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Abstract Robust face representation is imperative to
highly accurate face recognition. In this work, we propose
an open source face recognition method with deep
representation named as VIPLFaceNet, which is a 10-layer
deep convolutional neural network with 7 convolutional
layers and 3 fully-connected layers. Compared with the
well-known AlexNet, our VIPLFaceNet takes only 20%
training time and 60% testing time, but achieves 40% drop
in error rate on the real-world face recognition benchmark
LFW. Our VIPLFaceNet achieves 98.60% mean accuracy on
LFW using one single network. An open-source C++ SDK
based on VIPLFaceNet is released under BSD license. The
SDK takes about 150ms to process one face image in a
single thread on an i7 desktop CPU. VIPLFaceNet provides
a state-of-the-art start point for both academic and industrial
face recognition applications.

Keywords Deep Learning, Face Recognition, Open
Source, VIPLFaceNet.

1 Introduction

Face recognition, as one of the typical problems in computer
vision and machine learning, plays an important role in
many applications, such as video surveillance, access
control, computer-human interface and mobile
entertainments [1]. Generally speaking, a conventional face
recognition system consists of four modules, face detection,
face alignment, face representation and identity
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classification. In this pipeline, the key component for
accurate face recognition is the third module, i.e. extracting
the representation of an input face, which this paper mainly
focuses on.

The main challenges of face representation lie in the
small inter-person appearance difference caused by similar
facial configurations, as well as the large intra-person
appearance variations due to large intrinsic variations and
diverse extrinsic imaging factors, such as head pose,
expression, aging, and illumination. In the past decades, face
representation is mostly based on hand-crafted local
descriptors [2–8] and shallow learning-based representation
models [9–14]. As the development of deep learning
technology, it becomes a more potent approach for face
representation learning, especially in the real-word
scenarios. Compared with the previous hand-crafted routine,
deep face representation is learned in a data-driven style
which can guarantee better performance as validated
in [15–19]. Taking the de-facto real-world face recognition
benchmark LFW as an example, hand-crafted descriptor
recorded 95.17% set by high-dimensional LBP [4], while
99.63% accuracy achieved by the latest deep FaceNet
in [19].

In spite of many decades of research and development on
face recognition, few open-source face recognition systems
are publicly available yet. An open-source SDK with high
accuracy in general scenarios is in great need for both
academic research and industrial applications. So in this
work, we meet this requirement and propose a deep face
recognition model named as VIPLFaceNet, which is
released as a BSD-license open source software with
detailed implementation of the recognition algorithm.
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VIPLFaceNet is a powerful deep network for face
representation with ten layers including 7 convolutional
layers and 3 fully-connected layers. As a BSD-license open
source software, VIPLFaceNet allows both academic
research and industrial face recognition applications in
different software and hardware platforms for free.

The contributions of this paper are summarized as follows:
1. We propose and release an open source deep face

recognition model, VIPLFaceNet, with high-accuracy and
low computational cost, which is a 10-layer deep
convolutional neural network that achieves 98.60% mean
accuracy on the real-world face recognition benchmark
LFW.

2. We investigate the network architecture design and
simplification. By careful design, VIPLFaceNet reduces
40% computation cost and cuts down 40% error rate on
LFW compared with the AlexNet [20].

3. The VIPLFaceNet SDK code is written in pure C++
code under the BSD license. It is free and easy to be deployed
in various software or hardware platforms for both academic
research and industrial face recognition applications.

In summary, VIPLFaceNet is an open source deep face
recognition SDK with high accuracy in general scenarios,
which is built for facilitating the academic and industrial
application of various real-world face recognition tasks. The
rest of this paper is organized as follows. Section 2 presents
the related works on face representation learning and
introduce the face recognition benchmarks. Section 3
presents the network architecture design and technical
details of our VIPLFaceNet. Section 4 conducts the
experimental evaluation with comprehensive discussions and
section 5 concludes this paper.

2 Related Works

In this section, we give a brief review of the related works on
face representation learning. Moreover, we give a brief
review of the face recognition benchmarks and discuss the
performance evolution on the de-facto real-world face
recognition benchmark LFW.

