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Abstract

Much work has been done in the area of the cluster weighted model (CWM), which

extends the finite mixture of regression model to include modelling of the covariates.

Although many types of distributions have been considered for both the response and

covariates, to our knowledge skewed distributions have not yet been considered in this

paradigm. Herein, a family of 24 novel CWMs are considered which allows both the

covariates and response variables to be modelled using one of four skewed distributions,

or the normal distribution. Parameter estimation is performed using the expectation-

maximization algorithm and both simulated and real data are used for illustration.

Keywords: Mixture models, cluster weighted models, skewed distributions, clustering.

1 Introduction

Clustering is the process of finding underlying group structure in heterogeneous data. Al-

though many methods exist for clustering, one of the most prevalent in the literature is
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model-based, and makes use of the G component finite mixture model. The finite mixture

model assumes that the density of a random vector X is

f(x | ϑ) =
G
∑

g=1

πgf(x | θg)

where πg > 0 are the mixing proportions, with
∑G

g=1 πg = 1, f(·) are the component den-

sities parameterized by θg and ϑ contains all the parameters of the model. As discussed

by McNicholas (2016a), the relationship between the finite mixture model and clustering

was initially proposed by Tiedeman (1955). Some years after, Wolfe (1965) first utilized a

Gaussian mixture model for model-based clustering. Since then, there have been a myriad of

contributions to this branch of the literature, mainly considering mixtures of non-Gaussian

distributions (a recent review is given by McNicholas 2016b). Some of these include mixtures

of t distributions (Peel & McLachlan 2000, Andrews & McNicholas 2011, 2012, Steane et al.

2012, Lin et al. 2014) and power exponential distributions (Dang et al. 2015), both of which

parameterize tail weight and may be useful for modelling data with outliers. Addition-

ally, many distributions that parameterize both skewness and tail weight have also been

proposed. These include, but are not limited to, work where mixture components follow

a skew-t distribution (Lin 2010, Vrbik & McNicholas 2012, 2014, Lee & McLachlan 2014,

Murray, McNicholas & Browne 2014, Murray, Browne & McNicholas 2014), a normal inverse

Gaussian distribution (Karlis & Santourian 2009), a variance-gamma (McNicholas et al. 2017),

a generalized hyperbolic (Browne & McNicholas 2015), a hidden truncation hyperbolic dis-

tribution (Murray et al. 2017, 2020), or a skewed power exponential distribution (Dang et al.

2019). All of these allow for the modelling of skewed data, which when modelled by a Gaus-

sian distribution has a tendency to over fit the true number of components.

One drawback of the non-Gaussian mixture models mentioned thus far is that they do

not typically account for dependencies via covariates. When there is a clear regression rela-

tionship between the variables, important insight can be gained by accounting for functional

dependencies between them. In such scenarios, the finite mixture of regressions (FMR:

DeSarbo & Cron 1988) may be employed. As in traditional regression analysis, the FMR

model assumes that the covariates are fixed, and therefore the distribution of the covariates

is not taken into consideration when performing the cluster analysis. Indeed, such a model
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is also known as finite mixture of regression with fixed covariates.

Unlike the FMR, the cluster weighted model (CWM) offers far more flexibility in that the

distribution of the covariates is taken into account. First introduced by Gershenfeld (1997),

it is also sometimes referred to as a finite mixture of regression with random covariates. As

discussed in Section 2, several CWMs have been introduced in the literature. Most of them

consider a univariate response variable and a set of covariates, modelled by a univariate

and a multivariate distribution, respectively. To our knowledge, only Dang et al. (2017)

consider multiple response variables and covariates, both modelled via multivariate Gaussian

distributions. Herein, we extend this branch of the literature by considering multivariate

skewed distributions for both the responses and the covariates. Specifically the skew-t, the

generalized hyperbolic, the variance gamma, and the normal inverse Gaussian distributions

will be used. By also considering the Gaussian distribution, we will compose a family of 24

new CWMs, that are flexible enough to consider scenarios in which both the responses and

the covariates are skewed, or in which one of the two sets of variables is normally distributed

and the other is skewed.

The remainder of this paper is laid out as follows. In Section 2, a detailed background is

given for the cluster weighted model, and the four skewed distributions that will be utilized

herein. Section 3 discusses the use of the four skewed distributions in the CWM setting

including parameter estimation. Section 4 considers two simulated analyses, in which the

parameter recovery and the classification performances for our models are evaluated. A

comparison between FMRs and CWMs is also discussed. Section 5 applies our CWMs,

along with the Gaussian CWM and the FMRs, to two real datasets. Lastly, we provide a

summary and discuss possible avenues for future work in Section 6.

