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Active Improvement of Hierarchical Object Features under Budget Constraints

Nicolas Cebron

Abstract—When we think of an object in a supervised
learning setting, we usually perceive it as a collection of
fixed attribute values. Although this setting may be suited
well for many classification tasks, we propose a new object
representation and therewith a new challenge in data mining:
an object is no longer described by one set of attributes but is
represented in a hierarchy of attribute sets in different levels of
quality. Obtaining a more detailed representation of an object
comes with a cost. This raises the interesting question of which
objects we want to enhance under a given budget and cost
model. This new setting is very useful whenever resources like
computing power, memory or time are limited. We propose a
new Active Adaptive Algorithm (AAA) to improve objects in an
iterative fashion. We demonstrate how to create a hierarchical
object representation and prove the effectiveness of our new
selection algorithm on these datasets.

Keywords-Pattern classification; Active vision;

I. INTRODUCTION

The goal of supervised learning is to deduce a function
from examples in a dataset that maps input objects and
desired outputs. By using a set of labeled training examples,
we can train a classifier that can be used to predict the target
variable (which may be continuous or nominal) for unseen
test data. To achieve this, the learner has to generalize from
the presented data to unseen situations. In the traditional ma-
chine learning scenario, our objects of interest are described
by a given number of attributes values (the so-called feature
vectors).

In many situations, a feature vector representation may
be the best choice to describe the objects at hand. However,
in many circumstances a different object representation is
useful, e.g., in the domain of graph mining or structure
mining. In this paper, we want to draw the attention to a new
representation of objects with multiple views'. We describe
an object in a hierarchy of views of ascending quality. We
start to learn a classifier on the lowest level where all objects
are initially given. We can decide to enhance a particular
example by obtaining a representation on a higher level.
This “upgrade” comes with a cost that is associated with
the corresponding view level.

Figure 1 shows an example from the object recognition
domain. We can train a classifier on the attributes of a
digit on the lowest level (Level 1) to separate different
classes from each other. This might work well if we want
to discriminate digits that have a very different appearance,

IPlease note that this representation differs from Multi-View Learning [1]
where objects are described in multiple views and each view contributes to
the classification.
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Figure 1.

Digit object described in different levels of quality.

e.g., 0’ and ’3’. However, to differentiate 3’ from ’8’
(which may have a very similar appearance) we might need
to enhance some examples to Level 2 or even Level 3 to
reach a classification decision. The underlying idea is that
we do not need to enhance all examples to build a good
classification model. A subset of carefully selected examples
may be sufficient to build a model that is accurate and
generalizes well.

This setting is very useful whenever we have limited
computer resources or time-constraints. We might not have
enough memory to fit all objects into memory or we don’t
have the time resources to compute the features for all
objects on the highest quality level. For example, consider
the domain of robotics: we might have a robot with a low-
level camera that records its environment in VGA quality
and a high-level camera that has a resolution of several
mega-pixels. Calculating all the features on the mega-pixel
level is impossible because the computing resources are
limited. We aim to handle most of the examples on the low
level and to improve only a few selected examples.

We do not need to stick to the vision domain to generate
a hierarchy of object representations (although comput-
ing features from an image pyramid representation [2] is
straightforward). In music or speech recognition, we can
sample at different levels to generate a representation at a
finer level. The same is true for 3D objects, e.g., point clouds



or objects in a CAD database.

Two points in this setting need careful consideration: First,
we need to have the same features at each level. This means
that we always compute the same features, just on different
representations of the object. Second - depending on the type
of features that are computed - there is usually a limit as to
when a low representation is sufficient or when obtaining a
finer representation of the object still increases the accuracy
of the classifier. We will demonstrate how to create the
hierarchical representations of objects in the experimental
section.

When it comes to selecting interesting examples, there is
a related concept called Active Learning [3]. It deals with
the issue that it is common for many real world classification
tasks to have a large pool of unlabeled samples available. As
the cost of generating a label for a sample is high (because it
has to be determined by a human expert), Active Learning
enables a learner to pose specific queries that are chosen
from an unlabeled dataset. These queries are then answered
by a noiseless oracle in an iterative fashion and added to
the set of labeled training examples. The goal is to obtain a
precise model with few labeling iterations by picking those
samples that can "help” to improve the classifier instead of
picking random samples. The concept of Active Learning
is very similar to the human form of learning, whereby
problem domains are examined in an active manner.