2.1 Face Representation before Deep Learning

In the past decades, numerous hand-crafted local features
were proposed for face representation, e.g. Gabor
wavelets [2], Local Binary Pattern (LBP) [3] and its high
dimensional variant [4], Scale-Invariant Feature Transform

(SIFT) [8], Histogram of Oriented Gradients (HOG) [5],
patterns of oriented edge magnitudes (POEM) [6], Local
Quantized Pattern (LQP) [7] etc. However, designing an
effective local descriptor demands considerable domain
specific knowledge and a great deal of efforts.

Besides the hand-crafted local features, learning-based
representation is also popular and reports promising
accuracy. In [9] and [10], filters are learned to maximize the
discriminative power for face recognition. In [21], faces are
represented from its responses to many pre-trained object
filters. In [11], [12], [13] and [22], codebook learning
technologies are utilized for robust face representation.
More recently, faces are represented with mid-level or
high-level semantic information. For instance, the attributes
and simile classifier [23] represent faces by the mid-level
face attributes and so-called simile feature. Tom-vs-Pete
classifier [14] encodes faces with high-level semantic
information by the output scores of a large number of
person-pair classifiers. Different from the deep learning
approaches, the above methods are still shallow models and
mostly rely on hand-crafted local features.

2.2 Deep Face Representation Learning

In recent years, deep learning methods are exploited to learn
hierarchical representation and report state-of-the-art perfor-
mance on LFW [15–19, 24].

DeepFace is an early attempt of applying deep
convolutional neural network in real-world face recognition.
There are four highlights in DeepFace: 1) A 3D model based
face alignment to frontalize facial images with large pose. 2)
A very large scale training set with 4 million face images of
4,000 identities. 3) Deep convolutional neural network with
the local connected layer that learns separate kernel for each
spatial position. 4) A Siamese network architecture to learn
deep metric based on the features of the deep convolutional
network.

The DeepID [16], DeepID2 [17] and DeepID2+ [18] are a
series of works, which provide a very good example of deep
network evolution. In DeepID, 25 CNN networks are trained
on each face patch independently. Besides, Joint Bayesian
method [25] is applied to learn robust face similarity metric.
Finally, an ensemble of 25 deep networks achieve 97.45%
mean accuracy on LFW. The DeepID2 introduces the joint
identification and verification losses. The performance of
DeepID2 on LFW is improved to 99.15%. The DeepID2+
just makes the network deeper and adds auxiliary loss signal
on lower layer. Besides, the activation of the feature
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embedding layer is also studied as sparse, selective and
robust. The mean accuracy of DeepID2+ on LFW is 99.47%
with 25 CNN models.

Learning face representation from scratch [24] presents a
semi-automatic way to collect face images from the internet
and builds a large scale dataset CASIA-Web containing
about 494,414 images of 10,575 subjects. Then a 13-layer
deep network with 10 convolutional layers and 3
fully-connected layer is trained with joint identification and
verification losses, reporting 97.73% accuracy on LFW.

Another promising deep neural network is FaceNet [19]
proposed by Google, which uses a super large scale face
dataset containing 200 million face images of 8 million face
identities to train a GoogLeNet network. Given such a large
number of identities, the classical Softmax loss which needs
the same number of 8 millon output nodes consumes too
much GPU memory. So instead, a triplet loss which does not
consume extra memory is introduced in FaceNet to directly
optimize the embedding feature and achieves 99.63% mean
accuracy on LFW.

All the above deep learning methods achieve quite
promising face recognition accuracy on the challenging
LFW dataset. The superiority demonstrates the superiority
of the favorable feature learning ability of the deep neural
networks.

2.3 Evolution of Benchmarks

In early years, most datasets for face recognition were
collected in controlled environment, e.g. ORL [26],
AR [27], FERET [28], PIE [29], FRGC [30],
Extended-Yale-B [31], CAS-PEAL [32] and MultiPIE [33].
Among these datasets, AR is specially regarded as a
benchmark to study occlusion robust face recognition.
FERET, CAS-PEAL, PIE and MultiPIE are often used as
general benchmarks to evaluate different factors of face
recognition, such as aging, pose, expression, illumination,
accessories etc. Yale-B is often cited as a lighting robust
face recognition benchmark. Among these datasets, FRGC
is widely used as a more challenging face recognition
benchmark as it consist of over 50,000 images collected in
varying lighting condition, e.g. atria, hallways, or outdoors.

