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Abstract

Nine popular clustering methods are applied to 42 real data sets.
The aim is to give a detailed characterisation of the methods by means
of several cluster validation indexes that measure various individual
aspects of the resulting clusters such as small within-cluster distances,
separation of clusters, closeness to a Gaussian distribution etc. as
introduced in Hennig (2019). 30 of the data sets come with a “true”
clustering. On these data sets the similarity of the clusterings from
the nine methods to the “true” clusterings is explored. Furthermore,
a mixed effects regression relates the observable individual aspects of
the clusters to the similarity with the “true” clusterings, which in real
clustering problems is unobservable. The study gives new insight not
only into the ability of the methods to discover “true” clusterings,
but also into properties of clusterings that can be expected from the
methods, which is crucial for the choice of a method in a real situation
without a given “true” clustering.

Keywords: Cluster benchmarking internal cluster validation ex-
ternal cluster validation mixed effects model
MSC2010 classification: 62H30

1 Introduction

This work compares cluster analysis methods empirically on 42 real data
sets. 30 of these data sets come with a given “true” classification. The prin-
cipal aim is to explore how different clustering methods produce solutions
with different data analytic characteristics, which can help a user choos-
ing an appropriate method for the research question of interest. This does
not require the knowledge of a “true” clustering. The performance of the
methods regarding recovery of the “truth” is reported, but is not the main
focus.
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Cluster analysis plays a central role in modern data analysis and is ap-
plied in almost every field where data arise, be it finance, marketing, genet-
ics, medicine, psychology, archaeology, social and political science, chem-
istry, engineering, or machine learning. Cluster analysis can have well-
defined research aims such as species delimitation in biology, or be applied in
a rather exploratory manner to learn about potentially informative structure
in a data set, for example when clustering the districts of a city. New cluster
analysis methods are regularly developed, often for new data formats, but
also to fix apparent defects of already existing methods. One reason for this
is that cluster analysis is difficult, and all methods, or at least those with
which enough experience has been collected, are known to “fail” in certain,
even fairly regular and non-pathological, situations, where “failing” is often
taken to mean that a certain pre-specified “true” clustering in data is not
recovered.

A key problem with clustering is that there is no unique and generally
accepted definition of what constitutes a cluster. This is not an accident,
but rather part of the nature of the clustering problem. In real applications
there can be different requirements for a “good” clustering, and different
clusterings can qualify as “true” on the same data set. For example, crabs
can be classified according to species, or as male or female; paintings can be
classified according to style of the painter or according to the motif; a data
set of customers of a company may not show any clusters that are clearly
separated from each other, but may be very heterogeneous, and the company
may be interested in having homogeneous subgroups of customers in order
to better target their campaigns, but the data set may allow for different
groupings of similar quality; in many situations with given “true” classes,
such as companies that go bankrupt in a given period vs. those that do
not, there is no guarantee that these “true” classes correspond to patterns
in the data that can be found at all. One could even argue that in a data
set that comes with a supposedly “true” grouping a clustering that does not
coincide with that grouping is of more scientific interest than reproducing
what is already known.

Rather than being generally “better” or “worse”, different cluster analy-
sis methods can be seen as each coming with their own implicit definition of
what a cluster is, and when cluster analysis is to be applied, the researchers
have to decide which cluster concepts are appropriate for the application at
hand. Cluster analysis can have various aims, and these aims can be in con-
flict with each other. For example, clusters that are well separated by clear
density gaps may involve quite large within-cluster distances, which may be
tolerable in some applications but unacceptable in others. Clusters that can
be well represented by cluster centroids may be different from those that
correspond to separable Gaussian distributions with potentially different
covariance matrices, which in some applications are interpreted as meaning-
fully different data subsets. See Ackerman et al. (2010); von Luxburg et al.
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(2012); Hennig (2015b,a) for the underlying “philosophy” of clustering.
The starting point of this work is the collection of cluster validation in-

dexes presented in Hennig (2019). These are indexes defined in order to
provide a multivariate characterisation of a clustering, individually measur-
ing aspects such as between-cluster separation, within-cluster homogeneity,
or representation of the overall dissimilarity structure by the clustering.
They are applied here in order to give general information about how the
characteristics of clusterings depend on the clustering method.

Many cluster validation indexes have been proposed in the literature,
often in order to pick an optimal clustering in a given situation, e.g., by
comparing different numbers of clusters, see Halkidi et al. (2015) for an
overview. Most of them (such as the Average Silhouette Width, Kaufman
and Rousseeuw (1990)) attempt to assess the quality of a clustering over-
all by defining a compromise of various aspects, particularly within-cluster
homogeneity and between-cluster separation. Following Hennig (2019) and
Akhanli and Hennig (2020), the present work deviates from this approach
by keeping different aspects separate in order to inform the user in a more
detailed way what a given clustering achieves.

A number of benchmark studies for cluster analysis have already been
published. Most of them focus on evaluating the quality of clusterings by
comparing them to given “true” clusterings. This has been done for arti-
ficially generated data (e.g., Milligan (1980); Brusco and Steinley (2007);
Steinley and Brusco (2011); Saracli et al. (2013); Rodriguez et al. (2019);
see Milligan (1996) for an overview of earlier work), for real data, mostly
focusing on specific application areas or types of data (e.g., de Souto et al.
(2008); Kou et al. (2014); Boulesteix and Hatz (2017); Liu et al. (2019)), or
a mixed collection of real and artificial data, sometimes generating artificial
data from models closely derived from a real application (e.g., Meila and
Heckerman (2001); Maulik and Bandyopadhyay (2002); Dimitriadou et al.
(2004); Arbelaitz et al. (2013); Javed et al. (2020)). An exception is Jain
et al. (2004), where different clustering methods were mapped according to
the similarity of their clusterings on various data sets (something similar is
done here, see Section 3.1). Anderlucci and Hennig (2014) contrasted recov-
ery of a “true” classification in artificial data sets with the requirement of
having homogeneous clusters.

All of these studies attempt to provide a neutral comparison of clustering
methods, which is to be distinguished from the large number of studies, using
real and artificial data, that have been carried out by method developers in
order to demonstrate that their newly proposed method compares favourably
with existing methods. Due to selection effects, the results of such work,
although of some value in their own right, cannot be taken as objective
indicators of the quality of methods (Boulesteix et al. (2013); Hennig (2018)).
The study presented here is meant to be neutral; I have not been involved
in the development of any of the compared methods, and have no specific
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interest to portray any of them as particularly good or bad. Note that “true”
neutrality can never be secured and is probably never given; for example, I
have been active promoting my own “philosophy” of clustering (e.g., Hennig
(2015a)) and may be suspected to favour results that are in line with the idea
that the success of clustering methods strongly depends on the application;
however n No selections have been made depending on results (Boulesteix
(2015)); the 42 data sets from which results are reported are all that were
involved.

Section 2 explains the design of the study, i.e., the clustering methods,
the data sets, and the validation indexes. Section 3 presents the results,
starting with the characterisation of the methods in terms of the internal
indexes, then results regarding the recovery of the “true” clusters, and ul-
timately connecting “true” cluster recovery with the characteristics of the
clustering solutions using a mixed effects regression model. A discussion
concludes the paper.

2 Study design

For the study design, recommendations for benchmark studies as given,
e.g., in Boulesteix (2015); Van Mechelen et al. (2018) have been taken into
account. One important issue is a definition of the scope of the study. There
is an enormous amount of clustering methods, and clustering is applied to
data of very different formats. It is not even remotely possible to cover
everything that could potentially be of interest. Therefore the present study
constrains its scope in the following way:

• Only clustering methods for 2 ≤ p-dimensional Euclidean data that
can be treated as continuous are used. Methods that work with dis-
similarities are run using the Euclidean distance.

• Accordingly, data sets contain numerical variables only. Some data
sets include discrete variables, which are treated as admissible for the
study if they carry numerical information and take at least three dif-
ferent values (variables taking a small number of values, particularly
three or four, are very rare in the study).

• The number of clusters is always treated as fixed. Only methods that
allow to fix the number of clusters are used; methods to estimate
the number of clusters are not involved. For data sets with a given
“true” clustering, the corresponding number of clusters was taken. For
data sets without such information, a number of clusters was chosen
subjectively considering data visualisation and, where possible, subject
matter information.
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• The included clustering methods were required to have an R-implementation
that can be used in a default way without additional tuning in order
to allow for a comparison that is not influenced by different tuning
flexibilities.