Contrary to classic Active Learning, we do not try to
select examples that will be labeled by a human expert. We
assume that all labels for the training examples are given.
Instead we try to select examples that will be upgraded
to a higher representation to obtain a better classification
accuracy.

In this paper, we employ this scheme during training time,
but the ideas developed here can also be used during testing
time to optimize the application.

We will revise related work in Active Learning in Sec-
tion II and Support Vector Machine (SVM) classification
in Section III and introduce our new Adaptive Active Al-
gorithm (AAA) for object improvement in Section IV. We
will demonstrate the advantages of this new method with
several experiments in Section V before giving conclusions
in Section VI

II. RELATED WORK

Although most of the works in Active Learning deal
with selecting an example for labeling, the ideas are very
related to our work. An Active Learner is described by its
underlying classifier and its query function. The classifier
is trained on the labeled data. The query function makes a
decision based on the current model as to which samples
from the unlabeled data pool should be chosen for labeling.
We can categorize the existing Active Learning approaches
by their selection strategy:

« Optimization of a target function: Based on the
minimization of the expected error function (or max-
imization of a likelihood function) examples can be
selected by their contribution to this function. Popular
approaches in this field are the works of [4], [5],
[6], [7]. From a theoretical point of view the explicit
definition of a target function that should be mini-
mized makes it easy to analyze the selection strategy.
However, these approaches make several assumptions
(e.g., that a stable model built with randomly chosen
examples already exists or that the learner does not
have a bias [6]); therefore the outcome of the selection
strategy depends on how these assumptions apply.

« Reduction of version space: The goal of this approach
is to reduce the version space with a selected sample as
much as possible. One of the most popular approaches
is the Query by Committee algorithm [8], which uses
a committee of diverse but consistent hypotheses and
queries examples for which the disagreement is max-
imal. Another approach imitates the most general and
most specific hypothesis with a neural network and
queries examples at the region of uncertainty between
those two hypotheses [3]. In the work of [9] the
parameter space of a Support Vector Machine (SVM)
is related to the version space in order to derive several
strategies to query new examples.

« Uncertainty sampling: This heuristic approach focuses
on selecting examples at the classification boundary.
The most popular approaches use an SVM and query
examples at the decision hyperplane in the kernel
induced space [10], [11] similar to one of the version
space reduction approaches described by [9]. Uncer-
tainty sampling is prone to selecting outliers. Like
all other approaches it relies on a stable classification
model that has been initialized with some randomly
chosen examples.

In more recent works in the field of Active Learning one
can observe the trends toward making these schemes more
robust by using meta techniques to balance strategies for
exploration and exploitation [12], [13], [14] and focusing
on the theoretical aspects and benefits [15], [16] of Active
Learning. A few works have dealt with the issue of varying
labeling costs in Active Learning. The authors of [17]
propose a decision-theoretic approach that takes into account
labeling and misclassification costs. In the work of [18],
annotation costs are variable and not known. A regression
cost-model is used to predict the real, unknown annotation
cost based on meta features of the instances.

In the works of [19], [20], a new setting is introduced
where the oracle provides features instead of labels. The
feature values may have variable acquisition costs. This is
very useful in some domains (e.g., business databases with
customer information or medical databases with patient in-



formation) where active feature acquisition seeks to request
more complete feature information. In [19], the missing
feature values are imputed and then the ones about which
the model has the least confidence are acquired. The authors
of [20] take a decision-theoretic approach and acquire the
feature values which are expected to maximize some utility
function.

Although the two preceding works follow a similar idea,
the key difference to our work lies in the representation of
objects. They assume that objects are given incompletely in
one feature space, whereas our representation spans multiple
feature spaces. The advantage of our approach is that objects
are fully described in each feature space; therefore we
can skip the requirement of the other approaches that the
induction algorithm must be able to infer or be able to treat
missing values. As we shall see in the next Sections, this
new object representation also leads to a new strategy for
enhancing objects.