2 Background

2.1 Cluster Weighted Models

Assume we observe a continuous random response variables Yi and continuous random co-

variate vectors Xi of dimension d, for a sample of N observations, with i ∈ {1, . . . , N}. Also
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assume the sample can be partitioned into G groups. In the CWM framework, the joint

density of Yi and Xi can be written as

p(xi, yi | ϑ) =
G
∑

g=1

πgpX(xi | φg)pY (yi | xi, θg), (1)

where pX(·) is density function forXi parameterized by φg and pY (·) is the density function of

Yi | xi parameterized by θg. Note that ϑ = {π1, . . . , πG,φ1, . . . ,φG, θ1, . . . , θG} represents

the set of all parameters. The CWM is very flexible, and has been thoroughly studied

in the literature. In its simplest form, it is assumed that pX(·) = Φd(x | µg,Ψg) and

pY (·) = Φ1(y | β′

gx
∗

i , σg), where Φr(·) represents the r-dimensional Gaussian density, β is a

(d+ 1) dimensional vector of coefficients, and x∗

i = (1,x′

i)
′.

Many extensions of this model have been proposed. For example, Ingrassia et al. (2012)

propose the use of t distributions for the response and covariates for data with potential out-

liers. Other extensions include high dimensional covariates (Subedi et al. 2013), non-linear

functional relationships (Punzo 2014), detecting outliers using the contaminated normal dis-

tribution (Punzo & McNicholas 2017), and a general approach that allows various types of

response variables as well as covariates of mixed-type (Ingrassia et al. 2015). Počuča et al.

(2020) consider a further extension of Ingrassia et al. (2015) by further splitting the contin-

uous covariates into Gaussian and non-Gaussian covariates.

Unlike the CWMs just described, Dang et al. (2017) consider a multivariate response

model. In this case it is assumed that the response Yi is of dimension p, so that pY(·) =
Φp(y | B′

gx
∗

i ,Σg), where B is a (1 + d)× p matrix of coefficients. This multivariate response

CWM will be the basis for our family of 24 models, where both or just one of Yi and Xi are

allowed to follow a skewed distribution.

2.2 Generalized Inverse Gaussian Distribution

Before introducing the four skewed distributions which will be used in this paper, the gen-

eralized inverse Gaussian distribution is first introduced. A random variable Y has a gener-

alized inverse Gaussian (GIG) distribution parameterized by a, b and λ, denoted herein by
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GIG(a, b, λ), if its probability density function can be written as

f(y|a, b, λ) = (a/b)
λ
2 yλ−1

2Kλ(
√
ab)

exp

{

−ay + b/y

2

}

,

where

Kλ(u) =
1

2

∫

∞

0

yλ−1 exp

{

−u

2

(

y +
1

y

)}

dy

is the modified Bessel function of the third kind with index λ. Expectations of some functions

of a GIG random variable are mathematically tractable, e.g.:

E(Y ) =

√

b

a

Kλ+1(
√
ab)

Kλ(
√
ab)

, (2)

E (1/Y ) =

√

a

b

Kλ+1(
√
ab)

Kλ(
√
ab)

− 2λ

b
, (3)

E(log Y ) = log

(
√

b

a

)

+
1

Kλ(
√
ab)

∂

∂λ
Kλ(

√
ab). (4)

An alternative parameterization of the generalized inverse Gaussian distribution, as used by

Browne & McNicholas (2015) is given by

g(y|ω, η, λ) = (w/η)λ−1

2ηKλ(ω)
exp

{

−ω

2

(

w

η
+

η

w

)}

, (5)

where ω =
√
ab and η =

√

a/b. For notational clarity, we will denote the parameterization

given in (5) by I(ω, η, λ).

2.3 Skewed Distributions

Many skewed distributions may be derived by using a normal variance-mean mixture model.

This model assumes that a random vector X can be written

X = µ+Wα+
√
WU, (6)

where µ is a location parameter, α is a skewness parameter, W is a positive random variable,

and U ∼ N(0,Σ), with N(·) identifying the multivariate normal distribution. Herein, we

will focus on four different skewed distributions that are special cases of the variance mean

mixture model and have been successfully used in model based clustering. Namely we will
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focus on the skew-t (ST), the generalized hyperbolic (GH), the variance gamma (VG) and

the normal inverse Gaussian distribution (NIG).

The p-dimensional skew-t distribution, denoted by ST(µ,α,Σ, ν), arises with W ∼
IGamma(ν/2, ν/2), where IGamma(·) is the inverse gamma distribution. The resulting den-

sity is

fST(x | ϑ) =2
(

ν
2

)
ν
2 exp {(x− µ)′Σ−1α)}
(2π)

p
2 |Σ| 12Γ(ν

2
)

(

δ(x;µ,Σ) + ν

ρ(α,Σ)

)

−
ν+p
4

×K
−

ν+p
2

(

√

[ρ(α,Σ)] [δ(x;µ,Σ) + ν]
)

,

where

δ(x;µ,Σ) = (x− µ)′Σ−1(x− µ), ρ(α;Σ) = α′Σ−1α,

and ν > 0.

The p-dimensional generalized hyperbolic distribution, denoted by GH(µ,α,Σ, λ, ω),

arises with W ∼ I(ω, 1, λ), and the resulting density is

fGH(x|ϑ) =
exp {(x− µ)′Σ−1α)}

(2π)
p
2 |Σ| 12Kλ(ω)

(

δ(x;µ,Σ) + ω

ρ(α,Σ) + ω

)

(λ− p
2 )

2

×K(λ−p/2)

(

√

[ρ(α,Σ) + ω] [δ(x;µ,Σ) + ω]
)

,

λ ∈ R, ω ∈ R
+.