• No statistical structure (such as time series or regression clustering)
is taken into account, and neither is any automatic dimension reduc-
tion involved as part of any method. All data is treated as plain
p-dimensional Euclidean.

• Methods are only admissible for the study if they always produce crisp
partitions. Every observation always is classified (also in the given
“true” clusterings) to belong to one and only one cluster.

2.1 Clustering methods

The involved clustering methods are all well established and widely used,
as far as my knowledge goes. They represent the major classes of clustering
methods listed in Hennig and Meila (2015) with the exception of density-
based clustering, which was excluded because standard density-based meth-
ods such as DBSCAN (Ester et al. (1996)) do not accept the number of
clusters as input and often do not produce partitions. Another popular
method that was not involved was Ward’s method, as this is based on the
same objective function as K-means and can be seen as just another tech-
nique to optimise this function locally (Everitt et al. (2011)). On the other
hand, including mixtures of t- and skew t-distributions means that mixture
model-based clustering is strongly represented. The motivation for this is
that the other included methods are not meant to fit distributional shapes
including outliers and skewness, which may be widespread in practice; alter-
natives would be methods that have the ability to not include observations
classified as “outliers” in any cluster, but this is beyond the scope of the
present study. Here are the included methods.

K-means as implemented in the R-function kmeans using the algorithm by
Hartigan and Wong (1979).

Partitioning Around Medoids (clara) (Kaufman and Rousseeuw (1990))
as implemented in the R-function claraCBI (therefore abbreviated
“clara” in the results) in R-package fpc (Hennig (2020)), which calls
function pam in R-package cluster (Maechler et al. (2019)) using (un-
squared) Euclidean distances.

Gaussian mixture model (mclust) fitted by Maximum Likelihood us-
ing the EM-algorithm, where the best of various covariance matrix
models is chosen by the Bayesian Information Criterion (BIC) (Fraley
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and Raftery (2002)) as implemented in the R-function mclustBIC in
R-package mclust (Scrucca et al. (2016)).

Mixture of skew t-distributions (emskewt) fitted by Maximum Like-
lihood using the EM-algorithm (Lee and McLachlan (2013)), including
fully flexible estimation of the degrees of freedom and the shape matrix,
as implemented in the function EmSkew with parameter distr="mst"

in the R-package EMMIXskew (Wang et al. (2018)).

Mixture of t-distributions (teigen) fitted by Maximum Likelihood us-
ing the EM-algorithm (McLachlan and Peel (2000)), where the best
of various covariance matrix models is chosen by the BIC (Andrews
and McNicholas (2012)) as implemented in the R-function teigen in
R-package teigen (Andrews et al. (2018)).

Single linkage hierarchical clustering as implemented in the R-function
hclust and the dendrogram cut at the required number of clusters to
produce a partition, as is done also for the other hierarchical methods.
See Everitt et al. (2011) for an explanation and historical references
for all involved hierarchical methods.

Average linkage hierarchical clustering as implemented in the R-function
hclust.

Complete linkage hierarchical clustering as implemented in the R-function
hclust.

Spectral clustering (Ng et al. (2001)) as implemented in the R-function
specc in R-package kernlab (Karatzoglou et al. (2004)).

The functions were mostly run using the default settings. In some cases,
e.g., hclust, parameters had to be provided in order to determine which
exact method was used. Some amendments were required. In particular,
all methods were run in such a way that they would always deliver a valid
partition as a result. See Appendix A1 for more computational detail.

2.2 Data sets

The data sets used in this study are a convenience sample, collected from
mostly well known benchmark data sets in widespread use together with
some data sets that I have come across in my work. 21 data sets are from
the UCI repository (Dua and Graff (2017)), further ones are from Kaggle,
www.openml.org, example data sets of R-packages, open data accompanying
books and research papers, and some were collected by myself or provided
to me by collaborators and advisory clients with permission to use them.
Details about the data sets are given in Appendix A2.

6



Table 1: Numbers of observations for the 42 data sets.

Observations Number of data sets

n ≤ 100 5
100 < n ≤ 200 6
200 < n ≤ 300 8
300 < n ≤ 500 5
500 ≤ n < 1000 7
1000 ≤ n < 2000 6
n > 2000 5

There were some criteria on top of those stated above according to which
data sets have been selected, which define the scope of the study. There was
a target number of collecting at least 30 data sets with and at least 10 data
sets without given “true” classes; ultimately there are 30 data sets with and
12 data sets without true classes. The aim was to cover a large range of
application areas, although due to the availability of data sets, this has not
been perfectly achieved. 17 of the data sets come from the related areas
of biology, genetics, medicine, and chemistry. Eight are from the social
sciences, two from finance, eight can be classified as engineering including
typical pattern recognition tasks, the remaining seven data sets come from
miscellaneous areas.

As some of the clustering methods cannot handle data with a smaller
number of observations n than the number of variables p within clusters, all
data sets have p substantially smaller than n. The calibration of validation
indexes requires repeated computations based on n × n distance matrices
(see Section 2.3), for this reason the biggest data set has n = 4601, and
generally data sets with n < 3000 were preferred. The maximum p is 72.
p = 1 is excluded, as it could not be handled by two methods. The maxi-
mum number of “true” clusters K is 100. The aim was to achieve a fairly
even representation of p and K up to 10 and a number of instances for these
values larger than 10, although there are apparently far more data sets in
benchmark use with k = 2 than with larger K. Data sets without missing
values were preferred, but some data sets with a very small number of miss-
ing values were admitted. In these cases mean imputation was used. Tables
1, 2, and 3 show the distributions of n, p, and K, respectively, over the data
sets.

The variables were scaled to mean 0 and variance 1 before clustering,
except for data sets in which the variables have compatible units of mea-
surement and there seems to be a subject matter justification to make their
impact for clustering proportional to the standard deviation. See Appendix
A2 for details on the preprocessing for some data sets.

An issue with the “representativity” of these data sets for real clus-
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Table 2: Numbers of variables for the 42 data sets

Variables Number of data sets

p = 2 2
p = 4 5
p = 5 5
6 ≤ p ≤ 8 6
9 ≤ p ≤ 11 11
12 ≤ p ≤ 20 6
21 ≤ p ≤ 50 4
p > 50 3

Table 3: Numbers of clusters for the 30 data sets with given “true” cluster-
ings, and for the 12 data sets without “true” clusterings, as chosen by the
author.

Number of clusters With “true” clustering Without “true” clustering

k = 2 8 1
k = 3 3 3
k = 4 3 1
k = 5 2 6
6 ≤ k ≤ 7 5 1
8 ≤ k ≤ 11 6 0
k > 11 3 0

tering problems is that the availability of “true” clusterings constitutes a
difference to the real unsupervised problems to which clustering is usually
applied. This is an issue with almost all collections of data sets for bench-
marking clustering algorithms. In particular, several such data sets have
been constructed in order to have all clusters represented by the same num-
ber of observations. This is the case for eight of the 30 data sets with “true”
clusterings used here (seven of these have exactly equal cluster sizes). This
is not possible for unsupervised problems in practice. Such data sets will
favour methods that tend to produce clusters of about equal sizes.

2.3 Internal validation indexes

Internal validation indexes are used here with the aim of measuring various
aspects of a clustering that can be seen as desirable, depending on the specific
application. It is then investigated to what extent the different clustering
methods work well according to these aspects. Hennig (2015a) lists and
discusses a number of aspects that can be relevant. Hennig (2019) and
Akhanli and Hennig (2020) formalised many of these aspects, partly using
already existing indexes, partly introducing new ones. Here the indexes
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used in the present study are listed. For more background and discussion,
including possible alternatives, see Hennig (2019) and Akhanli and Hennig
(2020). The indexes attempt to formalise clustering aspects in a direct
intuitive manner, without making reference to specific models (unless it is of
interest whether data look like generated by a particular probability model,
see below). The indexes as defined here do not allow comparison between
or aggregation over different data sets. In order to do this, they need to be
calibrated, which is treated in Section 2.4.

The data set is denoted as D = {x1, . . . , xn}. Here the observations
x1, . . . , xn are assumed to be ∈ Rp, and d(x, y) is the Euclidean distance
between x and y, although the indexes can be applied to more general types
of data and distances. A clustering is a set C = {C1, . . . , CK} with Cj ⊆
D, j = 1, . . . ,K. For j = 1, . . . ,K, nj = |Cj | is the number of objects in Cj .