In recent years, lots of real-world face datasets have been
released, such as Labeled Face in the Wild [34], PubFig [23],
CelebFaces [16], WDRef [25], SFC [15], CACD [35],
WLFDB [36], CASIA-Web [24], MSRA-CFW [37] etc.
These datasets are built for different motivations. Among
them, CelebFaces, WDRef, SFC and CASIA-Web are built
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Fig. 1: Evolution of the face recognition techniques on LFW
from 2009 to 2015. In the figure, triangles with different color
refer to what type of outside training data is used in the ex-
periments.

to train model for testing on LFW [34], but only
CASIA-Web is a public dataset. WLFDB is a weakly
labeled dataset without accurate identity annotation and acts
as a search-based face tagging benchmark. CACD is built
for studying cross-age face recognition, but only 10% of the
subjects in CACD are manually annotated. The
MSRA-CFW dataset is built for face retrieval evaluation and
the face identity is automatically annotated by algorithms.

In the past several years, LFW has become the de-facto
benchmark for real-world face recognition. According to the
standard LFW protocol, the performance measurement
should be the mean accuracy over 10-fold face verification
task with each fold containing 300 inter-class and 300
intra-class face pairs. Besides the standard verification
protocol, a face identification protocol is also available
in [38]. A brief history of the performance evolution of
LFW is demonstrated in Figure 1. Representative methods
including LDML-MkNN [39], Multishot [40], LE [12],
Associate-Predict [41], Tom-vs-Pete [14], Fisher Vector
Face [22], High-dim LBP [4], TL Joint Bayesian [42],
DeepFace [15], DeepID [16], DeepID2 [17], Gaussian
Face [43], VGGFace [44], DeepID2+ [18] and FaceNet [19]
are shown.

Figure 1 illustrates the evolution of face recognition
techniques along with the accuracy increases: from early
hand-crafted local features to shallow representation
learning until recent deep representation learning. The first
performance breakthrough is made by LDML-MkNN [39],
which is a metric learning method, then the representation
learning becomes the engine of accuracy
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Table 1: Comparisons of AlexNet [20], VIPLFaceNetFull and VIPLFaceNet. In the table, S denotes stride, G denotes group
and Pad denotes padding. The ReLU layers are not shown in this table for the efficiency of presentation.

AlexNet VIPLFaceNetFull VIPLFaceNet
Conv1: 96x11x11, S:4, Pad:0 Conv1: 96x9x9, S:4, Pad:0 Conv1: 48x9x9, S:4, Pad:0
LRN – –
Pool1: 3x3,S:2 Pool1: 3x3,S:2 Pool1: 3x3,S:2
Conv2: 256x5x5, G:2, S:1, Pad:2 Conv2: 192x3x3,S:1, Pad:1 Conv2: 128x3x3,S:1, Pad:1
LRN – –
– Conv3: 192x3x3,S:1, Pad:1 Conv3: 128x3x3,S:1, Pad:1
Pool2: 3x3,S:2 Pool2: 3x3,S:2 Pool2: 3x3,S:2
Conv3: 384x3x3, S:1, Pad:1 Conv4: 384x3x3,S:1, Pad:1 Conv4: 256x3x3,S:1, Pad:1
Conv4: 384x3x3, G:2, S:1, Pad:1 Conv5: 256x3x3,S:1, Pad:1 Conv5: 192x3x3,S:1, Pad:1
– Conv6: 256x3x3,S:1, Pad:1 Conv6: 192x3x3,S:1, Pad:1
Conv5: 256x3x3, G:2, S:1, Pad:1 Conv7: 192x3x3,S:1, Pad:1 Conv7: 128x3x3,S:1, Pad:1
Pool3: 3x3,S:2 Pool3: 3x3,S:2 Pool3: 3x3,S:2
FC1, 4,096 FC1, 4,096 FC1, 4,096
Dropout1: dropout_ratio:0.5 Dropout1: dropout_ratio:0.5 Dropout1: dropout_ratio:0.5
FC2, 4,096 FC2, 2,048 FC2, 2,048
Dropout2: dropout_ratio:0.5 Dropout2: dropout_ratio:0.5 Dropout2: dropout_ratio:0.5
FC3, 10,575 FC3, 10,575 FC3, 10,575

improvement [4, 14, 22, 40]. Finally, deep learning
approaches reach the best results on LFW [15–19, 44].