The p-dimensional variance gamma distribution, denoted by VG(µ,α,Σ, γ), arises with

W ∼ Gamma(γ, γ), and the probability density function is

fVG(x|ϑ) =
2γγ exp {(X− µ)Σ−1α′}

(2π)
p
2 |Σ| 12Γ(γ)

(

δ(x;µ,Σ)

ρ(α,Σ) + 2γ

)
(γ−p/2)

2

×K(γ− p
2)

(

√

[ρ(α,Σ) + 2γ] [δ(x;µ,Σ)]
)

,

where γ ∈ R
+.

Finally, the normal inverse Gaussian, denoted herein by NIG(µ,α,Σ, κ), is derived with

W ∼ IG(1, κ) (O’Hagan et al. 2016) where IG(·) denotes the inverse Gaussian distribution.

fNIG(x|ϑ) =
2 exp {(x− µ)Σ−1α) + κ}

(2π)
p+1
2 |Σ| 12

(

δ(x;µ,Σ) + 1

ρ(α,Σ) + κ2

)

−(1+p)/4
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×K−(1+p)/2

(

√

[ρ(α,Σ) + κ2] [δ(x;µ,Σ) + 1]
)

,

where κ ∈ R
+.

3 Methodology

3.1 Cluster Weighted Models With Skewed Distributions

The cluster weighted model using skewed distributions is now presented. For the purposes of

this paper, the densities pX and pY can be any of the four multivariate skewed distributions

previously presented or the multivariate normal distribution. In addition, pX and pY need

not be the same, thus creating a family of 24 new CWMs, plus the completely unconstrained

normal CWM of Dang et al. (2017). For notational clarity, each model will be labeled by

separating with a “-” the acronyms used for pX and pY, respectively. For example, the

unconstrained normal CWM of Dang et al. (2017) is herein called N-N CWM.

Recalling the variance mean mixture model in (6), for an observation in group g the

response vector Yi, conditional on the covariate vector Xi, can be written

Yi|xi = B′

gx
∗

i + VigαY g +
√

VigUY i,

where Bg is a (1 + d)× p matrix of coefficients, x∗

i = (1,x′

i)
′, UY i ∼ N(0,ΣY g). In the case

that Yi is modelled using a multivariate normal distribution then it is assumed Yi | xi ∼
N(B′

gx
∗

i ,ΣY g).

If modelling the covariate vector using a skewed distribution, then the random covariate

vector, Xi, can be written

Xi = µg +WigαXg +
√

WigUXi,

with UXi ∼ N(0,ΣXg). Otherwise, if Xi is modelled using a normal distribution, then

Xi ∼ N(µg,ΣXg).

3.2 Parameter Estimation

The expectation-maximization (EM) algorithm is now utilized for parameter estimation. For

the purposes of this section, we introduce the latent variables zig, where zig = 1 if observation
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i is in group g, and 0 otherwise. We also introduce the latent variables Wig and Vig if the

distributions of Xi and Yi, respectively, are skewed. The complete data log-likelihood is

then

l(ϑ) = l1(π) + l2(φ) + l3(θ),

where π = (π1, . . . , πG), φ = {φ1, . . . ,φG}, θ = {θ1, . . . , θG}, and

l1(π) =

G
∑

g=1

N
∑

i=1

zigπg.

If Xi follows one of the skewed distributions,

l2(φ) =
G
∑

g=1

N
∑

i=1

log(hW (wig | φWg)) + CX − 1

2

G
∑

g=1

N
∑

i=1

zig[log(|ΣXg|)

+ (1/wig)(xi − µg)
′ΣX

−1
g (xi − µg)− (xi − µg)

′ΣX
−1
g αXg −αX

′

gΣX
−1
g (xi − µg)

+ wigαX
′

gΣX
−1
g αXg],

where hW (·) is the density function of Wig parameterized by φWg, and CX is constant with

respect to the parameters. On the other hand, if Xi is normally distributed then

l2(φ) = CXN − 1

2

G
∑

g=1

N
∑

i=1

zig[log(|ΣXg|) + (xi − µg)
′ΣX

−1
g (xi − µg)],

where CXN is constant with respect to the parameters.

If Yi is distributed according to one of the skewed distributions,

l3(θ) =
G
∑

g=1

N
∑

i=1

log(hV (vig | θV g)) + CY − 1

2

G
∑

g=1

N
∑

i=1

zig[log(|ΣY g|)

+ (1/vig)(yi −B′

gx
∗

i )
′ΣY

−1
g (yi −B′

gx
∗

i )− (yi −B′

gx
∗

i )
′ΣY

−1
g αY g −αY

′

gΣY
−1
g (yi −B′

gx
∗

i )

+ vigαY
′

gΣY
−1
g αY g],

where hV (·) is the density function of Vig parameterized by θV g, and CY is a constant with

respect to the parameters. If Yi is normally distributed,

l3(θ) = CY N − 1

2

G
∑

g=1

N
∑

i=1

zig[log(|ΣY g|) + (xi − µg)
′ΣY

−1
g (xi − µg)],
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where CY N is constant with respect to the parameters. After initialization, the EM algorithm

proceeds as follows.