Assume C to be a partition, e.g., j 6= k ⇒ Cj ∩ Ck = ∅ and
⋃K

j=1Cj = D.
Let γ : {1, . . . , n} 7→ {1, . . . ,K} be the assignment function, i.e., γ(i) =
j ⇔ xi ∈ Cj .

Average within-cluster distances (avewithin; aw; Akhanli and Hennig
(2020)). This index measures homogeneity in the sense of small dis-
tances within clusters. Smaller values are better.

Iavewithin(C) =
1

n

K∑
k=1

1

nk − 1

∑
xi 6=xj∈Ck

d(xi, xj).

Representation of cluster members by centroids. In some applications
cluster centroids are used in order to represent the clustered objects,
and an important aim is that this representation is good for all clus-
ter members. This is directly formalised by the objective functions of
K-means (sum of squared distances from the cluster mean) and Par-
titioning Around Medoids (sum of distances from the cluster medoid).
Both of these criteria have been used as internal validation indexes in
the present study, however results are not presented, because over all
results both of these turn out to have a correlation of larger than 0.95
with Iavewithin, so Iavewithin can be taken to measure this clustering
aspect as well.

Maximum diameter (maxdiameter; md). In some applications there may
be a stricter requirement that large distances within clusters cannot
be tolerated, rather than having only the distance average small. This
can be formalised by

Imaxdiameter(C) = max
C∈C;xi,xj∈C

d(xi, xj).

Smaller values are better.
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Widest within-cluster gap (widestgap; wg; Hennig (2019)). Another in-
terpretation of cluster homogeneity is that there should not be different
parts of the same cluster that are separated from each other. This can
be formalised by

Iwidestgap(C) = max
C∈C,D,E: C=D∪E

min
x∈D,y∈E

d(x, y).

Smaller values are better.

Separation index (sindex; si; Hennig (2019)). This index measures whether
clusters are separated in the sense that the closest distances between
clusters are large. For every object xi ∈ Ck, i = 1, . . . , n, k ∈ 1, . . . ,K,
let dk:i = minxj /∈Ck

d(xi, xj). Let dk:(1) ≤ . . . ≤ dk:(nk) be the values of
dk:i for xi ∈ Ck ordered from the smallest to the largest, and let [pnk]
be the largest integer ≤ pnk. p is a parameter tuning what propor-
tion of observations counts as “close to the border” of a cluster with
another. Here, p = 0.1. Then,

Isindex(C; p) =
1∑K

k=1[pnk]

K∑
k=1

[pnk]∑
i=1

dk:(i).

Larger values are better.

Analogously to the maximum diameter, the minimum separation, i.e.,
the minimum distance between any two clusters may also be of inter-
est. In the present study, this has a correlation of 0.93 with Isindex,
and results for the minimum separation are omitted for reasons of
redundancy.

Pearson-version of Hubert’s Γ (pearsongamma; pg; Hubert and Schultz
(1976)). This index measures to what extent the clustering corre-
sponds or represents the distance structure in the data. the vector
of pairwise dissimilarities Let d = vec ([d(xi, xj)]i<j) be the vector of
pairwise distances. Let c = vec ([cij ]i<j), where cij = 1(γ(i) 6= γ(j)),
and 1(•) denotes the indicator function, be a vector of “clustering
induced dissimilarities”. With r denoting the sample Pearson correla-
tion,

IPearsonΓ(C) = r(d, c).

Larger values are better. This is one version of a family of indexes
introduced in Hubert and Schultz (1976), sometimes referred to as
“Hubert’s Γ”.

Density mode index (dmode; dm). An intuitive idea of a cluster is that
it is associated with a density mode, and that the density goes down
toward the cluster border. This is formalised by the “dmode” index.
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It is based on a simple kernel density estimator h that assigns a density
value h(x) to every observation. Let qd,p be the p-quantile of the vector
of dissimilarities d, e.g., for p = 0.1, the 10% smallest dissimilarities
are ≤ qd,0,1. Define the kernel and density as

κ(d) =

(
1− 1

qd,p
d

)
1(d ≤ qd,p), h(x) =

n∑
i=1

κ(d(x, xi)).

The following algorithm constructs a sequence of neighbouring obser-
vations from the mode in such a way that the density should always
go down, and penalties are incurred if the density goes up. It also
constructs a set T that collects information about high dissimilarities
between high density observations used below. Idensdec collects the
penalties.

Initialisation Id1 = 0, T = ∅. For j = 1, . . . ,K:

Step 1 Sj = {x}, where x = arg max
y∈Cj

h(y).

Step 2 Let Rj = Cj \ Sj . If Rj = ∅: j = j + 1, if j ≤ K go to Step
1, if j +K = 1 then go to Step 5. Otherwise:

Step 3 Find (x, y) = arg min
(z1,z2):z1∈Rj ,z2∈Sj

d(z1, z2). Sj = Sj ∪ {x}, T =

T ∪ {maxz∈Rj h(z)d(x, y)}.
Step 4 If h(x) > h(y) : Id1 = Id1 + (h(x)− h(y))2, back to Step 2.

Step 5 Idensdec(C) =
√

Id1
n .

It is possible that there is a large gap between two observations with
high density, which does not incur penalties in Idensdec if there are no
low-density observations in between. This can be picked up by

Ihighdgap(C) = maxT.

These two indexes, which are both better for smaller values, were de-
fined in Hennig (2019), but they can be seen as contributing to the
measurement of the same aspect, with Ihighdgap just adding informa-
tion missed by Idensdec. An aggregate version, which is used here, can
be defined as

Idmode(C) = 0.75I∗densdec(C) + 0.25I∗highdgap(C),

where I∗densdec and I∗highdgap are suitably calibrated versions of Idensdec,
Ihighdgap, respectively, see Section 2.4. The weights 0.75 and 0.25 in
the definition of Idmode can be interpreted as the relative impact of the
two sub-indexes.
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Cluster boundaries cutting through density valleys (denscut; dc; Hen-
nig (2019)). A complementary aspect of the idea that clusters are as-
sociated with high density regions is that cluster boundaries should run
through density valleys rather than density mountains. The “denscut”-
index penalises a high contribution of points from different clusters to
the density values in a cluster (measured by ho below).

For xi, i = 1, . . . , n : ho(xi) =
n∑

k=1

κ(d(xi, xk))1(γ(k) 6= γ(i)).

A penalty is incurred if for observations with a large density h(x) there
is a large contribution ho(x) to that density from other clusters:

Idenscut(C) =
1

n

K∑
j=1

∑
x∈Cj

h(x)ho(x).

Smaller values are better.

Entropy (en; Shannon (1948)). Although not normally listed as primary
aim of clustering, in many applications very small clusters are not very
useful, and cluster sizes should optimally be close to uniform. This is
measured by the well known entropy:

Ientropy(C) = −
K∑
k=1

nk
n

log(
nk
n

).

Large values are good.

Gaussianity of clusters (kdnorm; nor; Coretto and Hennig (2016)). Due
to the Central Limit Theorem and a widespread belief that the Gaus-
sian distribution approximates many real random processes, it may
be of interest in its own right to have clusters that are approximately
Gaussian. The index Ikdnorm is defined, following Coretto and Hennig
(2016), as the Kolmogorov distance between the empirical distribu-
tion of within-cluster Mahalanobis distances to the cluster means, and
a χ2

p-distribution, which is the distribution of Mahalanobis distances
in perfectly Gaussian clusters.

Coefficient of variation of distances to within-cluster neighbours (cvnnd;
cvn; Hennig (2019)). Another within-cluster distributional shape of
potential interest is uniformity, where clusters are characterised by
a uniform within-cluster density level. This can be characterised by
the coefficient of variation (CV) of the dissimilarities to the kth near-
est within-cluster neighbour dkw(x) (k = 2 is used here). Define for
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j = 1, . . . , k, assuming nj > k:

m(Cj ; k) =
1

nj

∑
x∈Cj

dkw(x), CV(Cj) =

√
1

nj−1

∑
x∈Cj

(dkw(x)−m(Cj ; k))2

m(Cj ; k)
.

Using this,

Icvdens(C) =

∑K
j=1 njCV(Cj)1(nj > k)∑K

j=1 nj1(nj > k)
.

Smaller values are better.

Average Silhouette Width (asw; Kaufman and Rousseeuw (1990)). This
is a popular internal validation index that deviates somewhat from the
“philosophy” behind the collection of indexes presented here, because
it attempts to balance two aspects of cluster quality, namely homo-
geneity and separation. It has been included in the study anyway,
because it also uses an intuitive direct formalisation of clustering char-
acteristics of interest. For i = 1, . . . , n, define the “silhouette width”

si =
bi − ai

max {ai, bi}
∈ [−1, 1],

where

ai =
1

nli − 1

∑
xj∈Cli

d(xi, xj), bi = min
h6=li

1

nh

∑
xj∈Ch

d(xi, xj).

