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Abstract
Mesokurtic projections are linear projections with null fourth cumulants. They might
be useful data pre-processing tools when nonnormality, as measured by the fourth
cumulants, is either an opportunity or a challenge. Nonnull fourth cumulants are
opportunities when projections with extreme kurtosis are used to identify interesting
nonnormal features, as for example clusters and outliers. Unfortunately, this approach
suffers from the curse of dimensionality, which may be addressed by projecting the
data onto the subspace orthogonal to mesokurtic projections. Nonnull fourth cumu-
lants are challenges when using statistical methods whose sampling properties heavily
depend on the fourth cumulant themselves. Mesokurtic projections ease the problem
by allowing to use the inferential properties of the same methods under normality.
The paper shows necessary and sufficient conditions for the existence of mesokurtic
projections and compares them with other gaussianization methods. Theoretical and
empirical results suggest that mesokurtic transformations are particularly useful when
sampling from finite normal mixtures. The practical use of mesokurtic projections is
illustrated with the AIS and the RANDU datasets.

Keywords Closed skew-normal · Finite mixture · Gaussianization ·
High-dimensional · Kurtosis · Projection pursuit

Mathematics Subject Classification 15A18 · 62H10

1 Introduction

A fourth cumulant of a random vector with finite fourth moments is the fourth deriva-
tive, evaluated at the origin, of the cumulant generating function of the random vector
itself, that is the logarithm of its characteristic function. All fourth cumulants of a
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multivariate normal distribution equal zero, and we refer to distributions with the
same property as to mesokurtic distributions. Also, we refer to transformations lead-
ing to null fourth cumulants as to mesokurtic transformations. In particular, when
the mesokurtic transformation is a linear function of the original variables, we refer
to it as to a mesokurtic projection. With a little abuse of language, and for ease of
description, we write that mesokurtic transformations remove kurtosis. Mesokurtic
transformations include as special cases transformations to normality, also known as
gaussianizing transformations. They have been extensively studied in scientific fields
other than Statistics, as for example Physics (Yu et al. 2016). Mesokurtic transforma-
tions are of interest whenever the performance of the chosen statistical method either
increases or decreases with the absolute values of fourth-order cumulants.

Researchers from social and life sciences are often concerned with the lack of
normality of their data, since many multivariate statistical techniques are not robust
when the sampled distribution is wrongly assumed to be normal. Sometimes the per-
formance of the statistical technique depends on the fourth cumulants of the sampled
distribution, as exemplified by the following cases.

Inference on covariance matrices is notoriously very sensitive to fourth cumulants.
Mardia (1974) showed that the performance of a likelihood test based on the erroneous
assumption of normality crucially depends on ameasure ofmultivariate kurtosis which
is a simple function of fourth cumulants. Schott (2002) used fourth cumulants to derive
a robust procedure for testing the equality of the population covariance and a given
matrix. Yanagihara et al. (2005) extended Mardia’s results to several likelihood tests
on covariance matrices based on the normality assumption, and showed that their
performances depend on their fourth cumulants.

Variogram estimation is of paramount importance in spatial statistics but spatial
data are often nonnormal, also due to preferential sampling (Loperfido and Guttorp
2008). Genton et al. (2001) modelled nonnormality with the multivariate skew-normal
distribution and derived analytical formulae for covariances of variogram estimators,
and showed that they depend on the fourth cumulants of the same distribution. Kim
(2005) extended their results to mixtures of skew-normal distributions. Rezvandehy
and Deutsch (2018) addressed preferential sampling with fourth cumulants.

Relevance of fourth cumulants is not limited to covariance testing and variogram
estimation. Yanagihara (2007) stressed the importance of fourth cumulants in the
multivariate linear model. Arevalillo and Navarro (2012) investigated the effect of
fourth cumulants on the Fisher discriminant function (i.e. the projection which best
separates themeans of twomultivariate distributions), and found it to be nonnegligible.
The large-sample approximation of the multivariate sample mean by the skew-normal
distribution improves when the fourth cumulants of the two distributions are close to
each other (Christiansen and Loperfido 2014).

Multivariate normality is usually pursued by means of the componentwise, non-
linear, univariate transformations proposed by either Box and Cox (1964) or Tukey
(1977). Tsay et al. (2017) thoroughly review these and other transformations to nor-
mality, while proposing a new one which is particularly apt at dealing with platykurtic
distributions. Unfortunately, nonlinearly transformed variables might not be easily
interpretable nor jointly normal, as pointed out by Lin and Lin (2010), among oth-
ers. Moreover, the same methods are inappropriate when the joint distribution is not
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normal, but univariate marginals are, as it happens for the distributions described
in Arnold et al. (2001). Loperfido (2014) and Loperfido (2019) used a simple argu-
ment to show how nonliner transformations to normality are inappropriate when using
Hotelling’s one-sample test.

Mesokurtic projections do not suffer from these limitations. We illustrate this point
with the bivariate distribution 2φ (x) φ (y) Φ (λxy) introduced byArnold et al. (2001),
where φ (·) and Φ (·) denote the probability and the cumulative density functions of
a standard normal distribution, while λ is a real value. Adcock (2021) thoroughly
investigated its properties and proposed some generalizations. The default approach to
the gaussianization of the random vector (X ,Y )would be raising both its components
to an appropriate power. However, there do not exist two real values α and β such that
the joint distribution of

(
Xα,Y β

)
is bivariate normal. On the other hand, there are two

normal, and therefore mesokurtic, projections of (X ,Y ), that is X and Y .
The performance of kurtosis-based projection pursuit tends to increase with the

absolute values of fourth cumulants. Projection pursuit is amultivariate statistical tech-
nique aimed at finding interesting data projections, with interestingness quantified by
the projection index: the data projection with the highest value of the projection index
is regarded as the most interesting. The normal distribution is commonly regarded
as the least interesting (Huber 1985), so that the projection index often measures
a nonnormality feature such as skewness, kurtosis or multimodality. In particular,
kurtosis-based projection pursuit uses the absolute value of the fourth standardized
cumulant as a projection index, consistently with the projection pursuit criteria stated
in Huber (1985). Kurtosis-based projection pursuit therefore looks for interesting pro-
jections by either maximizing or minimizing kurtosis, that is the fourth standardized
moment. Kurtosis-based projection pursuit appears in cluster analysis (Peña and Prieto
2000, 2001b), outlier detection (Galeano et al. 2006; Peña and Prieto 2001a), normal-
ity testing (Malkovich andAfifi 1973), independent component analysis (Girolami and
Fyfe 1996), invariant coordinate selection (Alashwali and Kent 2016), chemometrics
(Hou and Wentzell 2014), finance (Loperfido 2020b).

Projection pursuit is commonly regarded as more problematic when applied to
datasets with more variables than units (see, for example, Hui and Lindsay 2010;
Lindsay and Yao 2012). Bickel et al. (2018) thoroughly investigated the asymptotic
properties of projection pursuit for several ratios of the number of variables to the
number of units, finding serious shortcomings of the method when the number of
variables is much greater than the number of units. Pires and Branco (2019) showed
that two-dimensional projections of datasets with more variables than units could
approximate any given set of bivariate data with the same number of units. Lee and
Cook (2010) illustrated the limitation of projection pursuit for classification with a real
dataset containing3571variables recorded from72cases.However, the performanceof
kurtosis-based projection pursuit might rapidly deteriorate as the number of variables
increases while the number of units remains fixed, even if the former remains much
smaller than the latter (Loperfido 2020a).

The problems posed by high-dimensional data might be eased by means of sparse
projection pursuit, that is projection pursuit performed on a small subset of variables,
either original or projected (Bickel et al. 2018). Jones and Sibson (1987) proposed a
linear transformation of the data into two mutually disjoint subsets of variables, one
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deemed uninteresting and the other deemed interesting. The former should be dis-
carded while the latter should be analysed by means of projection pursuit. Following
this approach, Blough (1989), Loperfido (2017), Franceschini and Loperfido (2019)
removed skewness from the data bymeans of linear transformations, within the frame-
work of skewness-based projection pursuit. Hui and Lindsay (2010) and Lindsay and
Yao (2012) linearly transformed the data into twomutually orthogonal subsets of inter-
esting and uninteresting projections. Ray (2010) used a simulated dataset with many
more variables than units to illustrate the merits of this approach. In kurtosis-based
projection pursuit, where the least interesting distributions are those with null fourth
order cumulants, data are linearly transformed into two mutually orthogonal sets of
variables, of which only one is mesokurtic. Then the mesokurtic set of variables is
removed and kurtosis optimization is carried out on the remaining variables.