There is also the general idea of a cascade of classifiers in
the vision domain [21]. Increasingly more complex classi-
fiers are arranged in a cascade to quickly discard background
regions while spending more computation time on promising
object-like regions. This method can be viewed as an object
specific focus-of-attention mechanism which is similar to
our approach. However, our setting is different in the way
that we deal with one classifier and a hierarchical object
structure.

III. LEARNING WITH SVM

In this Section, we introduce the underlying Support Vec-
tor Machine (SVM) classification algorithm before turning
to the selection strategy. Given a set of labeled training data
D = {(z1,11), (2,%2), - - -, (T, Ym ) Where z; € R and
y; € {—1,+1}, a linear SVM [22] is defined in terms of its
hyperplane

w-x+b=0 N
and its corresponding decision function
f(x) = sgn(w - x +b) 2

for w € RY and b € R. Among all possible hyperplanes
that separate the positive from the negative examples, the
unique optimal hyperplane is the one for which the margin
is maximized:

mag({n%in{ﬂw—miﬂ:wERN,w-m+b=0}} 3)

As the training data is not always separable, a soft margin
classifier uses a misclassification cost C that is assigned
to each misclassified example. Equation 3 is optimized
by introducing Lagrange multipliers «; and recasting the

problem in terms of its Wolfe dual:

.. 1
maximize: LD = Zai — 5 Z QGG YY T4
Z iy 4)
subject to: 0 < o; < C andz a;y; =0
7

All x; for which the corresponding «; are non-zero are the
support vectors.

Figure 2 shows the SVM with labeled training examples
(squares vs. circles); the support vectors are encircled. The

Figure 2. SVM classifier.

support vectors limit the position of the optimal hyperplane.
The objects x; for which o; = C' are the bound examples,
which are incorrectly classified or are within the margin of
the hyperplane. Support Vector Machines have been widely
used in the field of text, music and image mining [23], [24],
[25], where a large library of documents, music or images
are available and we want to categorize this library with
the help of the user. Support Vector Machines with Active
Learning (based on uncertainty sampling) have been widely
used for image retrieval problems [26], [25] and in the drug
discovery process [27].

IV. OBJECT IMPROVEMENT ALGORITHM

In this Section, we introduce the Adaptive Active Algo-
rithm to select objects that will be improved. We begin with a
description of the hierarchical object representation and give
an overview of the complete algorithm. Then we describe a
naive and an active selection strategy for selecting examples
under budget constraints.



A. Notation and Problem Statement

We assume that the objects x; are described in views
of ascending quality. For instance, we could compute the
features from an image object at different levels of an image
pyramid, where GG corresponds to the original image. G is
then low-pass filtered and subsampled by a factor of two to
obtain the next pyramid level G; and so forth. There might
of course be other ways to compute a representation of an
object at different levels.

In this paper, we assume that we have j views of
ascending quality V,,,u = 1,...,7. The best level is de-
noted by V; and the worst by ;. We describe the object
x in view j as Vj(zx). Note that all @, in the training
set are still in RY (the number of attributes does not
change).The training set at any point in time ¢ consists of
the objects - each object at a different view level: D =
{(‘/1(2131), yl)v (‘/2(582)7?/2)’ R (Vm(mm)aym)' At t = 0,
all objects are only given in the worst view V.

Figure 3 depicts the training set D at an arbitrary time
point ¢. In this example, x; has been enhanced to Level 2

Figure 3. Training Set D at time point ¢.

and x3 to Level 3. We always use the best representation of
each object in the current training set D.