The Average Silhouette Width is then defined as

Iasw(C) =
1

n

n∑
i=1

si.

2.4 Calibrating the indexes

For aggregating the indexes introduced in Section 2.3 over different data sets
and to compare the performance of a clustering method over the indexes in
order to characterise it, it is necessary to calibrate the values of the indexes,
so that they become comparable. This is done as in Hennig (2019); Akhanli
and Hennig (2020). The idea is to generate a large number m of “random
clusterings” CR1, . . . , CRm on the data. Denote the clusterings of the q = 9
methods from Section 2.1 by C1, . . . , Cq. For a given data set D and index
I, first change I to −I in case that smaller values are better according to
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the original definition of I, so that for all calibrated indexes larger values
are better. Then use these clusterings to standardise I:

m(I,D) =
1

m+ q

(
m∑
i=1

I(CRi) +

q∑
i=1

I(Ci)

)
,

s2(I,D) =
1

m+ q − 1

(
m∑
i=1

[I(CRi)−m(I,D)]2 +

q∑
i=1

[I(Ci)−m(I,D)]2
)
,

I∗(Ci) =
I(Ci)−m(I,D)

s(I,D)
, i = 1, . . . , q.

I∗ is therefore scaled so that its values can be interpreted as expressing
the quality (larger is better) compared to what the collection of clusterings
CR1, . . . , CRm, C1, . . . , Cq achieves on the same data set. The approach de-
pends on the definition of the random clusterings. These should generate
enough random variation in order to work as a tool for calibration, but they
also need to be reasonable as clusterings, because if all random clusterings
are several standard deviations away from the “proper” clusterings, the ex-
act distance may not be very meaningful. They also need to be fast to
generate, as many of them will be required in order to calibrate index values
of every single data set.

Four different algorithms are used for generating the random clusterings,
for detains see Akhanli and Hennig (2020). For clusterings with K clusters,
these are:

Random K-centroids: Draw K observations from D. Assign every ob-
servation to the nearest centroid.

Random nearest neighbour: Draw K observations as starting points for
the K clusters. At every stage, of the observations that are not yet
clustered, assign the observation x to the cluster of its nearest already
clustered neighbour, where x is the observation that has the smallest
distance to this neighbour.

Random farthest neighbour: As random nearest neighbour, but x is the
observation that has the smallest distance to the minimum farthest
cluster member.

Random average distances: As random nearest neighbour, but x is the
observation that has the smallest average distance to the closest clus-
ter.

Experience shows that these methods generate a range of clusterings that
have sufficient variation in characteristics and are mostly reasonably close
to the proper clustering methods (as can be seen in Akhanli and Hennig
(2020) as well as from the results of the present study). Here, 50 random
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clusterings from each algorithm are generated, i.e., m = 200. All results in
Section 3 are given in terms of calibrated indexes I∗.

2.5 External validation indexes

“Truth” recovery is measured by external validation indexes that quantify
the similarity between two clusterings on the same data, here the “true” one
and a clustering generated by one of the clustering methods.

The probably most popular external validation index is the Adjusted
Rand Index (ARI; Hubert and Arabie (1985)). This index is based on the
relative number of pairs of points that are in the same cluster in both clus-
terings or in different clusters in both clusterings, adjusted for the number
of clusters and the cluster sizes in such a way that its expected value under
random cluster labels with the same number and sizes of clusters is 0. The
maximum value is 1 for perfect agreement. Values can be negative, but al-
ready a value of 0 can be interpreted as indicating that the two clusterings
have nothing to do with each other.

In some work, the ARI has been criticised, often in the framework of
an axiomatic approach where it can be shown that it violates some axioms
taken to be desirable, e.g., Meila (2007); Amigo et al. (2009). Alternative
indexes have been proposed that fulfill the presented axioms. Meila (2007)
introduced the Variation of Information (VI), which is a proper metric be-
tween partitions. This means that, as opposed to the ARI, smaller values
are better. In Section 3, the negative VI is considered so that for all consid-
ered indexes larger values are better. The VI is defined by comparing the
entropies of the two clusterings with the so-called “mutual information”,
which is based on the entropy of the intersections between two clusters from
the two different clusterings. If the two clusterings are the same, the en-
tropy of the intersections between clusters is the same as the entropy of the
original clusterings, meaning that the VI is zero, its minimum value.

Amigo et al. (2009) show their axioms for an index called BCubed first
proposed in Bagga and Baldwin (1998). This index is based on observation-
wise concepts of “precision” and “recall”, i.e., what percentage of observa-
tions in the same cluster are from the same “true” class, and what percentage
of observations in a different cluster is “truly” different. It takes values be-
tween 0 and 1, 1 corresponding to a perfect agreement. See Meila (2015) for
further discussion and some more alternatives.

3 Results

Three issues are addressed:

• How can the clusters produced by the methods be characterised in
terms of the external validation indexes?
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Figure 1: Calibrated values of I∗avewithin and I∗maxdiameter. Values belonging
to the same data set are connected by lines. The thick red line gives the
average values.

• How do the methods perform regarding the recovery of the “true”
clusterings?

• Can the recovery of the “true” clusterings be related to the internal
validation indexes?

3.1 Characterisation of the methods in terms of the internal
indexes

The methods can be characterised by the distribution of values of the cal-
ibrated internal validation indexes, highlighting the dominating features of
the clusterings that they produce. In order to do this, parallel coordinate
plots will be used that show the full results including how results belonging
to the same data set depend on each other.

I decided against running null hypothesis tests due to issues of multiple
testing and model assumptions; the plots allow a good assessment of to what
extent differences between methods are meaningful, dominated by random
variation, or borderline. Although the values of the calibrated indexes can
be compared over indexes as relative to the ensemble of clusterings from the
methods and random, what is shown are images that compare the different
clustering methods for each index, as the comparison of the clustering meth-
ods gives information additional to the performance relative to the random
clusterings.

Average within-cluster distances (left side of Figure 1): The two centroid-
based methods K-means and clara achieve the best results. The Gaus-
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Figure 2: Calibrated values of I∗widestgap and I∗sindex. Values belonging to the
same data set are connected by lines. The thick red line gives the average
values.

sian and t-mixture are about at the same level as spectral clustering;
complete linkage and the mixture of skew t-distributions are worse.
Average linkage is behind these, and single linkage is the worst by
some distance.

Results regarding representation of the data by centroids are not shown
and look largely the same. The only additional distinctive feature is
that K-means is better than clara looking at squared Euclidean dis-
tances to the centroid, whereas clara is better for unsquared distances.
This was to be expected, as it corresponds to what K-means, clara,
respectively, attempt to optimise.

Maximum diameter (right side of Figure 1): Unsurprisingly, complete
linkage is best; at each step it merges clusters so that the maximum
diameter is the smallest possible, although it is not optimal for ev-
ery single data set (the hierarchical scheme will not normally produce
a global optimum). Average linkage is second best, followed by K-
means, clara, and single linkage, which somewhat surprisingly avoids
large distances within clusters more than spectral clustering and the
three mixture models. Another potential surprise is that the Gaussian
mixture does not do better than the t-mixture in this respect; a flexible
covariance matrix can occasionally allow for very large within-cluster
distances.

Widest within-cluster gap (left side of Figure 2): The three linkage
methods are best at avoiding large within-cluster gaps, with single
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Figure 3: Calibrated values of I∗PearsonΓ and I∗dmode. Values belonging to the
same data set are connected by lines. The thick red line gives the average
values.

linkage in the first place, which will not join sets between which there
is a large gap. The two centroid-based methods follow, however differ-
ences between them, the three mixture models, and spectral clustering
look small compared to the variance, and dominated by outliers. The
skew t-mixture produces very large within-cluster gaps for a number
of data sets. With strong skewness there can be large distances in a
tail of a cluster.

Separation index (right side of Figure 2): Single linkage achieves the best
results here. Its clustering process keep separated subsets in distinct
clusters (often one-point clusters with strongly separated outliers).
The two other linkage methods follow. Complete linkage is sometimes
portrayed as totally prioritising within-cluster homogeneity over sep-
aration, but in fact regarding separation it does better than spectral
clustering, which is still a bit better than the centroid-based and the
mixture models, between which differences look insignificant.

