the square root of the sum
of the squared dissimilarities (ours);

– treating all categorical variables as nominal (Huang’s) versus distinguishing
between ordinal, nominal, asymmetric and symmetric binary (ours);

– the weight parameter λ between the two groups of categorical and continuous
variables (Huang’s) versus the same weight on the two groups (ours).

Of course, it is possible to assign the relative weights to the predictor variables, but it
will increase the computational cost of the method, and an exhaustive search need to
be performed to find the optimal predictor weights. Huang (1997) suggested to use the
average standard deviation of continuous predictors as a guidance in specifying the
weight, but then Huang (1998) concluded it is too early to consider it as the general
rule. The prior information is of importance to specify the weight, but in practical
applications such information may be rarely available.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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Appendix: Overview of abbreviations used in the paper

Abbreviations

AGDF Adjusted Gower dissimilarity function
AEDF Adjusted Euclidean dissimilarity function
Lasso Least absolute shrinkage and selection operator
PAM Partitioning around medoids
MR Misclassification rate
ANOVA Analysis of variance
LR Logistic regression
LR+ Logistic regression with two-way interactions
Act.Exp the number of active exemplars or prototypes
SVM(RBF) Support Vector Machines with Radial Basis Kernel
δ_Gower The δ-machine using the Adjust Gower Dissimilarity Function
δ_Gower_asy The δ-machine using the Adjust Gower Dissimilarity Function with

asymmetric measure
δ_Gower_sy The δ-machine using the Adjust Gower Dissimilarity Function with

symmetric measure
δ_Gower_asy_approach (a) The δ-machine using the Adjust Gower Dissimilarity Function with

asymmetric measure with the proposed approach (a) for K -means
clustering for mixed type of predictor variables

δ_Gower_sy_approach (a) The δ-machine using the Adjust Gower Dissimilarity Function with
symmetric measure with the proposed approach (a) for K -means
clustering for mixed type of predictor variables

δ_Gower_approach (b) The δ-machine using the Adjust Gower Dissimilarity Function with the
proposed approach (b) for K -means clustering for mixed type of
predictor variables

δ_Euc The δ-machine using the Adjust Euclidean Dissimilarity Function
δ_Euc_approach (a) The δ-machine using the Adjust Euclidean Dissimilarity Function with

the proposed approach (a) for K -means clustering for mixed type of
predictor variables

δ_Euc_approach (b) The δ-machine using the Adjust Euclidean Dissimilarity Function with
the proposed approach (b) for K -means clustering for mixed type of
predictor variables
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