Obtaining a better description of the object comes with
a cost ¢y, u = 1,...,7 that is related to the view level.
For simplicity, we use a cost model that is increasing by
arithmetic progression. Notice that any cost model can be
used in this setting. One may want to use a linear, quadratic
or even cubic model, depending on the degree that underlies
the increase of complexity in each view level. For example,
the number of samples in a sound object may double on
each view level, whereas the number of pixels in an image
object quadruples in each view level of the image pyramid.
In this work, each training point in the worst view V) has a
cost of 1 unit and a cost of 2 units on the next level and so

forth?. In the example of Figure 3, the total cost would be
2 (x1) + 1 (x2) +3 (x3) + 1 ().
B. Algorithm Overview

In this Section, we describe the general framework in
Algorithm 1. We are given a total budget B, the number

Algorithm 1 Object Improvement Algorithm
Require: Budget B, Number of iterations n, Number of
view levels j
1: Current Budget C' = B/n.
2 D= {(Vl(wl)a yl)v (V1(1132),y2), cey (Vl(mm)vym)
3: while Current iteration < n do
4 Train SVM with D
5: T = Determine subset of total cost C
6
7
8
9

for all t € T do
Vu(mt) = Vu+1(33t)
end for
. end while

of iterations n and the number of view levels j. Our initial
training set consists of all examples on the lowest level. We
start by computing an initial classifier on the given training
set. We update the training set in an iterative fashion, similar
to the classic Active Learning setting. Based on the current
level of the objects and the current budget in each iteration,
we choose a subset of examples. The quality for the chosen
examples is enhanced and in the next iteration, a new SVM
is computed. If we combine the preceding notion of objects
at different view levels in the training set and the properties
of the SVM classification in Figure 2, we can think of
enhancing objects as ’moving around’ data points in the
shared feature space. We expect that these enhancements
will lead to a better SVM model, as we now have more
detailed information about some data points.

In our experiments, we have used a fixed number of
iterations. However, in practice one may want to use other
stopping criteria. For example, one could restrict the number
of iterations based on the given budget. Another possibility
is to keep track of the training error error difference between
two iterations and to define a threshold and stop when the
error does not change significantly.

C. Random Sampling

Given a budget C in the current iteration, we have
to choose a subset of objects T' that satisfies the cost
constraints. We start with a naive selection strategy called
Random. This strategy proceeds as follows: we choose a
random example and determine the cost for improving it. As
long as the cost of improvement does not exceed the given
budget C, we add this example to 7. Random sampling is
usually a very good base line as it makes sure that each
object of the dataset has an equal chance of being selected.

2This unit could be monetary, memory or time unit.



D. Adaptive Active Sampling

Intuitively, for most of the data points we do not expect
significant changes. Taking into account the nature of the
SVM, data points that are clearly on either side of the
decision hyperplane do not influence the model. But en-
hancing an example that lies close to the hyperplane will be
guaranteed to have an effect on the new solution.

This idea has also been used in Active Learning with
SVM in the works of [10], [11] and [9]. Formally, we rank
examples by their distance to the dividing hyperplane:

rrzlén|w-:c+b\ 5

to maximally narrow the existing margin with an enhanced
example. Evaluating the examples by their proximity to the
hyperplane is computationally inexpensive as it only requires
a single dot product computation.

At the same time, the current view level and the cost
of enhancing this example need to be taken into account.
This problem can be formulated as a 0-1 Knapsack Problem.
Formally, we are given a m-tuple of positive numbers
(v1,va,...,Um) (the values). In this case, the values cor-
respond to the distance to the hyperplane of the SVM.

v; = |w - x; + b 6)

They just need to be transformed to positive discrete values
for the Knapsack formulation:

100

max(v) — min(v)

v; = 100 — (v; — min(v)) - 7

We are also given a m-tuple of corresponding costs
(c1,¢2,...,Cm) and a maximum cost C' > 0. We wish to
determine the subset 7' C {1,2,...m) that

€T (8)

This is an optimization problem that can be solved with brute
force by trying out all 2" possible subsets in 7'. In this paper,
we trade space for time and use a dynamic programming
approach which runs in O(m - C). If C is very large and
corresponds to the total cost of enhancing all m objects to
the highest level, the running time is O(m?). However, we
expect that C' is very small and constant in each iteration,
therefore the algorithm runs in linear time.