Pearson-Γ (left side of Figure 3): The average results for the methods
regarding the representation of the distance structure by the clustering
vary relatively little compared to the variation over data sets. Average
linkage is overall best, and the skew t-mixture worst, even if the latter
has good results in some data sets. Single linkage does occasionally
very well, but also worse than the others for a number of data sets.

Density mode index (right side of Figure 3): Results here are dominated
by variation between data sets as well. Interestingly, the methods
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Figure 4: Calibrated values of I∗denscut and I∗entropy. Values belonging to the
same data set are connected by lines. The thick red line gives the average
values.

based on mixtures of unimodal distributions do not do best here, but
rather clara and spectral clustering. Once more the mixture of skew
t-distributions does worst, with outliers in both directions.

Density cutting (left side of Figure 4): Due to its focus on cluster separa-
tion, single linkage is best at avoiding cutting through density moun-
tains. The skew t- and t-mixture have the strongest tendency to put
cluster boundaries in high density areas, but differences between meth-
ods are not large.

Entropy (right side of Figure 4): clara yields the highest average entropy
followed by K-means, but differences between these and the three
mixture models do not seem significant. This runs counter to the idea,
sometimes found in the literature, thatK-means favours similar cluster
sizes more than mixtures, or even implicitly assumes them. The other
four methods have a clear tendency to produce less balanced clusters,
particularly single linkage, but also average and complete linkage, and
to some lesser extent spectral clustering.

Gaussianity (left side of Figure 5): Although the Gaussian mixture pro-
duces on average the most Gaussian-looking clusters, as was to be
expected, the differences between all nine methods look largely in-
significant. The Gaussian mixture has positive and negative outliers,
the skew t-mixture only negative ones.

CV of distances to within-cluster neighbours (right side of Figure 5):
Despite one lower outlier, the Gaussian mixture tends to produce the
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Figure 5: Calibrated values of I∗kdnorm and I∗cvdens. Values belonging to the
same data set are connected by lines. The thick red line gives the average
values.

largest cvnnd, i.e., the lowest within-cluster CVs. It probably helps
that large variance clusters can bring together observations that have
large distances between each other and to the rest. clara and the
t-mixture produce the lowest cvnnd values. Differences between the
other methods are rather small.

Average silhouette width (left side of Figure 6): Average linkage is a
method that explicitly balances separation and homogeneity, and con-
sequently it achieves the best ASW values. K-means achieves higher
values than complete linkage, but the remaining methods do worse
than the linkage methods. ASW had been originally proposed for use
with clara (Kaufman and Rousseeuw (1990)), but clara does not pro-
duce particularly high ASW values, if better than the mixture models
and spectral clustering.

These results characterise the clustering methods as follows:

kmeans clearly favours within-cluster homogeneity over separation. It does
not favour entropy as strongly as some literature suggests; in this
respect it is in line with clara and the mixture models, ahead of the
remaining methods. It should be noted that entropy is treated here as
a potentially beneficial feature of a clustering, whereas some literature
makes it seem like a defect of kmeans that such solutions are favoured
(as far as this in fact happens).

clara has largely similar characteristics to kmeans. It is slightly worse re-
garding the representation of the distance structure and the ASW.
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Figure 6: Calibrated values of the ASW. Values belonging to the same data
set are connected by lines. The thick red line gives the average values.

It is slightly better regarding clusters with density decrease from the
mode. This may have to do with the fact that the density goes down
faster from the mode for the multivariate Laplace distribution (where
the log-likelihood sums up unsquared distances) than for the Gaussian
distribution (which corresponds to squared distances).

mclust produces clusters with the highest Gaussianity, but only by a rather
insignificant distance. It is best regarding uniformity as measured by
cvnnd. The reason for this is probably its ability to build clusters
with large within-cluster variation collecting observations that have
large distances to all or most other points, whereas other methods
either need to isolate such observations in one-point clusters, or in-
tegrate them in clusters with denser cores. Mixtures of t- and skew
t-distributions could in principle also produce large variance clusters,
but the shapes of t- and skew t-distributions allow to integrate outlying
observations more easily with denser regions.

mclust often tolerates large within-cluster distances, whereas its clus-
ters are not on average better separated than those from K-means.
On the other hand, its cluster sizes are not significantly less well bal-
anced. Its ability to produce clusters with strongly different within-
cluster variance makes it less suitable regarding Pearson-Γ and the
ASW, which treat distances in the same way in all clusters.

emskewt looks bad on almost all internal indexes. It is not particularly bad
regarding recovery of the “true” clusters though, see Section 3.2. This
means that the current collection of internal indexes does not capture
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favourable characteristics of skewly distributed clusters appropriately;
it also means that emskewt is not an appropriate method for finding
clusters with the characteristics that are formalised by the internal
indexes.

teigen has a profile that is by and large very similar to the one of mclust,
apart from being slightly better regarding the maximum diameter, and
slightly worse regarding Gaussianity and uniformity.

single linkage has a very distinct profile. It is best regarding separation,
avoiding wide within-cluster gaps, and cluster boundaries through den-
sity valleys, and worst by some distance regarding within-cluster ho-
mogeneity and entropy.

average linkage has similar strengths and weaknesses as single linkage,
but not as extreme. It is the best method regarding Pearson-Γ and the
ASW, both of which balance homogeneity and separation and measure
therefore how much the clustering is in line with the distance structure.

complete linkage is best regarding the maximum diameter. In most other
respects it stands between single and average linkage on one side and
the centroid- and mixture-based methods on the other side.

spectral is another method that provides a compromise between the rather
separation-oriented single and average linkage on one side and the
rather homogeneity-oriented centroid- and mixture-based methods. Its
maximum cluster diameter is rather high on average. Its mode index
value is good if not clearly different from the one of clara. Its mid-
range entropy value may look attractive in applications in which a
considerable degree of imbalance in the cluster sizes may seem realistic
but the tendency of the linkage methods to produce one-point clusters
should be avoided.

The multivariate characterisation of the clustering methods also allows to
map them, using a principal components analysis (PCA). Results of this are
shown in Figure 7. On the left side, PCs are shown using every index value
for every data set as a separate value, i.e., 42*11 variables. The first two
PCs carry 30.9% and 16.6% of the variance, respectively. On the right side,
the PCA is performed on 11 variables that give average index values over
all data sets. While this reduces information, it allows to show the indexes
as axes in a biplot. The first two PCs here carry 50.0% and 19.7% of the
variance, respectively. After rotation, the maps are fairly similar. Using the
more detailed data set information, spectral seems much closer to kmeans
and clara than to mclust and teigen, but the apparent similarity to the
latter ones using average index values is an effect of dimension reduction;
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Figure 7: Clustering methods mapped on first two principal components
from using all data sets separately (left side), and from using mean values
over the data sets (right side).

involving information from the third PC (not shown), the similarity struc-
ture is more similar to that of the plot using all 42*11 variables. The biplot
on the right side shows the opposite tendencies of separation on one hand
and entropy and average within distances on the other hand when char-
acterising the methods, with indexes such as maximum diameter, density
mode, Pearson-Γ, and the ASW opening another dimension, rather corre-
sponding to kmeans, average, and complete linkage. Qualitative conclusions
from these maps agree roughly with those in Jain et al. (2004), where more
clustering algorithms, but fewer data sets, were involved.

The study data allow to also investigate the values of the internal in-
dexes computed for the “true” clusterings. These are shown in Figure 8.
Only the entropy and Gaussianity are clearly above the mean zero of the
random clustering ensemble (which includes the solutions from the proper
clustering methods as a small minority), and also above the mean for the
clustering methods. The clustering methods are on average all above zero,
which should be expected, because these are meant to be desirable features
of a good clustering, and as such should be better for the proper clustering
methods than for the random ones. The methods achieve the highest aver-
age for the ASW, which makes sense as this attempts to measure general
clustering quality. The fact that index values are mostly below zero for the
“true” clusterings can be interpreted in such a way that many given “true”
clusterings are data analytically wanting. The high values for entropy are
probably artificial, due to a biased choice of data sets. The high values for
Gaussianity, however, could suggest that there is a tendency in some real
clusters, i.e., homogeneous subpopulations, to approximate the Gaussian
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Figure 8: The boxplots show the distributions of the internal indexes com-
puted on the “true” clusterings. The red line shows the average index values
produced by the clustering methods.

distribution. A possible explanation is that in a crisp clustering of a data
set produced by a clustering method, tails of a within-cluster distribution
tend to be cut off in the direction of other clusters, whereas “true” clusters
tend to have some proper overlap (clearly separated clusters are in my ex-
perience indeed rare in real data), which is in line with the low values of the
separation and denscut (cluster boundaries running through density valleys)
index. This probably also affects the ASW and Pearson-Γ.