This paper uses several kurtosis matrices to obtain mesokurtic projections. It states
both sufficient and necessary conditions for the existence of mesokurtic projections.
The approach is algebraic in nature, since it relies on matrix concepts, including null
linear spaces, spectra and generalized eigenvalues. As a major advantage, sampling
properties ofmesokurtic projectionsmight be easily derived from the theory of random
matrices and their spectra. The remainder of the paper is organized as follows. Section 2
uses kurtosismatrices to investigate the existence and the properties ofmesokurtic pro-
jections. Section 3 contains some simulation studies related tomodel-based clustering.
Section 4 applies the proposed method to a subset of the AIS dataset containing 23
units and 11 variables, which is a nonnegligible variables-to-units ratio. Section 5 uses
the RANDU dataset to show that mesokurtic projections might be a viable alterna-
tive to nonlinear transformations to normality. Section 6 contains some concluding
remarks, mentions further applications of mesokurtic projections, discusses their lim-
itations and suggests some extensions of the proposed method to datasets with more
variables than units. The proofs of the theorems are in the Appendix.

2 Theory

This section describes amethod for obtaining projections with null or negligible fourth
cumulants, that is mesokurtic and nearly mesokurtic projections. Firstly, it uses bivari-
ate random vectors to illustrate situations where mesokurtic projections do not exist.
Secondly, provides necessary and sufficient conditions for the existence of mesokurtic
projections of random vectors in any dimension. Thirdly, the section briefly discusses
the sampling properties of mesokurtic projections.

The i jhk-th cumulant of a d-dimensional random vector x = (X1, . . . , Xd)
T sat-

isfying E
(
X4
i

)
< +∞ for i = 1, …, d is

κi jhk = ∂4 log E
[
exp

(
ιt T x

)]

∂ti∂t j∂th∂tk

∣∣∣∣∣
t=0d

, (1)

where ι = √−1, t ∈ R
d and E

[
exp

(
ιt T x

)]
is the cumulant generating function. In

the univariate case, the only fourth cumulant is
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κ4 (X) = E
[
(X − μ)4

]
− 3σ 4, (2)

where μ and σ 2 are the mean and the variance of a random variable X satisfying
E

(
X4

)
< ∞.

The bivariate case provides a good insight into nonexistence of mesokurtic projec-
tions. Let U and W be two standardized, independent random variables whose fourth
cumulants κ4 (U ) and κ4 (W ) are both positive. Elementary properties of cumulants
imply that the fourth cumulant of the projection hU + kW is positive, too:

κ4 (hU + kW ) = h4κ4 (U ) + k4κ4 (W ) > 0. (3)

As a direct consequence, there does not exist a mesokurtic projection of (U ,W ).
Nonexistence of mesokurtic projections of bivariate and standardized random

vectors becomes more difficult to ascertain when the independence assumption is
removed. Let (X ,Y ) be a bivariate and standardized random vector:

E (X) = E (Y ) = E (XY ) = 0, E
(
X2

)
= E

(
Y 2

)
= 1.

Also, let βi = E
(
XiY 4−i

)
, for i = 0, 1, 2, 3, 4. The fourth cumulant of the linear

combination aX + Y is a fourth-order polynomial in a:

E
[
(aX + Y )4

]
−3

(
a2 + 1

)2 = (β4 − 3) a4+4β3a
3+6 (β2 − 1) a2+4β1a+β0−3.

A mesokurtic linear function of X and Y exists if and only if the polynomial has real
roots.

The problem of ascertain the existence of mesokurtic projections becomes even
more complicated when considering standardized random vectors with more than two
components. We address the problem by recalling that fourth cumulants are simple
functions of the fourth and second central moments. The i jhk-th moment of x is the
expectation μi jhk = E

(
Xi X j Xh Xk

)
, for i, j, h, k = 1, . . . , d. The i jhk-th central

moment of x is the i jhk-th moment of x − μ, where μ = (μ1, . . . , μd)
T is the mean

of x :
μi jhk = E

[
(Xi − μi )

(
X j − μ j

)
(Xh − μh) (Xk − μk)

]
. (4)

The i jhk-cumulant can then be represented as

κi jhk = μi jhk − σi jσhk − σihσ jk − σikσ jh, (5)

where σab is the covariance between the a-th and the b-th components of x , with a,
b=1,…, d. For example, the fourth cumulants of (X1, X2)

T , expressed as functions of
its second and fourth central moments, are

κ1111 = μ1111 − 3σ 2
11, κ2222 = μ2222 − 3σ 2

22, κ1112 = μ1112 − 3σ11σ12,

κ1122 = μ1122 − σ11σ22 − 2σ 2
12, κ1222 = μ1222 − 3σ12σ22.
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We first consider the fourth moment (matrix) of a d−dimensional random vector
x = (X1, . . . , Xd)

T satisfying E
(
X4
i

)
< +∞, for i = 1, . . . , d, that is the d2 × d2

matrix M4,x = E
(
x ⊗ xT ⊗ x ⊗ xT

)
, where “⊗” denotes the Kronecker product.

It conveniently arranges all the fourth-order moments μi jhk = E
(
Xi X j Xh Xk

)
of

x (where i, j, h, k = 1, . . . , d) and admits the block matrix representation M4,x ={
Bpq

}
, where Bpq = E

(
X pXqxxT

)
, for p, q = 1, . . . , d. For example, the fourth

moment of (X1, X2)
T is

(
B11 B12
B21 B22

)
=

⎛

⎜⎜
⎝

μ1111 μ1112 μ1112 μ1122
μ1112 μ1122 μ1122 μ1222
μ1112 μ1122 μ1122 μ1222
μ1122 μ1222 μ1222 μ2222

⎞

⎟⎟
⎠ . (6)

If the variance Σ of x is positive definite, its fourth standardized moment M4,z is the
fourthmoment of z = Σ−1/2 (x − μ), whereΣ−1/2 is the symmetric, positive definite
square root of the concentration matrix Σ−1. Most measures of multivariate kurtosis
are either scalar-type or matrix-type functions of M4,z (Loperfido 2017, 2020a). In
the univariate case M4,z coincides with Pearson’s measure of kurtosis:

β2 (X) = E
[
(X − μ)4

]

σ 4 . (7)

The eigenstructure of M4,z has several interesting features: eigenvectors of M4,z
associated with its positive eigenvalues are vectorized, symmetric matrices and the
eigenvector of M4,z associated with its largest eigenvalue (that is the dominant eigen-
vector of M4,z) is a semidefinite matrix (Loperfido 2017). The following theorem
gives a necessary condition for the existence of mesokurtic projections based on the
eigenstructure of the fourth standardized moment matrix. It is reminescent of the
distinction between platykurtic and leptokurtic random variables, whose fourth stan-
dardized moments are smaller and greater than three, respectively.

Proposition 1 Let M4,z be the fourth moment matrix of the d−dimensional, standard-
ized random vector z and let v be an eigenvector of M4,z which might be represented
as a symmetric, definite matrix. Then the dominant eigenvalue of M4,z is simple and
v is the associated eigenvector. Also, mesokurtic projections of z do not exist if all
positive eigenvalues of M4,z are either greater or smaller than three.

Proposition 1 suggests the following procedure for computing projections with
negligible fourth cumulants. First, compute the nonnull eigenvalues of the fourth stan-
dardized moment matrix. If they are all greater (smaller) than three the projections
with fourth cumulants closer to zero are those which minimize (maximize) kurtosis.
In these circumstances, kurtosis alleviation coincides with kurtosis optimization, that
is kurtosis-based projection pursuit. The computational issues of the latter might be
addressed by the method proposed in Franceschini and Loperfido (2018), which are
implemented in the R package Kurt (Franceschini and Loperfido 2020).