V. EXPERIMENTS

Before we go into the detailed descriptions of the ex-
periments, we state our experimental methodology. All ex-
periments have been designed in such a way that they are
reproducible. We have created a webpage® that contains
all datasets and the code that have been used in this

3Not yet published: Double Blind Review

work. The algorithms were implemented using the PRTools
software [28].

Each experiment has been repeated 100 times. In each
iteration, we split up the dataset randomly and use 40% for
training and 60% for testing. All training instances are first
assumed to have the lowest quality V3. A batch of examples
is selected in each iteration (plotted on the x-axis) and the
mean classification accuracy (given the ground truth in the
testing data on the highest view level V;) is plotted on the
y-axis. We also plot the mean accuracy of a classifier on
each view level. As the approach in this paper is new, we
use the random selection from Section IV-C as a baseline.

In all experiments, we have chosen the size of the budget
in a way that allows the sampling schemes to reach the
accuracy of the highest level.

A. Banana Dataset

The goal of the first experiment is to demonstrate the
principle of operation and the benefit of our new algorithm
on a dataset that is easy to visualize. We have generated
a two-dimensional dataset with two classes with a banana
shaped distribution. The data is uniformly distributed along
the bananas and is superimposed with a normal distribution
with a standard deviation s in all directions. The class priors
are P(1) = P(2) =0.5.

We have created two views: a good view V; (see Figure 4)
by using a small standard deviation and a bad view V5,
(Figure 5) with a large standard deviation. As can be seen,
V5 is very noisy, but the underlying concept of two opposed
banana shapes is still the same. We have used a SVM with
a Radial Basis Function (RBF) kernel; the « parameter has
been set to 2.0. The SVM classifier is plotted as a solid
black line. The classification in view V; (Figure 4) reflects
our ground truth and is therefore plotted as a dotted black
line in the other views in Figure 5-7.

Due to the high standard deviation, the classification in
view V5 is far from optimal. In this experiment, we use a
small budget of 60 (resulting in 30 improved examples) and
plot the improved dataset and the corresponding classifier
that is learned in this data space. Figure 6 shows the new
dataset and classifier with our Adaptive Active Algorithm
(AAA) and Figure 7 shows the new dataset and classifier
with randomly improved examples.

We can observe that the strategy of choosing examples
close to the devision boundary of the AAA improvement
results in a better classification accuracy than random im-
provement. Random improvement will eventually reach the
same performance but needs more examples (and therefore
more budget) to do so. We will take a more detailed look at
the classification accuracy at specific points in time in the
next experiments.



Banana Dataset View 1

Feature 2

Feature 1

Figure 4. Banana Dataset View 1 (s = 1).

AAA Improvement

Feature 2

Feature 1

Figure 6. Improved Dataset with the Adaptive Active Algorithm.

B. Faces Dataset

The faces dataset* contains 640 images of faces. The
faces themselves are images of 20 former machine learning
students and instructors, with about 32 images of each
person. Images vary by the pose (direction the person is
looking), expression (happy/sad), face jewelry (sun glasses
or not), etc. We calculated the Zernike Moments on the order
of 9 (see [29]) for each image and considered two binary
classification tasks of identifying the pose of the person. We
have used a linear SVM for this classification task.

Figure 8 shows some examples from this dataset on
different view levels. As we are not using the image objects
themselves but the Zernike Moments, we also show a
reconstruction of the image based on the Zernike Moments.
This gives us an intuitive idea how the algorithm perceives

“http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/faces.html

Banana Dataset View 2

Feature 2

Feature 1

Figure 5. Banana Dataset View 2 (s = 2.5).

Random Improvement

Feature 2

Feature 1

Figure 7. Improved Dataset with Random Adaption.

the image on each view level. We can observe that the
features on Level 1 are not sufficient to discriminate between
the two classes 'Right’ and ’Straight’. Whether the person
wears sunglasses or not seems to have a strong influence on
Level 1. On Level 3, we can see that a clear pattern emerges
for each class.

Figure 9 shows the test accuracy on the task of discrim-
inating between a person looking to the right or looking
straight. The total budget that can be spent to enhance all
training examples to Level 3 is 768. We have spent a budget
of 249, meaning we had a budget of 3 in each of the 83
iterations. The performance of our AAA scheme (solid black
line) is consistently better than random refinement (dotted
black line) over all iterations.