3.2 Recovery of “true” clusterings

The quality of the recovery of the “true” clusterings is measured by the
ARI, BCubed, and the VI. Figure 9 shows the ARI-values achieved by the
different clustering methods. On average, there is a clear advantage of the
centroid- and mixture-based methods compared with the linkage methods
(single linkage is clearly the worst), and spectral clustering is in between.
Every method achieves good results on some data sets, but the linkage meth-
ods produce an ARI around zero on many data sets. Differences between
kmeans, clara, mclust, emskewt, and teigen do not seem significant but are
clearly dominated by variation. On some data sets all methods produce
very low values, and no method achieves an ARI larger than 0.5 on more
than half of the data sets. The mean ARI is 0.28, the mean ARI of the best
clusterings for every data set is 0.46. Interpreting these numbers, it has to
be kept in mind that the given “true” clustering does not necessarily qualify
as the best clustering of the data from a data analytic point of view; some
of these are neither homogeneous nor separated. Furthermore there may be
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Figure 9: Adjusted Rand Index values by method. Values belonging to the
same data set are connected by lines. The thick red line gives the average
values.

meaningful clusters in the data that differ from those declared as “truth”. A
better recovery does not necessarily mean that a method delivers the most
useful clustering that can be found. On the other hand, some given “true”
clusterings correspond to clearly visible patterns in the data, and at least
some methods manage to find them. Overall, the variation is quite high.

The picture changes strongly looking at the results regarding BCubed
and particularly VI, see Figure 10. BCubed still shows single linkage as
the weakest method, but otherwise differences look hardly significant, and
according to the VI, the average quality of the methods is almost uniform.

Further exploratory analysis (not shown) reveals that better values of the
external indexes are systematically associated with lower data dimension p
and lower sample size n, the latter probably because of confounding with
the correlated dimension. There was no clear interaction with the methods,
and no clear pattern regarding the number of clusters k.

Table 4 shows how often the different methods come out as the best ac-
cording to the indexes. This portrays mclust as very successful at recovering
the “truth”. Spectral clustering is hardly ever on top, but it has values very
close to the best for a number of data sets. Given that emskewt looks so
bad regarding the internal indexes in Section 3.1, its performance regarding
the external indexes looks surprisingly good. The most striking difference
between the indexes is that single linkage is not the best method for a single
data set with respect to the the ARI, but it is the best for 11 data sets with
respect to the VI. This is explored in the following.

Figure 11 shows how the three indexes are related to each other over all
nine clustering methods applied to the 30 data sets with “true” clusterings.
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Figure 10: BCubed and negative Variation of Information values by method.
Values belonging to the same data set are connected by lines. The thick red
line gives the average values.

Clustering methods

Index kmeans clara mclust mskewt teigen single average complete spectral

ARI 3 4 8 5 5 0 3 1 1
BCubed 2 2 7 5 3 4 4 2 1

VI 2 1 6 3 3 11 2 1 1

Table 4: Number of times that a method comes out best according to the
three external indexes.

26



ari

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8 1.0

bcubed

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 1 2 3 4

0
1

2
3

4

vi

Figure 11: Pairs plot of ARI, BCubed, and VI

VI and BCubed have a correlation ρ of -0.94, but the ARI is correlated
substantially weaker to both, ρ = 0.75 with BCubed and ρ = −0.57 with
VI. BCubed can therefore be seen as a compromise between the two. In
order to explore what causes the differences between ARI and VI, in Figure
11 it can be seen that the major issue is that the VI can produce fairly good
values close to zero for some situations in which the ARI is around zero,
indicating unrelated clusterings, or only slightly better. Generally these
situations tend to occur where one clustering is very imbalanced, mostly
with one or more one-point clusters, whereas the other one (more often
the “true” one) is not. The VI involves cluster-wise percentages of points
occurring together in the same cluster in the other clustering, and therefore
assesses one-point clusters favourably, whereas the random labels model
behind ARI indicates that what happens with the object in a one-point
cluster in another (potentially “true”) clustering is random and therefore
not meaningful as long as it appears in a substantially bigger cluster there.

For example, consider the data set “22 - Wholesale” (see Appendix A2).
According to the VI, the single linkage clustering is optimal (VI= 0.64), but
this has an ARI-value of about 0. It is second best according to BCubed with
a value of 0.72. Table 5 shows how this is related to the “true” clustering.
In favour of this clustering it can be said that single linkage cluster 2 is
“pure” regarding the truth; however, it is clear that any random clustering
that fixes one cluster size as 1 will be about equally good. This is a rather
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Table 5: Contingency table of “true” clustering and single linkage clustering
for data set “22 - Wholesale”

Single linkage cluster

Truth 1 2

1 297 1
2 142 0

extreme case, however most of the assessment differences between ARI and
VI (and to a lesser extent BCubed) are of a similar kind. This makes the
ARI look like the more appropriate index here.

3.3 Relating “true” cluster recovery to the internal indexes

It is of interest whether the internal index values, which are observable in
a real situation, can explain to some extent the performance regarding the
“true” cluster recovery. A tool to assess this is a linear regression with an
external index as response, and the internal indexes as explanatory variables.
There is dependence between the different clusterings on the same data set,
and this can be appropriately handled using a random data set effect.

An important issue is that the internal indexes are correlated, which can
make the interpretation of the regression results difficult. Figure 12 shows
the correlation structure among the internal indexes, ARI and -VI (BCubed
is not taken into account in this section due to the high correlation with
VI). The order of indexes in Figure 12 was determined by a hierarchical
clustering using correlation dissimilarity, however -VI and ARI were put on
top due to their different role in the regression, and the ASW was put at
the bottom. The ASW is not involved in the regression, as it is defined
in order to compromise between homogeneity and separation, which them-
selves are represented by other internal indexes. It is involved in Figure 12
because its correlation to the other indexes may be of interest anyway. One
thing that can be seen is that it is fairly strongly correlated to a number of
other indexes, particularly maximum diameter, Pearson-Γ, and the separa-
tion index, but rather weakly to the average within-cluster distances meant
to formalise homogeneity.

Considerable correlation occurs between the average within-cluster dis-
tances and the entropy. Both of these are the internal indexes with the
highest correlation to the ARI. This is a problem for interpretation because
this means that entropy and homogeneity are confounded when explaining
recovery success. Furthermore, both, entropy in particular, are strongly
negatively correlated with separation, which may explain the negative cor-
relation between separation and the ARI. There is no further high (> 0.2)
correlation between either -VI or ARI and other internal indexes. It is obvi-
ous that the ARI is closer connected to entropy and homogeneity, whereas
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Figure 12: Correlation matrix of internal and external validation indexes
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Table 6: Mixed-effects regression results regressing ARI, -VI, respectively,
on the internal indexes excluding the ASW.

Response ARI -VI

Indexes Coefficient t p Coefficient t p

Intercept .324 6.91 .000 -1.54 -10.11 .000
avewithin -.019 -1.34 .181 0.03 0.88 .377
maxdiameter -.025 -4.03 .000 0.01 0.64 .520
widestgap .014 2.00 .047 -0.00 -0.21 .814
sindex -.010 -1.65 .101 0.05 3.84 .000
pearsongamma .020 2.43 .016 -0.04 -1.86 .064
dmode .009 0.89 .374 0.05 1.92 .056
denscut .000 0.03 .978 -0.05 -1.80 .074
entropy .088 4.69 .000 0.00 0.01 .990
kdnorm .024 3.51 .001 0.02 1.44 .151
cvnnd -.006 -0.86 .388 -0.01 -0.48 .633

random eff. (data set) .000 .000

the -VI is more positively connected to separation. There are a number
of further correlations among the internal indexes; separation, the density
mode and cut indexes, Pearson-Γ, the maximum cluster diameter, and the
absence of large within-cluster gaps are all positively connected. The Gaus-
sianity index and the nearest neighbours CV are correlated 0.24 to each
other; all their other correlations are lower.

Table 6 gives the results of two regression analyses, with ARI and -VI
as responses, with a random data set effect. This has been obtained by the
R-package lme, Pinheiro and Bates (2000). p-values are interpreted in an
exploratory manner, as they are not precise. However, the null hypotheses
of zero effect of a variable given all other variables are in the model are of
interest here.