On the other hand, if some nonnull eigenvalues of the fourth standardized moment
are smaller than three while other eigenvalues are greater than three, it is worth looking
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for mesokurtic projections. An intuitively appealing approach has been proposed by
Peña and Prieto (2001a) and Peña and Prieto (2001b) within the framework of outlier
detection. First, find the projection with maximal kurtosis. Second, project the data
onto its orthogonal subspace. Then repeat these steps until all remaining projections
are mesokurtic or nearly so. This approach, which may be referred to as to iteractive
projection pursuit approach, proved to be useful when nonnormality is due to the
presence of outliers, butmaynot detectmesokurtic projectionswhen data are generated
from different models, as it happens in independent component analysis.

Independent component analysis (ICA) is a multivariate statistical technique aimed
at recovering independent, unobserved signals by appropriate data projections. The
basic ICA model is x = b + As, where x is a d-dimensional random vector, b is a
d-dimensional real vector, A is a d × d invertible real matrix and the components of
s are mutually independent, standardized random variables of which at most one is
normal (Miettinen et al. 2015).

Iteractive projection pursuit does not detect mesokurtic projections when the fourth
cumulants of the signals are nonnull and take both signs. We illustrate the point with
the bivariate ICA model

x =
(
X1
X2

)
, b =

(
0
0

)
, A =

(
1 2
2 3

)
, s =

(
S1
S2

)
,

where the first, second, fourth cumulants of S1 and S1 are

κ1 (S1) = κ1 (S2) = 0, κ2 (S1) = κ2 (S2) = 0, κ4 (S1) = 1, κ4 (S2) = −1.

The projection of x with maximal kurtosis coincides, up to location and scale changes,
with the first signal, which is leptokurtic:

S1 = 2X2 − 3X1 = 2 (2S1 + 3S2) − 3 (S1 + 2S2) .

The projection of x orthogonal to 2X2 − 3X1 coincides, up to location and scale
changes, with the second signal, which is platykurtic:

S2 = 2X1 − X2 = 2 (S1 + 2S2) − (2S1 + 3S2) .

Neither projection is mesokurtic, but themodel implies the existence of themesokurtic
projection X1 + X2.

A sufficient condition for the existence of mesokurtic projections might be estab-
lished using the cokurtosis matrix (see, for example, Jondeau and Rockinger 2006),
that is the d × d3 matrix

cok (x) = E
[
(x − μ) ⊗ (x − μ)T ⊗ (x − μ)T ⊗ (x − μ)T

]
. (8)
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For example, the cokurtosis of (X1, X2)
T is

cok (X1, X2) =
(

μ1111 μ1112 μ1112 μ1122 μ1112 μ1122 μ1122 μ1222
μ1112 μ1122 μ1122 μ1222 μ1122 μ1222 μ1222 μ2222

)
. (9)

The standardized cokurtosis of x is just the cokurtosis of z = Σ−1/2 (x − μ).
The fourth standardized matrix M4,z = {

Mpq = E
(
Z pZqzzT

)}
and the stan-

dardized cokurtosis cok (z) might be regarded as block matrices where the same
blocks are arranged in different ways. The latter aligns side by side the blocks
of the fourth standardized moment in such a way that the blocks with the small-
est first indices appear first, followed by those having the smallest second indices:
cok (x) = (M11, M12, . . . , Mdd) where the block Mi j appears before the block Maj

if i < a, and the block Mi j appears before the block Mib if j < b.
Both M4,z and cok (z) may contain up to d (d + 1) (d + 2) (d + 3) /24 distinct

elements. Since this number grows very quickly with the vector’s dimension, it
is convenient to summarize them with smaller matrices. Cardoso (1989) proposed
Kz = E

(
zT zzzT

)
as a kurtosis matrix. Mòri et al. (1993) independently proposed

and discussed its variant Kz − (d + 2) Id . Statistical applications of both kurtosis
matrices include independent component analysis (Cardoso 1989), generalized prin-
cipal components (Caussinus and Ruiz-Gazen 2009), invariant coordinate selection
(Alashwali and Kent 2016 and cluster analysis (Peña et al. 2010). Loperfido 2017)
highlighted the connection between Kz and tensor contraction. The kurtosis matrix
Kz is a function of the fourth moment matrix of a standardized random vector and is
commonly regarded as a good compromise between detail and synthesis, when study-
ing the kurtosis structure of the random vector itself. The kurtosis matrix Kz does not
account for expectations of products of four different components of z: elements in
Kz do not depend on E

(
Zi Z j Zh Zk

)
, when i , j , h, k differ from each other. For this

reason we refer to Kz as the partial kurtosis matrix. In the bivariate case it is

[
E

(
Z4
1

) + E
(
Z2
1 Z

2
2

)
E

(
Z3
1Z2

) + E
(
Z1Z3

2

)

E
(
Z3
1Z2

) + E
(
Z1Z3

2

)
E

(
Z4
2

) + E
(
Z2
1 Z

2
2

)
]

. (10)

The following theorem establishes a sufficient condition for the existence of
mesokurtic projections. It describes a matrix depending on both standardized cokur-
tosis and partial kurtosis which recovers mesokurtic projections, when it is not of full
rank.

Proposition 2 Let cok (z) and Kz be the cokurtosis and the partial kurtosis of the
standardized, d− dimensional random vector z. Also, let the columns of the d × h
matrix BT , with h > 0, span the null space of the matrix

cok (z) cokT (z) − 6Kz + 3 (d + 2) Id , (11)

where Id is the d−dimensional identitymatrix. Then the fourth cumulant of the random
vector Bz is a null matrix.
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In practice, kurtosis matrices need to be estimated. To this end, we use a n × d
data matrix X and the corresponding sample covariance matrix S , which is assumed
to be of full rank. This assumption implies than there are more units than variables,
the opposite case falling outside the scope of the present paper. Possible extensions of
the proposed method to datasets with more variables than units are discussed in the
Conclusions section.

First we obtain the standardized data matrix Z = HnXS−1/2, where Hn is the
n× n centring matrix and S−1/2 is the symmetric square root of S−1. The fourth sam-
ple standardized moment, the sample standardized cokurtosis and the sample partial
kurtosis are

M (n)
4,Z = 1

n

d∑

i=1

zi ⊗ zTi ⊗ zi ⊗ zTi ,

cok(n) (Z) = 1

n

d∑

i=1

zi ⊗ zTi ⊗ zTi ⊗ zTi

and K (n)
4,Z = 1

n

d∑

i=1

zTi zi zi z
T
i ,

where zTi is the i−th row of Z . Under random sampling, the sequences

{
M (n)

4,Z

}
,
{
cok(n) (Z)

}
and

{
K (n)
4,Z

}
(12)

almost surely converge to the matrices M4,z , cok (z) and Kz , as long as E
(
X4
i

)
< ∞,

for i = 1, . . ., d . Since eigenvalues are continuous functions of their matrices (Ortega
1987 , page 41) eigenvalues of matrices in the three sequences converge almost surely
to eigenvalues of the corresponding matrices. Convergence of eigenvectors and con-
vergence in law require some additional assumptions, which are thoroughly described
in Rublik (2001). Propositions 1, 2 connect mesokurtic projections to the eigenvalues
of symmetric, positive semidefinite matrices, thus easing the task of making inference
on the former by using the well-established theory regarding the latter.

Consistently with Proposition 2, mesokurtic projections might be obtained as fol-
lows, if some nonnull eigenvalues of the fourth sample standardized moment being
smaller than three while other eigenvalues are greater than three. First, compute the
eigenvectors corresponding to the smallest eigenvalues of the matrix

Qn = cok(n) (Z)
[
cok(n) (Z)

]T − 6K (n)
4,Z + 3 (d + 2) Id . (13)

For the sake of clarity we assume that all eigenvalues of Qn are distinct, as it often
occurs in practice, according to our personal experience. The matrix Z Bn estimates
the mesokurtic projections that can be obtained from the sampled distributions, where
the columns of the matrix Bn are the eigenvectors associated with the k smallest
eigenvalues of Qn , with k < d. Alternatively, we could look for random projections
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onto the subspace generated by the same eigenvectors. Random projections proved
to be very useful for finding interesting projections (Peña and Prieto 2007), but they
might also be useful for detecting uninteresting ones, since most data projections
are approximatively normal, under mild assumptions (Diaconis and Freedman 1984).
The number of projections might be chosen on the ground of subject-matter consid-
erations or after testing for nullity the smallest eigenvalues of Qn .