3 Proposed VIPLFaceNet

This section presents the details of our proposed
VIPLFaceNet. Firstly, we introduce the network architecture
design and simplification. Then, to accelerate the training of
the deep network, we introduce the fast normalization layer.
Finally, we present the technical details of face
pre-processing and deep network training.

3.1 Network Architecture

The network architecture is the essential part of a deep
model. Recently, some network architectures has been well
recognized, such as AlexNet [20], GoogLeNet [45] and
VGGNet [46]. Among them, the AlexNet is the simplest,
with 5 convolutional layer and 3 fully-connected layers [20].
Besides the convolutional layer and fully-connected layer,
the ReLU layer and the dropout operation, proposed in
AlexNet, build the basis of the latest deep convolutional
neural networks. Another important component of AlexNet
is its local response normalization layer (LRN) which can
improve the generalization ability of AlexNet. Aiming to go
deeper, GoogLeNet is designed to be a 22-layer deep
network and introduces an inception structure which extracts
multi-scale features [45]. Differently, the VGGNet uses only

3 × 3 convolutional kernel and the stride is always set to
1 [46], while the feature map size is reduced only by the
pooling operation. Among the above three networks,
VGGNet is the slowest, while AlexNet is the simplest.

Design and simplification of VIPLFaceNet Network.
Considering the success and efficiency of AlexNet, our
network is designed by adapting AlexNet to incorporate
some recent new findings. Compared with AlexNet, our
VIPLFaceNet design has six main features: 1) we use 9 × 9
size for the first convolutional layer rather than 11 × 11, to
reduce the computational cost. 2) We remove all local
response normalization layers, as we found it unnecessary
provided proper parameter initialization [47]. 3) we
decompose the second 5 × 5 convolutional layer of AlexNet
to two 3 × 3 layers, inspired by He et al.’s work [48]. 4)
Specially, we remove all group structures in AlexNet as we
exploit a more efficient way to do parallel training, i.e.
asynchronous stochastic gradient descent [49]. 5) Further,
we reduce the number of feature maps in each layer and add
one more convolutional layer. 6) The number of nodes in the
FC2 fully-connected layer is reduced to 2,048 from 4,096
inspired by the experimental analysis in [50].

The above six features lead to our VIPLFaceNetFull
network consisting of 7 convolutional layers followed by 3
fully-connected layers, as shown in Table 1. Its
computational cost is almost 90% of AlexNet, which is still
very high. To further reduce the computational cost, we
simplified VIPLFaceNetFull to VIPLFaceNet by reducing
the number of filters in the convolutional layers, as detailed
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in Table 1. Eventually, the VIPLFaceNet network consumes
only 60% computations of AlexNet.

3.2 Fast Normalization Layer

As shown in LeCun et al.’s work [51], data normalization
can speed up convergence, which is recently extended as the
batch normalization algorithms [52]. Inspired by these
works, we also exploit a fast normalization layer in our
VIPLFaceNet before the ReLU layer to speed up the
convergence and improve the generalization.

Specifically, the fast normalization layer aims at
normalizing the output of each network node to be of zero
mean and unit variance. Unlike the batch normalization
in [52], our fast normalization layer does not have the
recovery operation and thus consumes less GPU memory
and computation cost. Suppose the output of the network
consists of C dimensions, and the normalization is applied to
each dimension independently. Next we take the k-th
dimension as an example for illustrating and omit k for
simplicity. The k-th dimension of the network output for all
N training samples in a mini-batch is denoted as
Bx = x1, x2, ..., xN . We denote the fast normalization layer
(FNL) as:

FNL : x1, x2, ..., xN → ô1, ô2, ..., ôN ,∀i, ôi ∼ N(0, 1), (1)

where N(0, 1) denotes the standard normal distribution with
zero mean and unit variance. We present the detail of fast
normalization layer (FNL) in Algorithm 1. In the algorithm,
µx is initialized as 0 and σx is initialized as 1, and ω is the
momentum value and set as 0.99 by default. In the test
phase, µx and σx obtained in the final training stage are
directly adopted.

During training, the fast normalization layer
backpropagates the gradient using the chain rule as follows:

∂L
∂σ
= −

1
2

N∑
i=1

∂L
∂ôi

(xi − µ)σ−3/2.

