
ar
X

iv
:1

81
0.

02
71

8v
2

 [
cs

.S
E

]
 3

1
O

ct
 2

01
8

Front.Comput.Sci.

DOI

RESEARCH ARTICLE

Compiler Testing: A Systematic Literature Analysis

Yixuan TANG 1, Zhilei REN 1, Weiqiang KONG 1, He JIANG 1 2

1 School of Software, Dalian University of Technology, Dalian 116000, China

2 School of Computer Science & Technology, Beijing Institute of Technology, Beijing 100000, China

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2018

Abstract Compilers are widely-used infrastructures in ac-

celerating the software development, and expected to be trust-

worthy. In the literature, various testing technologies have

been proposed to guarantee the quality of compilers. How-

ever, there remains an obstacle to comprehensively charac-

terize and understand compiler testing. To overcome this ob-

stacle, we propose a literature analysis framework to gain in-

sights into the compiler testing area. First, we perform an

extensive search to construct a dataset related to compiler

testing papers. Then, we conduct a bibliometric analysis to

analyze the productive authors, the influential papers, and the

frequently tested compilers based on our dataset. Finally, we

utilize association rules and collaboration networks to mine

the authorships and the communities of interests among re-

searchers and keywords. Some valuable results are reported.

We find that the USA is the leading country that contains the

most influential researchers and institutions. The most ac-

tive keyword is “random testing”. We also find that most

researchers have broad interests within small-scale collabo-

rators in the compiler testing area.

Keywords software engineering, compiler-theory and

techniques, literature analysis, collaboration network, biblio-

metric analysis

1 Introduction

Compilers are important infrastructure tools in software de-

velopment, which provide syntax and semantics analysis for

programs, as well as code optimization to accelerate software

Received month dd, yyyy; accepted month dd, yyyy

E-mail: hejiang@ieee.org

upgrades. For example, the Security Engineering group at

Microsoft utilizes compilers to prioritize code review [1]; the

maintenance engineers at Hewlett-Packard improve the qual-

ity of code by removing compiler diagnostics in software sys-

tems [2].

However, compilers may also contain bugs, and in fact

quite many bugs are reported for widely-used compilers such

as GCC and LLVM [3]. Buggy compilers make a source pro-

gram optimized or translated into a wrong executable mod-

ule, which may behave differently from the expected behav-

ior determined by the semantics of the source program. Once

this happens, it can result in disastrous software failures es-

pecially in safety-critical domains. For instance, a bug in the

compiler of HAL/S had even caused the failure of the NASA

Shuttle software1). Even worse, developers with little knowl-

edge about compiler bugs customarily debug the software

they are developing rather than the compilers they are using,

which makes compiler bugs more difficult to be found [4, 5].

Therefore, guaranteeing the quality of compilers is a critical

issue.

Compiler testing is one of the most important ways to

guarantee the quality of compilers. According to the previ-

ous studies, there are three issues to be addressed: how to

generate adequate test cases to test compilers, how to find the

test oracles to determine whether a test case triggers bugs,

and how to reduce these test cases. Furthermore, two chal-

lenges are to be addressed. First, since the inputs of com-

pilers are complex programs with furcated syntax structures

and rigorous content constraints, undefined behaviors of lan-

guage specification make the first issue and the third issue

be a challenge [9]. Second, since compiler testing lacks test

1) https://history.nasa.gov/computers/Ch4-5.html

http://arxiv.org/abs/1810.02718v2
https://history.nasa.gov/computers/Ch4-5.html

2
Compiler Testing: A Systematic Literature Analysis

oracles to determine whether the outputs of compilers are se-

mantic equivalent with the programs before they are com-

piled [6], the test oracle problem makes the second issue be a

challenge.