The ARI regression has maximum diameter, entropy, and Gaussianity as
highly significant effects; Pearson-Γ is clearly significant at 5%-level. widest-
gap is borderline significant, which is potentially not meaningful given the
number of tests.

The interpretation of entropy (which has the clearly largest t-value) is
problematic for two reasons. Firstly, due to correlation, its coefficient may
partly carry information due to avewithin. Secondly, eight data sets have
artificially balanced classes, which may favour entropy among good clus-
terings. The regression was re-run excluding those data sets (not shown),
yielding by and large the same significances including entropy, but its t-value
fell to 2.75. Even in this scenario it cannot be excluded that the “sample”
of data sets with known “true” clusters favours entropy artificially. Gaus-
sianity seems to be a valuable predictor for recovery of “true” classes. The
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maximum diameter has a negative coefficient, meaning that on average and
controlled for all other indexes, a larger (therefore worse) maximum cluster
diameter went with a better “truth” recovery regarding the ARI. It is how-
ever clearly correlated with Pearson-Γ and widestgap, which have positive
effects.

Despite a positive relationship between ARI and -VI, the results of the
VI-regression are very different, mainly because -VI can achieve high values
for clusterings with very low entropy even if the “true” clustering is balanced.
This means that there is no bias in favour of entropy by the data set sample;
rather the VI seems biased against entropy by definition, see above. The
only clearly significant index for -VI is the separation index, with a positive
coefficient, which was not significant in the ARI-regression.

Plots of the fitted values of both regressions against their response vari-
able (not shown) look satisfactorily linear. In principle, the regressions could
be used to predict the ARI or VI for data sets with unknown “truth” from
the observable internal indexes, but this will not work very well, due the
strong data set effect.

Overall these results do not allow clear cut conclusions, due to correla-
tion, issues with the representativity of the data sets, and the very different
patterns observed for ARI and VI. The character of the “true” clusterings
may just be so diverse that no general statement about which clustering
characteristics allow for good recovery can be made. Preferring the ARI as
external index, the only safely interpretable significance seems to be the one
of Gaussianity, due to its low correlation with other indexes. Separation
seems to help in terms of the VI, but this includes favouring clusterings that
separate outliers as one-point clusters, arguably an issue with the VI.

4 Discussion

The aim of this study is to characterise the clustering methods in terms
of the internal indexes, to learn about the recovery of “true” clusterings,
both regarding the methods, and regarding characteristics that could be
connected to recovery.

Regarding the characterisation of the clustering methods, the right side
of Figure 7 is probably most expressive, locating the clustering methods rela-
tive to the internal indexes. Some indexes do not separate the methods very
strongly. Single linkage stands out as being quite different to most other
methods in many respects. On the other hand, the centroid-based methods,
the mixture-based methods and spectral clustering have much in common;
one surprising result is that K-means does not favour balanced cluster sizes
particularly strongly, compared to the mixture-based methods. Another re-
sult is that single and complete linkage are not opposite extremes, but rather
that on most characteristics of single linkage, complete linkage is closer to
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single linkage, with average linkage in between, than the centroid- based and
mixture-based methods. Gaussian mixture-based clustering stands out more
by its good value regarding uniformity (cvnnd) than regarding Gaussianity
of the clusters.

Regarding the recovery of “true” clusterings, there is large variation
between the data sets. According to the ARI and BCubed, the Gaussian
mixture is the best for the largest number of data sets. Single Linkage does
badly regarding the ARI. Differences between the other methods are not
that pronounced, and all of them did best in some data sets. This includes
the skew t-mixture, which does not look good according to the internal
indexes but better regarding the external indexes. There is currently no
index, at least in the collection used here, that formalises in which sense
such a mixture can yield a good clustering. This is a topic for further
work. According to the VI (and to some extent BCubed), single linkage
does much better, but this rather indicates a problem with the indexes than
a good performance of single linkage.

Explaining the “true” cluster recovery by the internal indexes does not
deliver very clear results, except that Gaussianity seems to help, which is
sometimes achieved by the Gaussian mixture, but only insignificantly more
often than by some other methods. A critical interpretation could be that
quality according to the internal indexes does not really measure what is
important for recovery. On the other hand one could argue that this shows
the heterogeneity of “true” clusterings, and that there is no “one fits it all
approach”, neither for clustering, nor for measuring clustering quality. The
given “true” clusterings are of such a nature that their recovery cannot be
reliably predicted from observable cluster characteristics.

Some problems were exposed with the non-representativity of the data
sets, with “true” clusterings, and with the VI (and somewhat less extreme
the BCubed) index. These problems are not exclusive to the present study,
and it can be hoped that these issues are on the radar whenever such bench-
mark studies are run. These problems affect analyses involving the “true
clusterings” in particular. There is no reason to believe that the results
regarding the internal validation indexes are biased for these reasons.

Appendix

A1: Computational details

The following amendments were made to the clustering functions listed in
Section 2.1:

Mixture models: Crisp partitions have always been enforced by assign-
ing observations to the cluster with maximum posterior probability of
membership.
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kmeans: This was run with parameter runs=10, governing the number of
random initialisations. The default value is runs=1, which yields very
unstable results.

emskewt The function EmSkew would occasionally produce errors or invalid
results. It is run inside a wrapper function that enforces a solution in
the following way: For each covariance matrix model1, starting from
(1) the fully flexible model, 5 attempts (different random initialisa-
tions) are made to find a solution. If all attempts for a model fail,
a less flexible model is tried out, in the order (2) diagonal covariance
matrices, (3) flexible but equal covariance matrices, (4) equal diagonal
covariance matrices, (5) equal spherical covariance matrices, until a
valid solution is found. If none of these is successful, the same routine
is carried out with a mixture of skew normal distributions, and if this
does not yield a valid solution either, mclustBIC is called with default
settings.

teigen The function teigen would occasionally produce errors or invalid
results. It is run inside a wrapper function that enforces a solution in
the following way: If no valid solution is found, the wrapper-function
for EmSkew as explained above is called, but with dist="mvt", fitting
a multivariate t-distribution.

specc The function specc would occasionally produce errors or invalid re-
sults. It is run inside a wrapper function. 10 attempts (different
random initialisations) are made to find a solution. If they all fail,
all observations are assigned to cluster 1. While this approach may
seem unfair for spectral clustering in comparison to EmSkew, which ul-
timately calls mclust and can as such still produce a reasonable clus-
tering, the motivation is that a Gaussian mixture model can be seen
as a constrained version of a mixture of skew t-distributions, whereas
spectral clustering has no straightforward constrained version that can
guarantee a valid solution.

In principle there can be situations in which also mclustBIC fails to deliver a
valid solution, however such a situation did not occur in the study. Exhaust-
ing all attempts, both specc and EmSkew failed twice before resorting to a
one-cluster solution or mclustBIC, respectively, and teigen failed 5 times;
in all of these cases EmSkew with distr="mvt" delivered a valid solution.

A2: More details on data sets

Tables 7 and 8 give a list of the data sets used in the study.

1The shape of a skew t-distribution is defined by the covariance matrix of an involved
Gaussian mixture, see Lee and McLachlan (2013), although this is not the covariance
matrix of the resulting skew t-distribution.
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Table 7: Overview of data sets used in the study. As “Source”, the source is
given from which the data set was retrieved for the study, which in some cases
is not the original source (most data sets retrieved from www.openml.org
and many from R-packages are from UCI). Missing references: (i) Turing In-
stitute, Glasgow, (ii) www.bundestag.de (iii) maps.met.police.uk/tables.htm

Number Name n p K “Truth” given Source Reference
1 Crabs 200 5 4 Yes R-MASS Campbell and Mahon (1974)

Morphological measurements of crabs, two species, two sexes
2 Dortmund 170 5 5 No See reference Sommerer and Weihs (2005)

Various characteristics of the districts of the city of Dortmund
3 Iris 150 4 3 Yes R-datasets Anderson (1935)

Measurements on 50 flowers from each of 3 species of iris
4 Vowels 990 10 11 Yes See reference Hastie et al. (2001)

Recognition of British English vowels
5 Bats 2677 72 8 Yes V. Zamora-Gutierrez Zamora-Gutierrez et al. (2016)

Acoustic identification of Mexican bat species
6 USArrests 50 4 2 No R-datasets McNeil (1977)

Arrests per 100,000 residents for various crimes in US states 1973
7 OliveOil 572 8 9 Yes R-pdfcluster Forina et al. (1983)