E Step: Update the group memberships zig given by

ẑig =
πgp(yi,xi | φ̂g, θ̂g)

∑G
h=1 πhp(yi,xi | φ̂h, θ̂h)

.

If the distribution of Xi is skewed, then in addition, the following values need to be updated

aig := E[Wig | zig = 1,xi, φ̂g]

big := E[1/Wig | zig = 1,xi, φ̂g]

cig := E[log(Wig) | zig = 1,xi, φ̂g]

If the distribution of Yi is skewed, then the following values are also updated

kig := E[Vig | zig = 1,yi, θ̂g]

mig := E[1/Vig | zig = 1,yi, θ̂g]

nig := E[log(Vig) | zig = 1,yi, θ̂g]

These updates are dependent upon the distribution; however, we have the following proper-

ties of the conditional distributions of the latent variables for each of the four distributions.

W ST
ig | xi, zig = 1 ∼ GIG

(

ρ(αXg,ΣXg), δ(xi;µg,ΣXg) + νXg,−(νXg + p)/2
)

WGH
ig | xi, zig = 1 ∼ GIG

(

ρ(αXg,ΣXg) + ωXg, δ(xi;µg,ΣXg) + ωXg, λXg − p/2
)

WVG
ig | xi, zig = 1 ∼ GIG

(

ρ(αXg,ΣXg) + 2γXg, δ(xi;µg,ΣXg), γXg − p/2
)

WNIG
ig | xi, zig = 1 ∼ GIG

(

ρ(αXg,ΣXg) + κ2
Xg, δ(xi;µg,ΣXg) + 1,−(1 + p)/2

)

and

V ST
ig | xi,yi, zig = 1 ∼ GIG

(

ρ(αY g,ΣY g), δ(yi;B
′

gxi,ΣY g) + νY g,−(νY g + p)/2
)

V GH
ig | xi,yi, zig = 1 ∼ GIG

(

ρ(αY g,ΣY g) + ωY g, δ(yi;B
′

gxi,ΣY g) + ωY g, λY g − p/2
)

V VG
ig | xi,yi, zig = 1 ∼ GIG

(

ρ(αY g,ΣY g) + 2γY g, δ(yi;B
′

gxi,ΣY g), γY g − p/2
)

V NIG
ig | xi,yi, zig = 1 ∼ GIG

(

ρ(αY g,ΣY g) + κ2
Y g, δ(yi;B

′

gxi,ΣY g) + 1,−(1 + p)/2
)

.

Therefore, all of the required expectations can be calculated using (2)–(4).
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M Step: In the M step, we update all of the parameters. Specifically, the parameters for

the distribution of Xi are updated as follows. If Xi is normally distributed then

µ̂g =
1

Tg

G
∑

g=1

ẑigxi, Σ̂Xg =
1

Tg

G
∑

g=1

ẑig(xi − µ̂g)(xi − µ̂g)
′,

with Tg =
∑N

i=1 ẑig. On the other hand, if Xi follows one of the skewed distributions, then

we have the following updates for the related parameters

µ̂g =

∑N
i=1 ẑigxi (agbig − 1)
∑N

i=1 ẑigagbig − Tg

, α̂Xg =

∑N
i=1 ẑigxi

(

bg − big
)

∑N
i=1 ẑigagbig − Tg

,

where ag = (1/Tg)
∑N

i=1 ẑigaig and bg = (1/Tg)
∑N

i=1 ẑigbig. The update for ΣXg in this case

is

Σ̂Xg =
1

Tg

N
∑

i=1

ẑig

[

big(xi − µ̂g)(xi − µ̂g)
′ − (xi − µ̂g)α̂

′

Xg
− α̂Xg(xi − µ̂g)

′ + aigα̂Xgα̂
′

Xg

]

If Yi is modelled using a multivariate normal distribution, the update for Bg is given by

B̂g =

(

N
∑

i=1

ẑigx
∗

ix
∗

i
′

)−1( N
∑

i=1

ẑigx
∗

iyi
′

)

,

and the update for ΣY g is

Σ̂Yg =
1

Tg

N
∑

i=1

ẑig(yi − B̂′

gxi)(yi − B̂′

gxi)
′.