During the past decades, a great number of researchers

have proposed different approaches for addressing the above

issues. Some successful random test case generators have

been implemented to facilitate compiler testing [16, 20, 21],

such as Orion [5], Csmith [9, 10, 28], Quest [11, 12], rand-

prog [13], and JTT [15]. All of them can automatically

generate abundant test programs for compilers without un-

defined behaviors. Simultaneously, various compiler test-

ing techniques have been proposed to mitigate the test ora-

cle problem, such as differential testing [4, 22], random test-

ing [21,25], Equivalence Modulo Inputs (EMI) [5], mutation

testing [26], and metamorphic testing [27,30]. By employing

the above testing techniques, a large number of compiler bugs

can be detected. In addition, several reducers have been de-

veloped to minimize the test cases, such as Berkeley Delta2),

C-Reduce [28], and CL-Reduce [31]. Thus, a set of small and

valid test cases that trigger the same bugs as original ones can

be reported to developers.

However, as the number of related papers increases, there

are few efforts to systematically identify, analyze, and clas-

sify the influential researchers, the state-of-the-art testing

technologies, the collaborations among authors, and the co-

occurrence of keywords, which results in an obstacle to char-

acterize and understand compiler testing. In this study, we

employ a systematic and comprehensive literature analysis

framework to overcome the obstacle. First, we perform an

extensive search to identify papers related to compiler test-

ing, and extract the most important information from papers

for the consequent analysis, such as the title, the keywords,

and the author(s). Then, we conduct a bibliometric analysis to

identify the most influential authors and papers, as well as the

widely-used compiler testing technologies, so as to present

an external overview of the compiler testing area. Last, we

construct three collaboration networks to analyze the com-

munities of authors and keywords, which can present internal

evidence on the influential authors and hot topics in this area.

The major contributions of this paper are summarized as

follows:

• We conduct a bibliometric analysis for compiler testing

literature. The results show that the USA is the most

influential country with a large number of excellent re-

2) http://delta.tigris.org/

searchers and institutions in the compiler testing area. In

addition, various types of compilers are tested, ranging

from C++, Java to Pascal, whereas C compilers draw

much attention from academia.

• We combine association rule mining and collaboration

analysis to construct three networks, including the co-

authorship network, the author co-keyword network,

and the keyword co-occurrence network. The results

show that most researchers have broad interests in the

compiler testing area. These researchers distribute in

several scattered communities. The keywords “test case

generation”, “automated testing”, and “random testing”

frequently co-occur in compiler testing.

The paper is structured as follows. Section 2 illustrates the

challenges and the corresponding solutions in compiler test-

ing. We demonstrate the components of literature analysis

framework in section 3. Then, Section 4 shows the findings

from bibliographic and collaboration analyses. Section 5 pro-

vides an overview of related work. Section 6 concludes our

paper and discusses the future direction.

2 Background of compiler testing

In this section, we briefly introduce the challenges and solu-

tions to the three issues in compiler testing.

2.1 General compiler testing process

Compilers can transform the source program written in high-

level language into language-independent machine code, and

different compilers can transform the source program into

distinct binaries under various build environments [8]. The

process of transformation is called compilation which can be

divided into three parts, i.e., frond end, middle end, and back

end. In the frond end, the program can be transformed into in-

termediate code after the lexical analysis, syntactic analysis,

and semantic analysis, in which the structure and the static se-

mantic correctness of the program are verified. Then, in the

middle end, the quality of intermediate code can be improved

by machine-independent optimizers. Last, the code generator

creates an executable file for the target machine according to

the optimized intermediate code in the back end.

In most cases, each part of transformation may contain

bugs, thus comprehensive tests should be conducted to guar-

antee the quality of compilers [9]. The general process of

compiler testing is illustrated in Fig. 1, including three main

http://delta.tigris.org/

Front. Comput. Sci.
3

issues. The first issue is the test case generation. The gram-

mar of language is guided to generate test cases and the ex-

pected outputs. Several useful tools such as Quest and Csmith

can randomly generate abundant test cases for testing compil-

ers. In the second issue, test cases as inputs of the compiler

under test are executed, and the actual outputs are obtained.