The above mentioned approach aimed at finding mesokurtic projections relies on
little restrictive assumptions, being Propositions 1, 2 nonparametric in nature. How-
ever, a practitioner would greatly appreciate more precise indications when looking
for mesokurtic projections. We address the problem with another kurtosis matrix and
within the framework of closed skew-normal distributions. Fourth cumulants are often
arranged in the exkurtosis, that is the d × d3 block matrix

exk (x) = (K11, K12, . . . , Kdd), where Khk = {
κi jhk

} ∈ R
d × R

d

and the blocks with smaller first indices appear first, followed by those having smaller
second indices: the block Ki j appears before the block Kqj if i < q, and the block
Ki j appears before the block Kip if j < p. The name “exkurtosis” is a shorthand for
“excess kurtosismatrix”, since the best knownmeasures ofmultivariate excess kurtosis
are functions of the exkurtosis. Loperfido (2020c) investigates some properties of the
exkurtosis matrix. In particular, we have

exk (x + b) = exk (x) ,

exk (x + y) = exk (x) + exk (y) and

exk (Ax) = Aexk (x)
(
AT ⊗ AT ⊗ AT

)
,

where b is a d-dimensional real vector, y is a d-dimensional random vector with finite
fourth-order moments and independent of x , A is a k × d real matrix.

The closed skew-normal distribution introduced by Gonzalez-Farias et al. (2003)
provides another useful tool for modelling the sample bias. Its name reminds that it
is closed with respect to conditioning, affine transformations and convolutions. The
random vector x has a closed skew-normal distribution of parameters ξ,Ω,Ψ , η,Δ,
and we write x ∼ CSN (ξ,Ω,Ψ , η,Δ) , if its density function is

φ (x; ξ,Ω) Φ [Ψ (x − ξ) ; η,Δ]

Φ
(
0h; η,Δ + Ψ ΩΨ T

) , where

x ∈ R
d , ξ ∈ R

d , η ∈ R
h, Ψ ∈ R

h × R
d ,Ω ∈ R

d × R
d ,Δ ∈ R

h × R
h,

and Φ (z;μ,Σ) is the cdf of Np (μ,Σ) evaluated at z ∈ R
p, while Ω and Δ are

symmetric, positive definite matrices. The following proposition gives a sufficient
condition for the existence of a linear projection of a closed skew-normal random
vector which is normal (and hence mesokurtic).
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Proposition 3 Let x ∼ CSN (ξ,Ω,Ψ , η,Δ) be a d -dimensional random vector
whose distribution is closed skew-normal with parameters

ξ ∈ R
d , η ∈ R

h, Ψ ∈ R
h × R

d ,Ω ∈ R
d × R

d ,Δ ∈ R
h × R

h, with h < d.

Then there exists a linear projection Bx of x which is normal, where B is a (d − h)×d
full-rank matrix whose rows belong to the null space of the transposed exkurtosis of
x, i.e. Bexk (x) is a (d − h) × d3 null matrix.

Proposition 3 and known inferential results on the closed skew-normal distribution
pave the way toward a criterion aimend at finding normal (and therefore mesokurtic)
projections. First, estimate the parameters of the closed skew-normal distribution either
bymaximum likelihood or by alternative methods (Flecher et al. 2009; He et al. 2019).
The latter methods should be preferred when the likelihood function is deemed too
difficult to compute, since it involves the evaluation of multivariate integrals.

Second, estimate the exkurtosis matrix exk (x) by its sample counterpart Ê and
compute the normalized eigenvectors associated with the d − ĥ smallest eigenvalues
of Ê ÊT , where the estimate ĥ of h is just the size of the symmetric matrix Δ̂, i.e.
the estimate of Δ. Finally, estimate the matrix B with the matrix B̂ whose i-th row is
the normalized eigenvector associated with the above mentioned matrix. Convergence
of B̂ to a matrix whose columns belong to the null space of exk (x)T follows from
the mild assumptions stated in Tyler (1981) for eigenvectors of symmetric random
matrices.

3 Simulations

The scope of the simulation studies in this section is twofold. Firstly, simulations are
used to assess the relevance of the problems posed by projection pursuit when the
number of variables approaches the number of units. Secondly, simulations are used
to assess the number of mesokurtic projections detected by the method described in
the previous section, when sampling from finite normal mixtures.

We addressed the first question by simulating 1000 samples of size n = 25 and
n = 50 from

x ∼ π1Nd (0d , Id) + (1 − π1) Nd (μ1d , Id) , (14)

where 0d , 1d and Id are the d−dimensional null vector, the d−dimensional vector
of ones and the d × d identity matrix, π1 = 0.1, 0.2, 0.3, μ = 1, 2, 3, 4, d = 3,
6, 12, 24 if n = 25 and d = 6, 12, 24, 48 if n = 50. The ratio of the number of
variables to the number of units increases from 12 to 96%, with greater values of μ

denoting better separations between themixture’s components and greater values ofπ1
denoting smaller skewness and kurtosis. The projectionmaximizing kurtosis is also the
one which best separates the two normal components and is proportional to xT 1d (see,
for example, Loperfido 2020b). For each simulated sample, we computed the squared
correlation between the projection maximizing sample kurtosis and the projection
onto the direction of 1d : higher values of the squared correlation indicate a better
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Table 1 Results of the first simulation study

μ d n = 25 d n = 50

1 π = 0.1 π = 0.2 π = 0.3 π = 0.1 π = 0.2 π = 0.3

3 36 34 30 6 23 19 15

6 21 19 16 12 15 11 9

12 12 10 9 24 6 4 4

24 7 6 6 48 2 2 2

2 π = 0.1 π = 0.2 π = 0.3 π = 0.1 π = 0.2 π = 0.3

3 56 39 26 6 52 22 14

6 40 23 16 12 36 14 9

12 22 13 8 24 10 5 4

24 14 9 6 48 2 2 2

3 π = 0.1 π = 0.2 π = 0.3 π = 0.1 π = 0.2 π = 0.3

3 72 45 24 6 69 25 13

6 58 29 17 12 49 16 9

12 33 15 10 24 15 5 5

24 18 10 6 48 2 2 2

4 π = 0.1 π = 0.2 π = 0.3 π = 0.1 π = 0.2 π = 0.3

3 78 49 24 6 73 27 14

6 59 31 18 12 53 17 9

12 39 17 9 24 23 6 5

24 21 10 6 48 2 2 2

The table reports the integer part of the average squared correlation between the projection maximizing
sample kurtosis and the data projection on the direction of 1d

performance of kurtosis-based projection pursuit in detecting the cluster structure,
that is in separating the mixture components.

The simulation’s results in Table 1 clearly indicate that kurtosis-based projection
pursuit is highly sensitive to the ratio of the number of variables to the number of
units: higher ratios lead to worse performances. Kurtosis-based projection pursuit
becomes virtually useless when the number of variables is just slightly smaller than
the number of units. Another simulations study (not reported here) suggests that under
this circumstance the projection maximizing sample kurtosis and the projection of the
data onto the direction of 1d are uncorrelated.Quite surprisingly, the problemgetsmore
serious when the number of units increases. On the other hand, the performance of
kurtosis-based projection pursuit improves when the components are better separated
and nonnormality increases.

A natural question to ask is whether mesokurtic projections exist for widely used
families of multivariate distributions, such as normal mixtures. Let the distribution of
the d−dimensional random vector x be the mixture, with weights π1,…, πk of the
normal distributions Nd (μ1,Σ), . . ., Nd (μk,Σ), with k < d. In the general case, the
fourth cumulants of x are nonnull. Consider now a k×d matrix B satisfying Bμi = 0k
for i = 1,…, k. It follows that Ax is normally distributed and hence mesokurtic. Does
the method described in the previous section detect all these mesokurtic projections?
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The question becomes more difficult to answer when the covariances of the normal
components are not assumed to coincide. As an example, consider the mixture of
two normal distributions with different means and proportional covariance matrices:
π1Nd (μ1,Σ) + π2Nd (μ2, αΣ) , with π1 + π2 = 1, μ1 �= μ2, π1, π2 > 0 , α �= 1.
There is no projection whose distribution is normal. Does this mean that there are not
mesokurtic projections?