∂L
∂µ
= (

N∑
i=1

∂L
∂ôi

−1
√
σ

) +
∂L
∂σ

−2
∑N

i=1(xi − µ)
N

.

∂L
∂xi
=
∂L
∂ôi

1
√
σ
+
∂L
∂σ

2(xi − µ)
N

+
1
N
∂L
∂µ
.

(2)

Additionally, as observed from extensive experiments, the
dropout operation can be safely removed for deep network
with fast normalization layer. It is observed that not only the
deep network training is greatly accelerated but also the

Algorithm 1 Fast Normalization Layer (FNL)

Input: DCNN Network and mini-batch Bx

Output: Normalized output for each sample in Bx

1: Calculate the batch mean: µ = 1
N

N∑
i=1

xi

2: Calculate the batch variance: σ = 1
N

N∑
i=1

(xi − µ)2

3: Calculate the normalized value: ôi =
xi−µ√
σ

4: Update the global mean: µx = ω ∗ µx + (1 − ω) ∗ µ
5: Update the global variance: σx = ω ∗ σx + (1 − ω) ∗ σ.
6: return ôi, i = 1, 2,..., N.

 

Fig. 2: Example of face normalization using five points.

generalization ability is improved. In the experimental
sections, we will validate the effectiveness of the fast
normalization layer.

3.3 Technical Details

In all experiments, the face images are preprocessed with
three steps including face detection, facial landmark
localization and face normalization.

Face Detection: In face detection stage, we adopt the face
detection toolkit developed by VIPL lab of CAS [53]. One
can refer to [54] for more details.

Facial Landmark Localization: We apply the Coarse-to-
Fine Auto-Encoder Networks (CFAN) [55] to detect the five
facial landmarks in the face, i.e. the left and right center of
the eyes, the nose tip, the left and right corner of mouth.

Face Normalization: As shown in Figure 2, the face
image is normalized to 256 × 256 pixels using five facial
landmarks.

Training details In all experiments, for those deep
networks without fast normalization layer , the base_lr is set
as 0.01 and the learning rate is reduced following
polynomial curve with gamma value equal to 0.5. For those
deep networks with the fast normalization layer, the base_lr
is set as 0.04. The momentum is set as 0.9 and the weight
decay is set as 0.0005. All the experiments are conducted in
Titan-X GPU with 12GB memory using a modified Caffe
deep learning toolbox [56].
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Fig. 3: The VIPLFaceNet SDK Architecture.

4 SDK Architecture

As mentioned previously, the source code of our
VIPLFaceNet is released under the BSD license, and now
available on https://github.com/seetaface. In this section, we
introduce the highlights and architecture of the SDK for a
better understanding of the source code.

4.1 Highlights of VIPLFaceNet SDK

This open-source SDK provides a powerful toolkit for testing
and deploying face recognition applications, setting a good
starting point for researchers and developer to experience the
state-of-the-art face recognition technology.

High-performance. The VIPLFaceNet achieves
state-of-the-art performance on the LFW benchmark with
only single network. Further performance improvement can
be expected by using metric leaning approaches, e.g. Joint
Bayesian method [25] and MRMD [57] or classifier
ensemble approaches, e.g. LibD3C [58].

Object-oriented. The VIPLFaceNet SDK is designed
from the beginning to be an object-oriented software,
allowing easy extension to new network layers and any
user-defined network architecture. It can also be easily
integrated into industrial face recognition systems for
various tasks.

Configurable Network Architecture. VIPLFaceNet
SDK facilities the network architecture configuration
independent of the SDK code. The network definitions is

saved in the model file using pre-defined format.
VIPLFaceNet supports network architectures in the form of
arbitrary directed acyclic graphs. Upon initialization,
VIPLFaceNet parses the network architecture from the
model file and loads the network parameters into memory.

Pure C++ Code. The VIPLFaceNet is implemented in
fully C++ code. It is very efficient to deploy VIPLFaceNet in
multiple hardware platforms and operation systems.

Community Cooperation. We will put our source code in
the GitHub and leverage the whole community to improve the
SDK for better performance and flexibility. More features,
such as python interface and PHP interface can be expected
with the support of the whole community.

4.2 Implementation Details

In this part, we will introduce the software architecture of the
VIPLFaceNet. In Figure 3, the architecture of VIPLFaceNet
SDK is presented. Main components in VIPLFaceNet SDK
includes Blob, Command, Layer and Network Parser.