If, however, Yi follows one of the skewed distributions, the updates for Bg and αYg are given

by

B̂g = P−1
g Rg, α̂Yg =

1

Tgkg

(

N
∑

i=1

ẑigyi −R′

gP
−1
g

N
∑

i=1

ẑigx
∗

i

)

,

where

Pg =
N
∑

i=1

ẑigmigx
∗

ix
∗

i
′ − 1

Tgkg

(

N
∑

i=1

ẑigx
∗

i

)(

N
∑

i=1

ẑigx
∗

i
′

)

and

Rg =
N
∑

i=1

ẑigmigx
∗

iyi
′ − 1

Tgkg

(

N
∑

i=1

ẑigx
∗

i

)(

N
∑

i=1

ẑigyi
′

)

,

with kg = (1/Tg)
∑N

i=1 ẑigkig. The update for ΣY g in this case is

Σ̂Yg =

1

Tg

N
∑

i=1

ẑig

[

mig

(

y − B̂′

gx
∗

i

)(

y − B̂′

gx
∗

i

)

′

−
(

y − B̂′

gx
∗

i

)

α̂′

Yg
− α̂Yg

(

y − B̂′

gx
∗

i

)

′

+ kigα̂Ygα̂
′

Yg

]

.
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Finally, if either Xi or Yi follows one of the skewed distributions, then there are the

additional concentration and, in the case of the generalized hyperbolic distribution, the

index parameters that need to be updated. The updates for each distribution are now given.

Skew-t Distribution

In the case of the skew-t distribution, we need to update the degrees of freedom, νg. This

update cannot be obtained in closed form, and thus needs to be performed numerically.

When Xi is considered, the update ν
(t+1)
Xg

is obtained by solving (7) for νXg ,

log
(νXg

2

)

+ 1− ϕ
(νXg

2

)

− 1

Tg

N
∑

i=1

ẑ
(t+1)
ig (b

(t+1)
ig + c

(t+1)
ig ) = 0, (7)

where ϕ(·) denotes the digamma function. When Yi is considered, the update for ν
(t+1)
Yg

is

obtained via (7), after the replacement of νXg , big and cig with νYg , mig and nig, respectively.

Generalized Hyperbolic Distribution

For the generalized hyperbolic distribution, we would update λg and ωg. These updates are

derived from Browne & McNicholas (2015), and rely on the log convexity of Ks(t), Baricz

(2010), in both s and t. For notational purposes in this section, the superscript t denotes

the update at the previous iteration. The resulting updates, when Xi is considered, are

λ̂
(t+1)
Xg

= c̄gλ̂
(t)
Xg

[

∂

∂s
log(Ks(ω̂

(t)
Xg
))

∣

∣

∣

∣

s=λ̂
(t)
Xg

]

−1

(8)

ω̂
(t+1)
Xg

= ω̂
(t)
Xg

−
[

∂

∂s
q(λ̂

(t+1)
Xg

, s)

∣

∣

∣

∣

s=ω̂
(t)
Xg

][

∂2

∂s2
q(λ̂

(t+1)
Xg

, s)

∣

∣

∣

∣

s=ω̂
(t)
Xg

]

−1

(9)

where the derivative in (8) is calculated numerically,

q(λXg , ωXg) =
N
∑

i=1

zig

[

log(KλXg
(ωXg))− λXgcig −

1

2
ωXg

(

aig + big
)

]

,

and c̄g = (1/Tg)
∑N

i=1 ẑigcig. When Yi is considered, ωXg , λXg , āg, b̄g, and c̄g are replaced

with ωYg , λYg , k̄g, m̄g, and n̄g, respectively.
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Variance-Gamma Distribution

For the variance-gamma, the update for γg, like the generalized hyperbolic case, cannot be

obtained in closed form. For the Xi, this update is obtained by solving (10) for γXg

log γXg + 1− ϕ(γXg) + c̄g − āg = 0. (10)

When Yi is considered, γXg , āg and c̄g are replaced with γYg , k̄g and n̄g, respectively.

Normal Inverse Gaussian Distribution

When we consider Xi, the update of κg has the following closed form

κ
(t+1)
Xg

=
1

a(t+1)
g

.

If Yi is considered, we replace κXg and āg with κYg and k̄g, respectively.

3.3 Initialization of the Algorithm

To initialize the EM algorithm, we followed the approach discussed in Dang et al. (2017).

Specifically, the zig are initialized in two different ways: 10 times using a random soft initial-

ization and once with a k-means hard initialization. Therefore, for each G, the algorithms are

run 11 times, and the solution producing the highest log-likelihood value is chosen. Notice

that, for the k-means initialization, the initial zig are selected from the best k-means clus-

tering results from 10 random starting values, and it is implemented by using the kmeans()

function of the R statistical software (R Core Team 2019). For a better comparability with

the competing models, the same zig are also used to initialize the FMRs considered herein.

4 Simulated Data Analyses

In this section, several aspects related to our models are analyzed. First, in Section 4.1

the parameter recovery, classification performance, and selection of the number of groups is

discussed. Classification performance is evaluated by computing the adjusted Rand index

(ARI; Hubert & Arabie 1985), which calculates the agreement between the true classification
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and the one predicted by the model. An ARI of 1 indicates perfect agreement between the

two partitions, whereas the expected value of the ARI under random classification is 0. The

Bayesian information criterion (BIC; Schwarz 1978) is used to assess the selection of the true

number of groups.

In Section 4.2, our models and their competitors are tested under different scenarios.

Specifically, a comparison between the CWMs and the FMRs is conducted. In addition, a

comparison between our CWMs and the N-N CWM is performed, and the capability of the

BIC in detecting the data generating model is evaluated.