Weuse simulations to address these problems.Multivariate samples of size 100were
simulated from mixtures of two multivariate normal distributions. Other simulation
studies, not reported here, were based on samples of sizes 200 and 300 and led to
conclusions similar to the below-mentioned ones.

We first simulated 1000 samples from the normal, homoscedastic mixture
π1Nd (0d , Id) + (1 − π1) Nd (5 · 1d , Id), where π1 is either 0.1 or 0.5, for d = 8, 12,
16, 20. The sampled distribution is skewed and leptokurtic (symmetric and platykur-
tic) when π1 = 0.1 (π1 = 0.5), and admits d − 1 jointly normal projections onto
the linear subspace orthogonal to 1d . All samples exhibit either moderate or large
units-to-variables ratios, thus motivating mesokurtic projections, either for variable
selection or for parametric inference.

Then we simulated 1000 samples from the normal, heteroscedastic mixture

0.05Nd (0d , α Id) + 0.95Nd (51d , Id) , (15)

where α is either 0.5 or 2, for d = 8, 12, 16, 20. It models the presence of multivariate
outliers, by assuming that the sampled distribution is a two-component mixture, with
one mixture weight much smaller than the other. The components with the largest
and smallest mixture weights model the bulk of the data and the outliers, respectively
(Loperfido 2020b). The outliers generated from the model are said to be concentrated
or dispersed depending on whether the parameter α equals 0.5 or 2 .

We measure kurtosis by Koziol’s statistic (Koziol 1989), that is the squared
Euclidean norm of the fourth standardized moment:

1

n2

n∑

i=1

n∑

j=1

[
(xi − m)T S−1 (

x j − m
)]4

, (16)

where m is the sample mean, S is the sample variance (which is assumed to be non-
singular) and xTh is the h-th row of the n × d data matrix X , for h = 1, . . ., d. We
favored Koziol’s kurtosis over the more popular Mardia’s kurtosis because the former,
unlike the latter, depends on all fourth-order standardized moments. Other properties
of Koziol’s kurtosis, including its advantages over Mardia’s kurtosis, are discussed in
Loperfido (2020a).

The Koziol’s kurtosis of either a random vector or a sampled dataset increases
with its dimension: the Koziol’s kurtosis of a d-dimensional normal random vector is
3d (d + 2). In order to compare the nonnormality of datasets with different numbers
of variables we use the relative difference between their Koziol’s kurtoses and the
Koziol’s kurtoses of normal random vectors with the same dimensions. For example,
if the dataset at hand contains three variables and its Koziol’s kurtosis is 54, its relative
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difference to the Koziol’s kurtosis of a three-dimensional normal random vector is
(54 − 45)/45 = 0.2.

Weapplied theproposedmethod to each sample to obtaind−1,d/2,
√
d projections.

Ideally, a method purported to obtainmesokurtic projections should detect all the d−1
jointly normal projections. When this does not happen, it is desirable to have some
guidance about the achievable number of jointly normal linear projections, as for
example d/2 or

√
d . For both the original and the projected data we computed the

absolute relative difference between the observed Koziol measure of kurtosis and its
expectation under the normality assumption.Wewould like this ratio to bemuch lower
for the projected data than for the original ones. For each sample we also computed
the p−value of Koziol kurtosis, using its asymptotically normal approximation. We
would like it to be, on average and for the projected data, well above the commonly
used threshold value of 0.05.

Tables 2 and 3 contain the results of the two simulation studies. Columns A and B
report the integer part of the average absolute relative difference, multiplied by 100,
between the Koziol measure of kurtosis and the value which it is expected to attain in
the normal case, for the original and the projected variables, respectively. Column C
reports the integer part of the average p values, multiplied by 100, corresponding to
the Koziol measure of multivariate kurtosis computed for the projected variables. The
subtables denoted with d − 1, d/2 and

√
d report the simulation’s results correspond-

ing to a number of projections equal to the number of variables minus one, half the
number of variables and the integer part of the square root of the number of variables,
respectively.

The subtables of Table 2 with headers “Leptokurtic” and “Platykurtic” report the
results for samples simulated from mixtures where the weight of the standard normal
component are 0.1 and 0.5, respectively. The results of the first simulation, related
to homoscedastic normal mixtures, may be summarized as follows. The ratio statistic
is always much smaller for the projected data than for the original ones. It increases
(decreases) with the number of variables when d − 1 (

√
d) mesokurtic projections are

seeked. When d/2 mesokurtic projections are seeked, the ratio statistic first decreases
and then increases. Normality of the projections, as measured by Koziol’s kurtosis, is
better achieved when their number is small compared to the number of variables, and
the latter is small, either.

The subtables of Table 3 with headers “Concentrated” and “Dispersed” report the
results for samples simulated from mixtures where the outliers generated from the
model are more concentrated and more dispersed, respectively. The proposed method
appears to perform better in the second simulation study. The differences between
the ratio statistics for the original and the projected variables are always greater in
the second simulation study. The performances of the proposed method are worst and
best when d − 1 and

√
d mesokurtic projections are seeked, and when the number of

original variables is small. The performances of mesokurtic transformations appear to
be similar in the presence of concentrated and dispersed outliers. Similar remarks hold
when considering the p values of Koziol’s kurtosis tests for the projected variables.

We conclude that the proposed method succeeds in either removing or alleviating
kurtosis. It is particularly successful when the number of projections is moderate with
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Table 2 Results of the second
simulation study

Projections Variables Concentrated Dispersed

A B C A B C

d − 1 8 183 24 2 266 27 3

12 140 52 0 235 56 0

16 150 87 0 243 96 0

20 175 132 0 276 144 0

d/2 8 178 7 26 268 7 27

12 146 5 29 231 8 21

16 147 13 4 236 18 2

20 182 30 0 275 34 0√
d 8 173 13 26 272 13 26

12 146 10 25 240 9 27

16 146 5 31 242 5 31

20 178 9 24 273 8 25

Columns A and B report the integer part of the average absolute rel-
ative difference, multiplied by 100, between the Koziol measure of
kurtosis and the value which it is expected to attain in the normal case,
for the original and the projected variables, respectively. Column C
reports the integer part of the average p values, multiplied by 100, cor-
responding to the Koziol measure of multivariate kurtosis computed
for the projected variables

Table 3 Results of the third
simulation study

Projections Variables Concentrated Dispersed

A B C A B C

d − 1 8 183 24 2 266 27 3

12 140 52 0 235 56 0

16 150 87 0 243 96 0

20 175 132 0 276 144 0

d/2 8 178 7 26 268 7 27

12 146 5 29 231 8 21

16 147 13 4 236 18 2

20 182 30 0 275 34 0√
d 8 173 13 26 272 13 26

12 146 10 25 240 9 27

16 146 5 31 242 5 31

20 178 9 24 273 8 25

Columns A and B report the integer part of the average absolute rel-
ative difference, multiplied by 100, between the Koziol measure of
kurtosis and the value which it is expected to attain in the normal case,
for the original and the projected variables, respectively. Column C
reports the integer part of the average p values, multiplied by 100, cor-
responding to the Koziol measure of multivariate kurtosis computed
for the projected variables
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respect to the number of variables, and the latter ismoderate, too. As amajor drawback,
it may not detect all mesokurtic projections, especially in high dimensions.

4 AIS data

In this section we illustrate the use of mesokurtic projections in projection pursuit, as
described in Sect. 2, with the data collected from the Australian Institute of Sport by
Telford and Cunningham (1991), also known as AIS dataset. It contains eleven blood
and body measurements from 202 athletes of both genders competing in different
sport events: red blood cell count, white blood cell count, hematocrit, hemoglobin
concentration, plasma ferritins, body mass index, sum of skin folds, body fat, lean
body mass, height and weight. Here, we focus on the 23 female athletes playing
netball, so that the number of units is about twice the number of variables.

Nine variables in the dataset are mildly platykurtic, while the remaining two vari-
ables are mildly leptokurtic: their kurtoses range from 2.079 to 4.681, with just two
of them being greater than 3. We assess the joint normality of the eleven variables by
means of Koziol’s kurtosis tests for multivariate normality, whose p value is virtually
zero. The maximum number of jointly mesokurtic projection detected by the method
described in Sect. 2 is three (the p value of Koziol’s kurtosis test for multivariate
normality is greater than 0.17), which is much smaller than the number of original
variables. Further dimension reduction might be achieved by looking for two sets of
mutually orthogonal projections, one nearly mesokurtic and the other containing the
information on the interesting structure.