Blob. The blob is a container to hold the matrix in deep
convolutional neural network. The Blob provides a mapping
of the logic multi-dimensional matrix to physical
one-dimensional array.

Command. The command is an interface that provides
basic network elements, e.g. convolution, rectifier linear
unit(ReLU), max pooling or mean pooling, and
inner-product operation. As a SDK implementation for
deployment, the implementation of the loss layers is
unnecessary.

Layer. A VIPLFaceNet layer is the basic component of a
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deep neural network. In VIPLFaceNet, a layer is composed
by one or more commands, e.g. a convolutional layer is
composed by a convolution command and a ReLU
command.

Network Parser. To facilitate the definition of network
architecture, VIPLFaceNet SDK sets up a network parser. A
network is defined by multiple layers and organized as a
directed acyclic graph. The SDK code does not need to be
modified regardless the network architecture changes.

Matrix Multiplication Accelerating. The single
instruction multiple data (SIMD) instructions is used in
VIPLFaceNet SDK to accelerate the matrix multiplication
operation in both convolutional layer and fully-connected
layer. Meanwhile, VIPLFaceNet also supports the
third-party linear algebra library, e.g. Armadillo [59].

5 Experiments and Analysis

In this section, we compare the proposed VIPLFaceNet with
the existing methods on the real-world face recognition
benchmark LFW. Then, we discuss how VIPLFaceNet can
be extended to other face recognition scenarios.

5.1 Dataset and Evaluation Protocol

The training set of our open-source VIPLFaceNet is the
CASIA-Web dataset [24]. All the training data are
pre-processed as illustrated in section 3.3. Totally, we have
479,777 detected and normalized facial images of 10,575
identities in the training set. The VIPLFaceNet is learned
from scratch, and the weights of both the convolutional
kernels and the fully-connected layers are initialized using
the MSRA filler, i.e. Var[w] = 2/n , where n is the number
of input neurons [47]. The mean of training images are
subtracted firstly. During training, face patches equal to
crop_size × crop_size pixel are randomly sampled from the
input images and the images are also randomly flipped with
50% probability. In all the experiments, the default
crop_size is set as 227.

The evaluation dataset is Labeled Faces in the Wild
dataset (LFW) [34], which contains 13,233 images of 5,749
identities. For the standard 10-fold face verification
experiment on LFW, we follow the unrestricted setting using
external labeled data. Each fold of the test set consists of
300 inter-class and 300 intra-class face pairs. We also
conducted an additional experiment following the face
identification protocol as in [38].

Table 3: The performance of our VIPLFaceNet and state-
of-the-art methods on LFW under the identification protocol
[38].

Method Rank-1 DIR @ FAR = 1%
COTS-s1 [38] 56.70% 25.00%
COTS-s1+s4 [38] 66.50% 35.00%
DeepFace [15] 64.90% 44.50%
WSTFusion [60] 82.50% 61.90%
AlexNet+FNL [20] 89.26% 58.72%
VIPLFaceNetFull+FNL 92.79% 68.13%
VIPLFaceNet+FNL 91.95% 63.26%

5.2 Experimental Results on LFW

In this part, we report the accuracy of VIPLFaceNet on LFW
under both verification protocol and identification protocol.
In all the experiments, we take the 2,048 outputs of the FC2
fully-connected layer as the representation of each face
images and exploit the cosine function as the similarity
metric between features.

Comparisons with the state-of-the-art methods. In
Table 2, we compare VIPLFaceNet with the state-of-the-art
methods on LFW View 2 in terms of 10-fold mean accuracy.
Using only single 10-layer deep convolutional neural
network, our VIPLFaceNet achieves accuracy comparable to
that of VGGFace [44] with a 16-layer deep network and
DeepID2+ with 25 deep networks, even though
VIPLFaceNet is trained with less training data than
DeepFace, VGGFace and FaceNet. VIPLFaceNet also
reduces 40% computation cost with slight performance
degradation. Compared with AlexNet, VIPLFaceNet cuts
down 40% error rate on LFW (1.4% vs. 2.3%). The
superiority of our method comes from the careful design of
network architecture and simplification.