4.1 Parameter Recovery and Classification Evaluation

Because of the high number of CWMs introduced in this manuscript, we will focus our

attention on four of the 24 novel CWMs. Specifically, we analyze four models that can cover

the following different scenarios:

1. pX and pY are the same skewed density;

2. pX and pY are different skewed densities,

3. pX is skewed and pY is normal;

4. pX is normal and pY is skewed.

As illustrative examples, we consider the (1) GH-GH CWM, (2) VG-NIG CWM, (3) ST-N

CWM and (4) N-NIG CWM. Note that the models are chosen so that all the distributions

considered in this manuscript are incorporated in some capacity.

According to the CWM literature (see, e.g. Punzo 2014, Ingrassia et al. 2015, Punzo & Ingrassia

2016, Punzo & McNicholas 2017), and because of the high number of parameters that should

be otherwise reported, we limit our analysis to the recovery of the regression coefficients.

We consider the case with p = 2, r = 3 and N = 400. The parameters used to generate the

data, and are equal for the four CWMs, are displayed in Table 1. The additional param-

eters, specific for each model, are: ωX1 = 4.00, ωX2 = 10.00, ωY1 = 10.00, ωY2 = 4.00 and

λX1 = λX2 = λY1 = λY2 = 0.30 for the GH-GH CWM, γX1 = γY1 = 4.00, γX2 = 20.00 and
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γY2 = 10.00 for the VG-NIG CWM, νX1 = νX2 = 7.00 for the ST-N CWM, κY1 = 4.00 and

κY2 = 10.00 for the N-NIG CWM.

Table 1: Common parameters between the four CWMs used to generate the simulated

datasets.

Parameter Group 1 Group 2

πg 0.50 0.50

µg (0.00, 0.00, 0.00)′ (3.00, 3.00, 3.00)′

αXg (2.00, 2.00, 2.00)′ (−3.00,−3.00,−3.00)′

ΣXg











1.00 0.10 0.20

0.10 3.00 0.10

0.20 0.10 2.00





















1.00 0.10 0.10

0.10 1.00 0.20

0.10 0.20 1.00











Bg

















−6.00 1.00

−1.50 −1.50

−0.50 −1.50

2.50 1.50

































10.00 −7.50

−6.00 4.00

4.00 5.50

−3.50 −3.00

















αYg (2.00,−2.00)′ (−2.00, 2.00)′

ΣYg





1.00 0.20

0.20 1.00









1.00 0.30

0.30 1.00





For each of the four CWMs, 100 datasets are generated and the corresponding model

is fitted with G = 2. The average and the standard deviation of the regression coefficient

estimates of each model, over the 100 datasets, are reported in Table 2.

Overall, the average estimates for the coefficient matrices are very close to their true

values; however, the estimates for the intercepts are a little less accurate. From the analysis

of the standard deviations, we can see those related to the GH-GH CWM are slightly higher

than the other CWMs, which may be due to the added complexity of the index parameter.

The average ARI estimates, and the classification performance, is very good for all models

considered (Table 3). Finally, we note that when fitting the models for G = 1, 2, 3 on the

same 100 datasets, the correct number of groups (G = 2) is always selected by the BIC.
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Table 2: Average (Bg) and standard deviation (σBg) of the regression coefficients estimates

over 100 datasets for each CWM.

CWM Bg σBg

Group 1 Group 2 Group 1 Group 2

GH-GH

















−6.26 1.12

−1.49 −1.51

−0.49 1.50

2.49 1.51

































10.73 −8.14

−6.02 4.00

4.01 5.50

−3.50 −3.00

































0.74 0.78

0.06 0.06

0.05 0.04

0.05 0.06

































0.87 0.82

0.09 0.07

0.08 0.08

0.09 0.08

















VG-NIG

















−6.30 1.32

−1.50 −1.50

−0.50 1.50

2.50 1.50

































9.96 −7.44

−6.00 4.00

4.00 5.50

−3.50 −3.00

































0.41 0.40

0.03 0.03

0.02 0.02

0.03 0.03

































0.17 0.16

0.02 0.02

0.02 0.02

0.02 0.02

















ST-N

















−6.00 1.00

−1.50 −1.49

−0.50 1.50

2.50 1.49

































10.00 −7.50

−6.00 4.00

4.00 5.50

−3.51 −3.00

































0.13 0.13

0.05 0.05

0.03 0.03

0.04 0.04

































0.08 0.08

0.06 0.05

0.06 0.06

0.05 0.05

















N-NIG

















−5.98 1.03

−1.50 −1.50

−0.50 1.50

2.50 1.50

































9.93 −7.43

−6.00 4.00

3.99 5.50

−3.50 −3.00

































0.17 0.17

0.03 0.04

0.02 0.02

0.03 0.03

































0.18 0.18

0.02 0.02

0.02 0.02

0.02 0.02

















4.2 Comparison Between CWMs and FMRs

For illustrative purposes, the CWMs based on the ST distribution namely the ST-ST CWM,

ST-N CWM and N-ST CWM are now considered. These models are examples of the scenarios

1, 3 and 4 described in the previous section. For each of these three models, 100 datasets

are generated and all the CWMs, as well as the FMRs for which the distribution of the

responses given the covariates is one of those considered in this manuscript. Furthermore

these are fitted for G ∈ {1, 2, 3}. We set p = 2, r = 3, N = 400 and the parameters displayed
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Table 3: Average ARI values (ARI) computed over the 100 datasets for the CWMs.