Chemical decomposition of Italian olive oils from 9 regions
8 OldFaithful 299 2 3 No R-MASS Azzalini and Bowman (1990)

Duration and waiting times for eruptions of Old Faithful geyser
9 Tetragonula 236 4 9 Yes R-prabclus Franck et al. (2004)

Genetic information on 9 species of tetragonula bees
10 Thyroid 215 6 3 Yes R-mclust Coomans et al. (1983)

Results of five laboratory tests diagnosing thyroid gland patients
11 Spam 4601 57 2 Yes R-kernlab Hastie et al. (2001)

Email spam classification from word and character frequencies
12 Wisconsin 569 30 2 Yes UCI Street et al. (1993)

Diagnosis of breast cancer, measurements of features of image
13 Yeast 1484 8 10 Yes UCI Horton and Nakai (1996)

Discriminative features for protein Localization Sites in cells
14 Vehicle 846 18 4 Yes R-mlbench (i)

Recognising vehicle type from silhouettes
15 Letters 2000 16 26 Yes R-mlbench Frey and Slate (1991)

Recognising handwritten letters from pixel displays
16 Bundestag 299 5 5 No R-flexclust (ii)

German Bundestag election results 2009 of 5 major parties by constituency
17 Finance 889 4 2 Yes R-Rmixmod du Jardin and Séverin (2010)

Predicting firm bankruptcy from four financial ratios
18 BankNotes 200 6 2 Yes R-mclust Flury and Riedwyl (1988)

Identifying counterfeit Swiss bank notes from measurements
19 StoneFlakes 79 8 3 No Thomas Weber Weber (2009)

Measurements on prehistoric stone tools
20 Leaf 340 14 30 Yes UCI Silva et al. (2013)

Shape and consistency measurements on leafs from 30 plant species
21 London 32 9 4 No See reference (iii)

Relative numbers of various crimes in the boroughs of London 2014
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Table 8: Overview of data sets used in the study (part 2). As “Source”,
the source is given from which the data set was retrieved for the study,
which in some cases is not the original source (most data sets retrieved
from www.openml.org and many from R-packages are from UCI). Missing
references: (i) Deepraj Baidya (ii) Dukascopy Historical Data Feed (iii)
www.decathlon2000.com

Number Name n p K “Truth” given Source Reference
22 Wholesale 440 7 2 Yes www.openml.org Abreu (2011)

Spending on various product categories by clients of wholesale distributor
23 Heart 200 13 5 Yes www.openml.org Detrano et al. (1989)

Diagnosing different stages of heart disease by diagnostic measurements
24 MachineKnow 403 5 5 No www.openml.org Kahraman et al. (2013)

Students’ knowledge status about the subject of Electrical DC Machines
25 PlantLeaves 1599 64 100 Yes www.openml.org Yan et al. (2013)

Plant species classification by texture detected from leaf images
26 RNAYan 90 2 7 Yes Bioconductor Yan et al. (2013)

RNA sequencing data distinguishing cell types in human embryonic development
27 RNAKolo 704 5 3 Yes Bioconductor Kolodziejczyk et al. (2015)

RNA sequencing data on mouse embryonic stem cell growth
28 Cardiotocography 2126 23 10 Yes www.openml.org Ayres-de Campos et al. (2000)

Classification of cardiotocograms into pattern classes
29 Stars 240 4 6 Yes Kaggle (i)

Predict star types from features of stars
30 Kidney 203 11 2 Yes R-teigen Dua and Graff (2017)

Presence or absence of chronic kidney disease from diagnostic features
31 BreastTissue 106 9 4 Yes www.openml.org Jossinet (1996)

Classes of breast carcinoma diagnosed by impedance measurements
32 FOREX 1832 10 2 Yes www.openml.org (ii)

Historical price data EUR/JPY for predicting direction next day
33 SteelPlates 1941 24 7 Yes www.openml.org Buscema (1998)

Classification of steel plates faults from various measurements
34 BostonHouse 506 13 5 No www.openml.org Harrison and Rubinfeld (1978)

Multivariate characterisation of different areas of Boston
35 Ionosphere 351 32 2 Yes www.openml.org Sigillito et al. (1989)

Radar data to distinguish free electron patterns from noise in ionosphere
36 Glass 214 9 6 Yes R-MASS Venables and Ripley (2002)

Identify type of glass from chemical analysis
37 CustomerSat 1811 10 5 Yes R-bayesm Rossi et al. (2005)

Responses to a satisfaction survey for a product
38 Avalanches 394 9 5 No Margherita Maggioni Maggioni (2004)

Avalanche frequencies by size and other factors for mapping release areas
39 Decathlon 2580 10 6 No R-GDAdata (iii)

Points per event of decathlon athletes
40 Alcohol 125 10 5 Yes UCI Adak et al. (2020)

Five types of alcohol classified by QCM sensor data
41 Augsburg 95 11 3 No See reference Theus and Urbanek (2009)

Tax data for districts of the city of Augsburg before and after Thirty Years War
42 ImageSeg 2310 16 7 Yes www.openml.org Dua and Graff (2017)

3 × 3 pixel regions of outdoor images classified as object
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A zip file with all data sets in the form in which they were analysed in
the present study (i.e., after all pre-processing) is planned to be provided as
online supplement of the published version of this article. Where a “true”
clustering is given this is in the first variable. All variables were scaled to
zero mean and unit variance before clustering, except where stated in the
following list, which gives information about data pre-processing where this
was applied.

2 Dortmund The original data set has 203 variables, many of which are
not of much substantial interest, with several linear dependencies. The
version used here is described in Coretto and Hennig (2016).

4 Vowels The original data set is split into test and training data for su-
pervised classification. Both are used together here.

5 Bats The used data set is a preliminary version of what is analysed in
Zamora-Gutierrez et al. (2016) that was provided to me for testing
purposes by Veronica Zamora-Gutierrez. A small number of missing
values were imputed by mean imputation.

7 OliveOil The original data set contains classification by 9 regions, which
are subclasses of 3 macro areas. The regions were used as “true”
clustering.

9 Tetragonula This data set originally contains categorical genetic infor-
mation. The version used here was generated by running a four-
dimensional multidimensional scaling on genetic distances as proposed
by Hausdorf and Hennig (2010). The resulting data were not scaled
before clustering; the original scales represent the original distances.

15 Letters This data set has originally 20,000 observations, which is too
big for handling a full distance matrix. Only the first 2,000 have been
used.

16 Bundestag The data set was not scaled before clustering. The unscaled
version represents comparable voter percentages.

19 StoneFlakes A small number of missing values were imputed by mean
imputation.

21 London The data were retrieved from the website maps.met.police.uk/tables.htm
in December 2015. The website has been reorganised in the meantime
and the original data are probably no longer available there, however
more recent data of the same kind is available. Only the major crime
categories were used, divided by the total number of offences; the total
number of offences was used as a variable divided by the number of
inhabitants. After constructing these features, variables were scaled
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(the number of serious crimes is very low, and not scaling the relative
numbers would have strongly reduced their influence on clustering).

24 MachineKnow A classification variable is provided, but this was not
used as “true” clustering here, because according to the documentation
this was constructed from the data by a machine learning algorithm,
and does not qualify as “ground truth”.

26 RNAYan This is originally a data set with p � n. Unscaled principal
components were used as explained in Batool and Hennig (2020) in
line with some literature cited there.

27 RNAKolo This is originally a data set with p� n. Unscaled principal
components were used as explained in Batool and Hennig (2020) in
line with some literature cited there.

28 Cardiotocography A variable with less than four distinct values has
been removed.

33 SteelPlates Three variables with less than four distinct values have
been removed.

34 BostonHouse This was originally a regression problem. The original
response variable “housing price” is used together with the other vari-
ables for clustering here. A binary variable has been removed.

35 Ionosphere Two binary variables have been removed.

38 Avalanches On top of the first six variables, which give geographical
information, the original data has frequencies for avalanches of ten
different sizes, categorised by what percentage of the release areas
is covered. This information has been reduced to the three variables
“number of avalanches”, “mean coverage” and “variance of coverages”.

39 Decathlon Only data from the year 2000 onward are used, in order
to generate a data set of manageable size. Variables were not scaled,
because the decathlon points system is meant to make the original
points values comparable.

41 Augsburg For four count variables the meaning of missing values was
“not existing”, and these were set to zero. Some other missing values
were imputed by mean imputation.

42 ImageSeg Three variables with less than five distinct values have been
removed.
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