Mild nonnormality might be due to the presence of outliers, often detectable by
means of visual inspection. The boxplots in Fig. 1 suggest the presence of several
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Fig. 1 Boxplots of the standardized variables in the AIS dataset recorded from female netball players
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Fig. 2 Healy’s plot of the eleven variables in the AIS dataset recorded from female netball players

potential outliers, represented by the asterisks above and below the whiskers. The
third, ninth and eleventh variables correspond to the third, ninth and eleventh boxplots
starting from the left of Fig. 1. They hint that the potential outliers might be the first,
the second and the fifteenth units. On the other hand, the Healy’s plot in Fig. 1 clearly
suggests that the twenty-first unit is the most likely to be an outlier, since it has the
highest Mahalanobis distance from the mean and it is represented by the point farthest
away from the bisector line.We conclude that visual inspection of the original variables
gives contradictory results about the presence of outliers (Fig. 2).

We addressed outlier detection by means of kurtosis maximization, as suggested by
several authors (Peña and Prieto 2001a; Hou and Wentzell 2014; Loperfido 2020b).
The projection with maximal kurtosis is represented by the last boxplot from the left
in Fig. 3, which clearly shows the presence of a single outlier, that is the twenty-first
observation. Then we performed kurtosis maximization on the projections orthogonal
to those with small absolute fourth cumulants, as computed with the method described
in Sect. 2. The first, second, third, fourth and fifth boxplots from the left of Fig. 3
represent the projections with maximal kurtoses orthogonal to 10, 9, 8, 7 and 6 nearly
mesokurtic projections. All boxplots clearly suggest that the twenty-first unit is the
most likely to be an outlier and all but the first two boxplots on the left suggest that it is
the only potential outlier. All projections maximizing kurtosis are strongly correlated
with each other: the correlations between them are never smaller than 0.93. This
statistical analysis is exploratory in nature andmore sophisticated, inferential methods
are needed to assess the presence of outliers. This section is just aimed at showing
how mesokurtic projections might be helpful for dimension reduction while retaining
the relevant data structure to be uncovered by kurtosis-based projection pursuit.
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Fig. 3 Boxplots of the standardized projections with maximal kurtoses of the variables in the AIS dataset
recorded from female netball players

5 Randu data

In simulation studies, a normal random sample is often obtained by applying the
normal quantile transformation to data generated from a uniform distribution. The
method might lead to unsatisfactory results, even if visual and formal procedures
support the hypothesis of the randomly generated data being uniform.We illustrate the
problemwith the RANDUdata and show howmesokurtic projectionsmight be helpful
in alleviating it. The same dataset provides a good case of mesokurtic projections
virtually identical to those with extreme kurtosis.

The RANDU dataset contains 400 cases and 3 variables. Each datumwas generated
by the RANDU multiplicative congruential scheme xn+1 = (216 + 3)xn (mod 231).
RANDU data satisfy the constraint xn − 6xn+1 + xn+2 ≡ 0 (mod 231), so that all
triplets (xn, xn+1, xn+2) lie on 15 parallel lines through the unit cube. This structure
might be detected by means of appropriate rotations. Despite that, each variable in
the dataset appear to be generated from a uniform distribution in the interval [0, 1].
For example, their means, standard deviations, skewnesses and kurtoses (reported in
Table 4) are very close to their expected values 0.5, 0.2889, 0 and 1.8, respectively.
These features made the RANDU dataset a perfect case for projection pursuit (see,
for example, Huber 1985).

Table 4 Descriptive statistics of
the RANDU data

First Second Third

Mean 0.5264 0.4861 0.4810

Deviation 0.2847 0.2934 0.2787

Skewness −0.1028 0.0045 0.0867

Kurtosis 1.8665 1.7626 1.8747

123



Kurtosis removal for data pre-processing 257

−4 −3 −2 −1 0 1 2 3
0

10

20

30

40

50

60

70

80

90

Fig. 4 Histogram of the first projection

Since each variable appears to be uniformly distributed, it is natural to trasform
them to normality by applying the normal quantile transformation. Unfortunately, this
method fails to achieve normality, as it is apparent from their univariate kurtoses:
3.626, 3.449, 3.795. The p values of the kurtosis-based tests for normality of the three
transformed variables are smaller than 0.05. The Box-Cox transformation gives even
worse results. It leads to variables which are significantly platykurtic: their kurtoses
are 2.056, 2.026, 2.117. The p values of both the skewness and the kurtosis tests for
normality of the three transformed variables are smaller than 0.05.

Finally, we applied the proposed method to obtain two data projections. The first
one is virtually normal (its skewness and kurtosis are −0.0359 and 2.9815), while the
second one is only slightly so (its skewness and kurtosis are−0.1784 and 2.5485). The
p values of the kurtosis tests for testing the normality of the first and second projections
are 0.94 and 0.0654, respectively. The two projections are not jointly normal: the p−
value of the Koziol test for multivariate normality is 0.0067. The histograms (Figs. 4
and 5) and the scatterplot of the two projections (Fig. 6) are consistent with these
findings.

Interestingly, the first projection coincides, up to location and scale changes, with
the projection achievingmaximal kurtosis. Hence theRANDUdataset provides a good
example of kurtosis-based projection pursuit as a tool for recovering normality, rather
than detecting nonnormal features.

The empirical findings in this section might be summarized as follows. We applied
the proposed method to a well-known, three-dimensional, platykurtic dataset, obtain-
ing a normal univariate projection and a slightly nonnormal bivariate projection. We
therefore succeeded in achieving univariate normality and in alleviating bivariate
nonnormality. Commonly used, componentwise, nonlinear methods failed in both
recovering either univariate or bivariate normality. We conclude that the RANDU
dataset supports the use of mesokurtic projections when a randomly generated normal
sample is seeked.
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Fig. 5 Histogram of the second projection
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Fig. 6 Scatterplot of the two projections

6 Conclusions

The paper describes a method for obtaining data projection with null or negligible
fourth cumulants. It uses several kurtosis matrices to establish either sufficient or nec-
essary conditions for the existence ofmesokurtic projections. It also relatesmesokurtic
projections to spectra of kurtosis matrices, thus easing inferential tasks. Mesokurtic
projections address the problems arising in the application of kurtosis-based projec-
tion pursuit to datasets where the number of variables is only slightly smaller than the
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number of units. The proposed method has been implemented in the R package Kurt
(Franceschini and Loperfido 2020).

Data preprocessing is a default practice in projection pursuit (see, for example,
Jones and Sibson (1987)). Laa and Cook (2020) proposed to remove skewness from
the data when preprocessing them, which can be done by means of linear projec-
tions (Loperfido 2014; Franceschini and Loperfido 2019). We recommend the use
of mesokurtic projections after linear projections to symmetry when preprocessing
the data. Centering, sphering, symmetrizing and mesokurtic projections conveniently
address the first, second, third and fourth sample cumulants.

Mesokurtic projections might also be used in independent component analysis,
a multivariate statistical method aimed at recovering independent random variables
from the observed data which are their one-to-one affine transformations. The model
is identifiable if at most one independent variable is normal (Miettinen et al. 2015).
The nonnormal independent variables are commonly assumed to be leptokurtic, so
that fourth cumulants may be used to recover them (Girolami and Fyfe 1996). The
same assumption implies that the model is identifiable if there is at most one linear
combination of the observed variableswhich ismesokurtic.Hencemodel identification
is related to the rank of the matrix which characterizes mesokurtic projections.

Mesokurtic projections might also preprocess the data before using a statistical
method whose performance heavily depends on the sampled distribution having null
or at least negligible cumulants. Examples include inference on covariance matrices
(Yanagihara et al. 2005), linear discriminant analysis (Arevalillo and Navarro 2012),
multivariate linear regression (Yanagihara 2007) and variogram estimation (Rezvan-
dehy and Deutsch 2018). Mesokurtic projections might provide a viable alternative to
other statistical methods which are commonly used to address these problems: flexible
modelling, nonparametric inference and nonlinear transformations.