CWM ARI

GH-GH 0.96

VG-NIG 1.00

ST-N 0.99

N-NIG 1.00

in Table 4 to generate the datasets. An example of generated dataset from each CWM is

displayed in Figure 1 and it is clear that there is a grouping structure in the covariates.

Table 4: Parameters used to generate the simulated datasets based on the ST distribution.

Parameter Group 1 Group 2

πg 0.50 0.50

µg (−2.50, 4.00, 3.00)′ (2.50,−3.00,−3.00)′

αXg (−3.00, 2.50,−2.00)′ (2.50, 3.00,−1.50)′

ΣXg











2.90 −0.50 −0.05

−0.50 0.45 −0.75

−0.05 −0.75 1.95





















2.30 −0.90 −0.35

−0.90 1.55 0.25

−0.35 0.25 1.00











νXg 7.00 7.00

Bg

















−6.00 1.00

−1.50 −1.50

−0.50 1.50

2.50 1.50

































−10.00 7.50

−1.00 −1.00

−0.50 1.50

2.00 2.00

















αYg (2.00,−2.50)′ (−1.00, 2.00)′

ΣYg





1.80 −0.30

−0.30 2.00









2.00 −0.35

−0.35 2.80





νYg 7.00 7.00

The results are illustrated in the radar plots of Figure 2 and Figure 3, for the CWMs and
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(a) (b)

(c)

Figure 1: Pairwise plots of example datasets generated by (a) ST-ST CWM, (b) ST-N CWM

and (c) N-ST CWM.

FMRs, respectively. In detail, each sub-plot shows the number of times each G is chosen by

the BIC for each model over the 100 datasets. Starting with the CWM results, in Figure 2(a)

we can see that when the data are generated by the ST-ST CWM, all the CWMs for which

either pX, pY, or both are assumed to be normal, problems arise in detecting the true

number of groups in the data. As discussed in Section 1, when the normal distribution

is used for modelling skewed data, it has has a tendency to over fit the true number of

groups. This is confirmed by our results, but it is also interesting to notice that this issue

has a different magnitude depending on which one of pX or pY is modelled using the normal

density. Specifically, when pX is assumed to be skewed and pY assumed to be normal, most
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(a) (b)

(c)

Figure 2: Radar plots of the number of times each G is chosen by the BIC, for the CWMs,

when the data are generated from (a) ST-ST CWM, (b) ST-N CWM and (c) N-ST CWM.

Each sub-plot refers to 100 datasets.
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(a) (b)

(c)

Figure 3: Radar plots of the number of times each G is chosen by the BIC, for the FMRs,

when the data are generated from (a) ST-ST CWM, (b) ST-N CWM and (c) N-ST CWM.

Each sub-plot refers to 100 datasets.
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of the time G = 2 is still properly selected, although it is still not as accurate as the CWMs

where both pX and pY are assumed to be skewed. On the other hand, when pX is assumed

normal and pY assumed skewed, G = 3 is nearly always chosen.

When the datasets are generated from an ST-N CWM, the only models having serious

problems are those when the covariates are assumed to be normally distributed, as shown

in Figure 2(b). Because of their greater flexibility, all the CWMs that assume a skewed

density for pY are able to accurately model symmetric data. The results for the N-ST CWM

are displayed in Figure 2(c). Here, the only CWMs that present issues are those for which

pY is assumed normal.

Regarding the capability of the BIC in detecting the exact data generating model, we

observed that over the 100 datasets generated by the ST-ST and N-ST CWMs, the BIC

selects the correct model 78 and 82 times, respectively. The occasions in which it fails are due

to a wrong distribution chosen for only one of the covariates or the conditional distribution

of the responses. Under no circumstances are both distributions incorrectly chosen. When

the ST-N CWM is considered, the BIC performance is even better than before, as it selects

the correct model 99 times.

From the analysis of the FMR results, we can see that in all the three cases illustrated

in Figures 3(a)–3(c), when the skewed FMRs are considered, G = 1 is repeatedly selected.

Despite the clear separation between the two groups, the FMR approach is unable to correctly

identify them. The classification results of the CWMs are shown in Figure 4. Here, the

models that have the lowest ARI values are those assuming normal covariates for the datasets

generated from the ST-N and ST-ST models. All the other CWMs produce very good

classifications for all three of the data generating models considered.

5 Real Data Applications

5.1 Overview

In this section, all the CWMs discussed herein, as well as the FMRs for comparison purposes,

are applied to two real datasets.
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Figure 4: Average ARI values of the CWMs, computed over 100 datasets for each of the

three data generating models.