The Level lines in the preceding plot give the wrong
impression of being available from the beginning. In fact,
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Figure 8. Zernike features of the Faces dataset on different levels.
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one needs to invest the full cost of the whole level to obtain
the corresponding classification accuracy. In order to clarify
this issue, we show another perspective on this result in
Figure 10. Instead of plotting the classification accuracy vs.
the costs, we plot the classification accuracy per budget
spent. That means, we take the classification accuracy of
each scheme and divide it by the budget that needs to be
spent to obtain it. As can be seen, this value is very low for
all view levels, as the better accuracy value in each level
gets divided by a higher cost value. Especially in the first
iterations, a selective sampling scheme is very effective in
terms of obtaining a better classification accuracy at less
costs.

Figure 11 shows the test accuracy on a second classi-
fication task of discriminating between a person looking

to the left or looking up. The budget amount stays the
same as in the preceding classification task. This time,
our AAA scheme needs more iterations to reach a better
performance than random refinement. If we look at the
classifier performance on the different levels, we note that
the classification on the lowest level is poor (under 50%,
meaning that it is worse than guessing). This shows the
dependency of the AAA scheme on a useful initialization,
which depends on a careful design of quality levels. This is
a general problem of the quality of the input data and not a
problem of the algorithm itself.

C. Numbers

The multiple features dataset from the UCI Machine
Learning Repository [30] consists of features of handwritten
numerals ("0’-’9’) extracted from a collection of Dutch
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utility maps. Two hundred patterns per class (for a total of
2,000 patterns) have been digitized in binary images. The
original dataset consists of 6 different feature sets; we have
used the pixel values to reconstruct the original images.

Based on these images, we have computed two views on
these objects: the Zernike Moments of order 10 based on the
original image of size 16x16 (Level 2) and of a subsampled
image of size 8x8 (Level 1). We have used a linear SVM
for this classification task.

Figure 12 shows some example objects from each class
on the different levels along with the reconstructed images
from the Zernike Moments. Although the patterns of the
Zernike Moments in Figure 12 on Level 1 are hard to
distinguish from a human perspective, they are already very
discriminative. Each class has its own pattern, but some
classes have very similar patterns, e.g., class '8’ and class
’9’. The quality on Level 2 is good enough to reach nearly
a 100% accuracy.

The total budget that can be spent on the training examples
is 800. We have used a total budget of 200 to enhance
the training examples; therefore we could spend 4 units in
each iteration to enhance some examples. As can be seen in
the next examples, the performance of the AAA classifier
reaches the same performance as a classifier on the best
level, but with spending only a quarter of the budget.

Figure 13 shows the test accuracy of discriminating be-
tween class "1’ and ’5’, Figure 14 between class ’3’ and ’8’,
Figure 15 between class ’5” and 7’ and Figure 16 between
class ’7’ and ’8’.

In all classification tasks, the performance of our AAA
classifier is clearly above random refinement and also con-
verges faster.

VI. CONCLUSIONS

In this work, we have proposed a new learning setting,
where the objects of interest can be obtained at differing
quality levels and corresponding costs. The underlying idea
of this approach is that we do not need to compute the best

representation for all objects. We argue that it is sufficient
to learn a classifier on the lower quality level and use a
selection strategy to enhance useful objects. This setting is
very useful whenever we have limited resources to compute
a full feature representation of an object.

We have proposed a new scheme that improves a few
selected examples with a support vector machine as the
underlying classifier. Examples are ranked by their distance
to the separating hyperplane and a dynamic programming
approach is used to select a subset of interesting examples
under a given budget constraint. Experiments on different
datasets have shown that this scheme clearly outperforms
random improvement and provides high classification accu-
racy with lesser costs.

In future work, we want to analyze the effect of different
cost models and their influence on the selection scheme.
We also want to explore how we can create hierarchical
representations of objects in other domains. As can be seen,
this new notion of objects in a hierarchy raises several
interesting research questions and is worth to be further
explored.
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