We further evaluate the VIPLFaceNet in the close-set and
open-set face identification tasks, following the protocol
in [38]. The close-set identification protocol reports the
Rank-1 identification accuracy and the open-set
identification reports the detection and identification rate
(DIR) at False Alarm Rate (FAR) equal to 1%. The
comparisons with state-of-the-art methods are shown in
Table 3. The proposed VIPLFaceNet also achieves
state-of-the-art performance in the face identification tasks.

Comparisons of the crop size. The crop size is related to
both the performance and computational cost of deep
networks. Due to the random data argumentation, the
smaller the crop size, the bigger randomness in training. In
Table 4, we compare the performance of different crop size



8
Xin Liu et al. VIPLFaceNet: An Open Source Deep Face Recognition SDK

Table 2: The performance of our VIPLFaceNet and state-of-the-art methods on LFW View2 under the verification protocol.

Method Accuracy # of Network # of Training Images
High-dim LBP [4] 95.17% – –
Fisher Vector Face [22] 93.03% – –
DeepFace [15] 97.35% 3 4M
DeepID [16] 97.45% 25 200K
DeepID2 [16] 99.15% 25 200K
Gaussian Face [43] 98.52% – –
DeepID2+ [18] 99.47% 25 290K
DeepID2+(Single) [18] 98.70% 1 290K
WSTFusion [60] 98.37% – 10M
VGGFace [44] 98.95% 1 2.6M
FaceNet [19] 99.63% 1 200M
AlexNet + FNL [20] 97.70% 1 500K
VIPLFaceNetFull + FNL 98.62% 1 500K
VIPLFaceNet + FNL 98.60% 1 500K

Table 4: The performance of our VIPLFaceNet with different
crop size on LFW View2 under the verification protocol.

Network Architecture Crop Size Accuracy
VIPLFaceNet 256 98.12%
VIPLFaceNet 248 98.53%
VIPLFaceNet 227 98.60%
VIPLFaceNet 200 98.57%
VIPLFaceNet 180 98.21%

under the LFW verification protocol. It can be concluded
that a moderate crop size 227 yields the best performance.

Evaluation of the Fast Normalization Layer. In Figure
4, we evaluate the effectiveness of the fast normalization
layer (FNL) on LFW. As can be seen, adding FNL
significantly improves the performance. Besides improving
the generalization, FNL also significantly improves the
convergence speed. By adding FNL, we can set the base
learning rate as 0.04 and set the total echo as 15, while the
baseline network needs 80 echoes for a good convergence.
In Table 5, we compare the training time of VIPLFaceNet
and VIPLFaceNet with FNL on the CASIA-Web training
set. With the FNL, it only consumes 20% training time and
only slightly increases the online test cost.

Extension of the VIPLFaceNet. We can easily extend
the VIPLFaceNet for more applications. For example, fine-
tuning the VIPLFaceNet for other-domain applications such
as age estimation [61].
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Fig. 4: The mean accuracy of our VIPLFaceNet on LFW
View2 with or without FNL.

Table 5: The time cost of our VIPLFaceNet with or without
FNL. The training time of VIPLFaceNet with fast normaliza-
tion layer is reduced by 80%.

Method Training Time Test speed on CPU
AlexNet 67 hours 250ms / per image
VIPLFaceNetFull 60 hours 235ms / per image
VIPLFaceNet 40 hours 145ms / per image
VIPLFaceNetFull + FNL 12 hours 245ms / per image
VIPLFaceNet + FNL 8 hours 150ms / per image

6 Conclusions

In this paper, we propose and release an open-source deep
face recognition SDK with carefully designed network
architecture and simplification. By sticking a fast
normalization layer to the ReLU layer, the training time is
reduced by 80% and the performance is significantly
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improved. On the real-world face recognition benchmark
LFW, VIPLFaceNet achieves a mean accuracy of 98.60%,
which is comparable to the state-of-the-art. A fully C++
implementation of the VIPLFaceNet SDK is released as an
open source SDK under the BSD license. VIPLFaceNet can
serve as a good start point for both academic research and
industrial applications under various real-world face
recognition scenarios.

In the future, we would advocate the whole community to
improve the SDK, e.g. supporting more language interface
such as Python or PHP. Besides, we intend to build a
VIPLFaceNet-based active face recognition development
community and support more related application scenarios
such as ID photo vs. real-word image verification, facial
attribute analysis and age estimation.
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