Despite its theoretical properties and practical usefulness, the proposedmethod suf-
fers from several drawbacks. In the first place, mesokurtic projections do not exist for
some distributions, as for example scale mixtures of multivariate normal distributions.
In the second place, the proposed method may not detect all mesokurtic projections,
especially in high dimensional cases. In the third place, mesokurtic projections are not
appropriate when the sampled distribution is nonnormal, but all its fourth cumulants
equal zero. In the fourth place, mesokurtic projections imply some information loss,
since the original data are projected onto a lower dimensional space.

A natural question to ask is whether the proposed method might be extended to
datasets withmore variables than units. Both Propositions 1, 2 rely on the standardized
random variable z = Σ−1/2 (x − μ), which is defined only if the number of units is
greater than the number of variables. In the opposite case, a common solution is
the replacement of the covariance matrix Σ with the positive definite convex linear
combination Γ = λΣ + (1 − λ)Ω of Σ itself with a full rank matrix Ω of the
same size, where 0 < λ < 1 (see, for example, Hastie et al. 2008). This approach
already appeared in the literature on projection pursuit (Lee and Cook 2010; Hui and
Lindsay 2010). We are currently investigating the generalizations of Propositions 1,
2 to situations where z = Σ−1/2 (x − μ) is replaced by y = Γ −1/2 (x − μ), where
Γ −1/2 is the positive definite symmetric square root of the inverse Γ −1 of Γ .
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7 Appendix

We recall some fundamental properties of the Kronecker product which we shall
use repeatedly in the following proofs (see, for example, Rao and Rao 1998 ,
pages 194-201): (P1) the Kronecker product is associative: (A ⊗ B) ⊗ C = A ⊗
(B ⊗ C) = A ⊗ B ⊗ C ; (P2) if matrices A, B, C and D are of appropriate size, then
(A ⊗ B) (C ⊗ D) = AC ⊗ BD; (P3) the transpose of a Kronecker product of two
matrices is the Kronecker product of the transposed matrices: (A ⊗ B)T = AT ⊗ BT ;
(P4) if a and b are two vectors, then abT , a ⊗ bT and bT ⊗ a denote the same
matrix; (P5) tr

(
AT B

) = vecT (B)vec(A) for any two m × n matrices A and B; (P6)
vec (ABC) = (

CT ⊗ A
)
vec (B), when A ∈ R

p ×R
q , B ∈ R

q ×R
r , C ∈ R

r ×R
s .

Finally, we recall some properties of the commutation matrix Cp,q ∈ R
pq × R

pq

(Kollo and von Rosen 2005, page 79): (P7) vec
(
MT

) = Cp,qvec (M) for any p × q

matrix M ; (P8) CT
p,q = Cq,p; (P9) Cd,d = ∑

i, j

(
ei eTj

)
⊗ (

e j eTi
)
, where ei is the

i−th column of Id (Kollo and von Rosen 2005, page 82); (P10) Cd,d = C−1
d,d .

Proof of Proposition 1 Let a and b be two eigenvectors ofM4,z corresponding to differ-
ent, positive eigenvalues. Both of themmight be represented as vectorized, symmetric
matrices (see, for example, Loperfido 2017): a = vec (A), b = vec (B), A = AT ,
B = BT . Since a and b correspond to different eigenvalues of the symmetric matrix
M4,z , they are mutually orthogonal: bT a = vecT (B)vec(A) = 0 = tr (AB), the
last equality following from P5 and symmetry of the two matrices. Suppose now that
both A and B were positive definite, symmetric matrices. Then all eigenvalues of AB
would be positive (Ortega 1987, page 232). This would in turn imply that tr (AB)

were positive, thus leading to a contradiction. We conclude that A and B cannot be
both positive definite. Equivalently, we showed that M4,z has at most one eigenvector
which might be represented as a vectorized, definite symmetric matrix. We denote this
eigenvector by v = vec (V ), where V is a vectorized, symmetric and positive definite
d × d matrix.

Assume now that v is not an eigenvector associated to the dominant eigenvalue
λ of M4,z , and denote with u such eigenvector. Using an argument similar to the
previous one, we can show that uT v = 0, which would be possible if an only if u were
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a vectorized, symmetric and indefinite matrix. However, u is a vectorized, positive
semidefinite symmetric matrix (Loperfido 2017), thus leading to a contradiction. We
have therefore proved that v must be an eigenvector associated with the dominant
eigenvalue of M4,z .

We now prove by contradiction that λ is simple. Assume that λ is not a simple
eigenvalue of M4,z , so that there is another eigenvector m = vec (M) associated to it,
where M is a vectorized and symmetric d × d matrix of unit norm. Without loss of
generality we can assume that v andm aremutually orthogonal: vTm = tr (V M) = 0.
The last equality, together with positive definiteness of V , imply that M is indefinite.
The inequality

E

[(
zT Mz

)2] ≥ E

[(
zT Sz

)2]
, (17)

where S is a symmetric, d×d matrix of unit norm, follows from P6 and fromm being
an eigenvector associated to the dominant eigenvalue of M4,z . Since V is symmetric,
it might be decomposed into ΩΔΩT , where the columns ω1, …, ωd of Ω ∈ R

d ×R
d

are the normalized eigenvectors of M andΔ is a diagonal matrix whose i−th diagonal
entry is the i−th eigenvalue of M : Δ = diag (δ1, . . . , δd). It follows that

E

[(
zT Mz

)2] = E

[(
λ1Y

2
1 + · · · + λdY

2
d

)2]
, (18)

where y = (Y1, . . . ,Yd)T = ΩT z. By assumption, the covariance matrix of z is
nonsingular, so that E

(
Y 2
i

)
> 0 for i = 1, . . ., d. Suppose now that M is indefinite,

so that the smallest k eigenvalues of M are negative, for some integer k beween 1 and
d − 1, implying

E

[(
δ1Y

2
1 + · · · + δdY

2
d

)2]
< E

[(
δ1Y

2
1 + · · · + δk−1Y

2
k−1 − δkY

2
k · · · + δdY

2
d

)2]
.

(19)
Equivalently, the inequality

E

[(
zT Mz

)2]
< E

[(
zT Qz

)2]
(20)

would hold true, for Q = ΩΔT+Ω and Δ+ = diag (δ1, . . . , δk−1,−δk, . . . ,−δd).
Also, Q would be positive semidefinite with the same norm of M : ‖M‖2 = δ21 +
· · ·+δ2d = ‖Q‖2. As a direct consequence,m = vec (M)would not be an eigenvector
associated with the dominant eigenvalue of M4,z , thus leading to a contradiction. We
conclude that the dominant eigenvalue λ of M4,z is simple.

Wenowprove that nomesokurtic projection of z existswhen all positive eigenvalues
of M4,z are greater than three. Let w = vec (W ) be the eigenvector associated with
the smallest positive eigenvalue η > 3 of M4,x , where W is a vectorized, symmetric
d × d matrix of unit norm. Also, let c be a d−dimensional real vector of unit length,

so that cT z is a standardized random variable: E
(
cT z

) = 0 and E
[(
cT z

)2] = 1. The
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inequality

E

[(
zT Wz

)2] ≤ E

[(
zT Sz

)2]
, (21)

where S is a symmetric, d×d matrix of unit norm, follows from P6 and fromm being
an eigenvector associated to the smallest positive eigenvalue of M4,z . The kurtosis of
cT z is

E

[(
zT c

)4] = E

[(
zT ccT z

)2]
(22)

and the d × d matrix ccT is real, symmetric and of unit norm. Hence the kurtosis of
cT z is always greater than η, which in turn is greater than three by assumption. The
proof that no mesokurtic projection of z exists when all positive eigenvalues of M4,z
are smaller than three is very similar to the previous one and is therefore omitted. �

Proof of Proposition 2 Repeated use of P4 leads to the identities

z ⊗ zT ⊗ zT ⊗ zT = zzT ⊗ zT ⊗ zT = zzT ⊗ vecT
(
zzT

)
= zT ⊗ zT ⊗ zzT . (23)

Now apply P2, P6 and P4 to obtain

(
zzT ⊗ zT ⊗ zT

)
[Id ⊗ vec (Id)] =

(
zzT Id

)
⊗

(
zT ⊗ zT

)
vec (Id)

= zzT ⊗
(
zT z

)
= zT zzzT . (24)

Similarly, apply P2 and P8 and P7 to obtain

[
zzT ⊗ vecT

(
zzT

)] (
Id ⊗ Cd,d

) = zzT Id ⊗ vecT
(
zzT

)
Cd,d

= zzT ⊗
[
Cd,dvec

(
zzT

)]T = zzT ⊗ vecT
(
zzT

)
.