5.2 Data

The first application considers the AIS dataset included in the sn package (Azzalini 2020). It

contains measurements of N1 = 102 male and N2 = 100 female athletes (then, N = 202 and

G = 2) collected at the Australian Institute of Sport. The subset of seven variables, used

recently in the mixtures of regression literature (Soffritti & Galimberti 2011, Dang et al.

2017) is now analyzed. Specifically, we consider red cell count (RCC), white cell count

(WCC), plasma ferritin concentration (FE), body mass index (BMI), sum of skin folds (SSF),

body fat percentage (BFT), and lean body mass (LBM). As in Dang et al. (2017), the blood

composition variables (RCC, WCC and FE) are selected as the response variables, while the

biometrical variables (BMI, SSF, BFT and LBM) are the covariates. For this dataset, we

know the true group memberships, and can therefore evaluate the clustering results of the

competing models by computing the ARI.

The second application considers the pulpfiber dataset included in the robustbase

package (Maechler et al. 2020). The data contains measurements related to the properties

of N = 62 pulp fibers and the resultant paper produced. The following subset of four
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variables is analyzed here: elastic modulus (EM), stress at failure (SF), long fiber fraction

(LFF) and zero span tensile (ZST). The paper properties (EM and SF) are selected as the

response variables, while the pulp fiber characteristics (LFF and ZST) are the covariates. As

opposed to the AIS data, the group structure is completely unknown. Although we cannot

compute the ARI to evaluate the partitions of the competing models, from the investigation

of the pairwise plot, it will be quite evident the existence of a grouping structure in the data.

5.3 Results

In both applications, all the CWMs and the FMRs considered in this manuscript are fitted

with G ∈ {1, 2, 3}. When the AIS dataset is considered, the best CWM according to the

BIC is the GH-ST with G = 2, whereas the best FMR model is the VG with G = 1.

The classification results give an ARI of 0.96 for the GH-ST CWM, i.e., an almost perfect

classification, and an ARI of 0 for the VG FMR. Our results are similar to those in Dang et al.

(2017), where the FMR model, based on the normal distribution, detected only one group in

the data. This means that, even if skewed distributions are used for the FMR models, they

are unable to correctly model this data. However, the GH-ST CWM performs better than

the best N-N parsimonious CWM reported as 0.92 in Dang et al. (2017). This aspect can be

better understood by looking at the pairwise plot of the dataset in Figure 5, and coloured

according to the classification produced by the GH-ST CWM. As we can see, many of the

variables seem to present a skewed behaviour, so that our distributions are able to model

the data in a more accurate way than the normal distribution.

For the pulpfiber dataset, the best CWM according to the BIC is the VG-N with G = 2,

whereas the best FMR model is the ST with G = 1. Similar to the previous application,

the best CWM detects two groups in the data, while the best FMR model only finds one

group. By looking at the pairwise plot of the dataset in Figure 6, coloured according to the

classification produced by the VG-N CWM, it seems clear that there is more than one group

in the data. Specifically, it appears that there are two seemingly skewed and separated groups

with possible mild outliers. Moreover, it is interesting to note that the linear relationship

between the response variables and covariates appear to be similar between the two groups

found by the CWMs, which may explain why the FMR only finds one group.
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Figure 5: Pairwise plot of the AIS dataset coloured according to the classification produced

by the best fitting CWM.

6 Summary

A novel family of 24 multivariate CWMs was introduced. Extending the completely uncon-

strained normal CWM of Dang et al. (2017), the distributions of the responses and of the

covariates were allowed to be skewed. For illustrative purposes the following four skewed

distributions were considered: the generalized hyperbolic, the skew-t, the variance-gamma

and the normal inverse Gaussian. Additionally, by also considering the normal distribution,

our models were flexible enough to consider scenarios in which the covariates and the re-

sponses conditioned on the covariates are skewed, or in which one of the two sets of variables

is normally distributed and the other one is skewed.

An EM algorithm was discussed for parameter estimation, and its capability of recovering

the parameters of the data generating model was tested in a simulation study. A comparison

among the CWMs and the FMRs was also investigated via simulated data. Specifically, it
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Figure 6: Pairwise plot of the pulpfiber dataset colored according to the classification

produced by the best fitting CWM.

was shown that by ignoring the distribution of the covariates, the FMRs may fail to detect

the correct number of groups in the data, even if they are well separated.

All our CWMs, as well as the normal CWM and the FMRs, were additionally fitted to

two real datasets. The results of the first application are in line with those present in the

literature in the sense that the FMRs are not able to model this dataset, even by using

skewed distributions; however, one of the skewed CWMs outperformed the classification

result obtained by Dang et al. (2017).

In the second application, despite lacking a true classification, an underlying group struc-

ture is evident by a graphical analysis. In such a case, one of our CWMs seems to properly

identify these groups, while the FMRs find just one group, similar to the first application.

Possible extensions of this work might be to consider a parsimonious structure for the

covariance matrices, in the fashion of Dang et al. (2017), as well as restraining the parameters

governing the tail behaviour.
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