(25)

The definitions of cok (z) = E
(
z ⊗ zT ⊗ zT ⊗ zT

)
and Kz = E

(
zT zzzT

)
, together

with linear properties of the expected value, leads to

Kz = cok (z) [Id ⊗ vec (Id)] =
[
Id ⊗ vecT (Id)

]
cokT (z) = cok (z) [vec (Id) ⊗ Id ] .

(26)
We now prove the identity

[
vecT (Id) ⊗ Id

] (
Id ⊗ Cd,d

)
[vec (Id) ⊗ Id ] = Id . First

apply properties P9, P2 and P6 to obtain

[
vecT (Id) ⊗ Id

] (
Id ⊗ Cd,d

) =
d∑

i, j=1

vecT (Id)
[
Id ⊗

(
ei e

T
j

)]
⊗ Id

(
e j e

T
i

)

=
d∑

i, j=1

[[
Id ⊗

(
e j e

T
i

)]
vec (Id)

]T ⊗
(
e j e

T
i

)
=

d∑

i, j=1

vecT
(
e j e

T
i

)
⊗

(
e j e

T
i

)
.
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The following identities are direct consequences of P2 and P5, as well as ordinary
properties of the matrix’s trace:

[
vecT (Id) ⊗ Id

] (
Id ⊗ Cd,d

)
[vec (Id) ⊗ Id ]

=
d∑

i, j=1

vecT
(
e j e

T
i

)
⊗

(
e j e

T
i

)
[vec (Id) ⊗ Id ]

=
d∑

i, j=1

[
vecT

(
e j e

T
i

)
vec (Id)

]
⊗

(
e j e

T
i

)
Id =

d∑

i, j=1

tr
(
Ide j e

T
i

)
⊗

(
e j e

T
i

)

=
d∑

i, j=1

eTi e j ⊗
(
e j e

T
i

)
.

By definition, ei is the d−dimensional vector whose i−th component is one while
the others are zero. Hence eTi e j is either one or zero depending on whether i = j or
i �= j . We can then write

[
vecT (Id) ⊗ Id

] (
Id ⊗ Cd,d

)
[vec (Id) ⊗ Id ] =

d∑

i=1

ei e
T
i = Id . (27)

The last identity follows from ei eTi being the matrix whose only nonnull element is
the i−th diagonal element, which equals one. Similarly, we have

[
vecT (Id) ⊗ Id

]
(
Id ⊗ Cd,d

)
[Id ⊗ vec (Id)] = Id . This identity, together with P2 and P10, implies

[
Id ⊗ vecT (Id)

]
[vec (Id) ⊗ Id ]

=
[
Id ⊗ vecT (Id)

] (
Id ⊗ Cd,d

) (
Id ⊗ Cd,d

)
[vec (Id) ⊗ Id ]

=
[
Id ⊗ vecT (Id)

] (
Id ⊗ Cd,d

)
[vec (Id) ⊗ Id ]

=
{[

vecT (Id) ⊗ Id
] (

Id ⊗ Cd,d
)
[Id ⊗ vec (Id)]

}T = Id .

Apply now P2 and P5:
[
Id ⊗ vecT (Id)

]
[Id ⊗ vec (Id)] = d Id . Apply properties

P2 and P10 to obtain

[
vecT (Id) ⊗ Id

] (
Id3 + Id ⊗ Cd,d

) (
Id3 + Id ⊗ Cd,d

)
[vec (Id) ⊗ Id ]

= 2
[
vecT (Id) ⊗ Id

] (
Id3 + Id ⊗ Cd,d

)
[vec (Id) ⊗ Id ]

= 2
[
vecT (Id) ⊗ Id

]
Id3 [vec (Id) ⊗ Id ]

+2
[
vecT (Id) ⊗ Id

] (
Id ⊗ Cd,d

)
[vec (Id) ⊗ Id ] = 2d Id + 2Id .
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All fourth-order cumulants κi jhk = ∂4 log E
[
exp

(
ιt T x

)]
/∂ti∂t j∂th∂tk , where ι =√−1 and t T = (t1, . . . , td), might be conveniently arranged into the d × d3 matrix

F = ∂4 log E
[
exp

(
ιt T x

)]
/∂t∂3t T , which admits the representation

F = cok (z) − Id ⊗ vecT (Id) −
[
vecT (Id) ⊗ Id

] (
Id3 + Id ⊗ Cd,d

)
, (28)

(Kollo and von Rosen 2005, page 187). The above identities, together with P3, helps
in simplifying the product of F and its transpose FT :

FFT = cok (z)
{
cokT (z) − Id ⊗ vec (Id ) − (

Id3 + Id ⊗ Cd,d
) [

vec (Id ) ⊗ Id
]}

−
[
Id⊗vecT (Id )

] {
cokT (z) − Id⊗vec (Id )− (

Id3 + Id⊗Cd,d
) [

vec (Id ) ⊗ Id
]}

−
[
vecT (Id ) ⊗ Id

] (
Id3 + Id ⊗ Cd,d

) {
cokT (z)

−Id ⊗ vec (Id ) − (
Id3 + Id ⊗ Cd,d

) [
vec (Id ) ⊗ Id

]}

=
[
cok (z) cokT (z) − 3K

]
− (K − 2Id − d Id ) − (2K − 2d Id

−4Id ) = cok (z) cokT (z) − 6K + 3 (d + 2) Id .

Without loss of generality we shall assume that the columns of BT are mutually
orthogonal, normalized vectors, so that BBT = Ih . Let

G = ∂4 log E
[
exp

(
ιt T y

)]

∂t∂3t T
, (29)

where y = Bz. By ordinary properties of cumulants, the assumption BBT = Ih and
P2, we have

GGT = BF
(
BT ⊗ BT ⊗ BT

)
(B ⊗ B ⊗ B) FT BT = BFFT BT . (30)

By definition, the columns of BT span the null space of cok (z) cokT (z) − 6K +
3 (d + 2) Id , so that GGT is a null matrix, which implies that all fourth-order cumu-
lants of Bz equal zero, and this completes the proof. �

Proof of Proposition 3 Let u and v be a d-dimensional and a h-dimensional random
vectors whose joint distribution is

(
u
v

)
∼ Nd+h

[(
ξ

−η

)
,

(
Ω ΩΨ T

Ψ Ω Δ + Ψ ΩΨ T

)]
.

Consider now the decomposition u = u − Cv + Cv, where

C = ΩΨ T
(
Δ + Ψ ΩΨ T

)−1 ∈ R
d × R

h .

123



Kurtosis removal for data pre-processing 265

Basic properties of normal random vectors imply that u −Cv and v are independent,
normal random vectors. Gonzalez-Farias et al. (2003) showed that x and u|v > 0 are
identically distributed, so that we can write

x ∼ u − Cv + Cv+, where v+ = v|v > 0.

The exkurtosis of the sumof independent randomvectors is the sumof their exkurtoses:

exk (x) = exk (u − Cv) + exk (Cv+) .

The identity exk (x) = exk (Cv+) follows from u −Cv being a normally distributed
random vector. Apply now multilinear properties of the fourth-order cumulants (Lop-
erfido 2020c):

exk (x) = Cexk (v+)
(
CT ⊗ CT ⊗ CT

)
.

By definition, C is a d × h matrix and by assumption d > h, so that there exists a full
rank (d − h) × d matrix B such that BC is a null matrix. As a first implication, the
rows of B belongs to the null space of the transposed exkurtosis:

exkT (x) BT = (C ⊗ C ⊗ C) exkT (v+)CT BT

is a d3 × (d − h) null matrix. As a second implication, Bx is a normally distributed
random vector:

Bx ∼ Bu − BCv + BCv+ = Bu.

The proof is then complete. �
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