By employing different testing methods, such as differential

testing, random testing, and metamorphic testing, the actual

outputs are compared against the expected outputs. For ex-

ample, in differential testing, a test case can be compiled un-

der a golden reference compiler and a test compiler. The ex-

pected output is the behavior of the golden compiler, and the

actual output is generated by the test compiler with the same

test case input. If there is any difference, a bug manifests in

the compiler under test. The last issue is to reduce test cases

which can trigger compiler bugs. Several reducers can be

applied to minimize test cases, such as Berkeley Delta and C-

Reduce. Once the size of a test case is small enough, the bug

can be reported to developers for analyzing the test alarms

and further fixing [72]. However, each issue remains chal-

lenges that should be addressed. We present the challenges

and some solutions to these challenges in the following sub-

sections.

 !"#$%&

'&()*+$(&*

,&-&%$)!%

 !"#./&%*

0-1&%*)&()

2%$""$%*!3*

/$-,0$,&

'&()*+$(&

45#&+)&1*

6&7$8.!%

45&+0)$6/&

9+)0$/*

6&7$8.!%
'&()*+$(&*,&-&%$).!-*.((0&

:&)&+)&1*60,(
;!*1&)&+)&1*

60,(

'&()*!%$+/&*.((0&

'&()*+$(&*

%&10+&%

<&#!%).-,*

60,(

'&()*+$(&*%&10+).!-*.((0&

'&()&%(

:&8&/!#&%(

=

>
?

@%$+/&*1$)$

9##%!$+7*+$)&,!%.&(A*1.33&%&-).$/*)&().-,*B*

"&)$"!%#7.+*)&().-,

'!!/(*A* (".)7*B*C0&()*B*%$-1#%!,*DDD

'!!/(*A**E&%F&/&G*:&/)$*B** H<&10+&*DDD

2 *B*IIJK*B*@#&-LM*B*@#&- I*DDD

N&6*!3*(+.&-+&

O=PML*#$#&%(Q

R+!#0(

O>LP=*#$#&%(Q

S444

O>>TM*#$#&%(Q

<&/&8$-)*#$#&%(*3!0-1*.-*1$)$6$(&*

OLU?=*#$#&%(Q

45+/01.-,*10#/.+$).!-

OMUUL*#$#&%(*/&3)Q

45+/01.-,*(7!%)*#$#&%(*

V*-!-H&-,/.(7*#$#&%(

OMTLW*#$#&%(*/&3)Q

 !"!#$%&'() *!+)'#$),)("-%.

45+/01.-,*.%%&/&8$-)*#$#&%(

OW=*#$#&%(*/&3)Q
R+$--.-,*/.()(*!3*

%&3&%&-+&(

S-+/01.-,*%&3&%&-+&(

OX*#$#&%(Q

Y.-$/*1$)$(&)

OLT*#$#&%(Q

Fig. 1 General process of compiler testing

2.2 Test case generation issue

We illustrate the challenge in the test case generation issue

and the solutions in this subsection.

There are several commercial test suites to test the quality

of compilers, such as PlumHall3), SuperTest4), GNU Com-

piler Collection5), and AC-TEST6). Other test suites such as

ACVC test suite, CppTestCase, Pascal Validation Suite, and

3) http://www.plumhall.com/suites.html
4) http://www.ace.nl/compiler/supertest.html
5) http://gcc.gnu.org/install/test.html
6) http://www.actest.co.uk/

COBOL validation tests are also employed by researchers

for testing compilers. However, it is theoretically impossi-

ble to guarantee the correctness of compilers within a finite

test suite. Actually, there are still many bugs in widely-used

compilers, such as GCC and LLVM.

Random test case generation is an effective way to gener-

ate abundant test cases. Due to the reason that different lan-

guages are based on distinct language specifications, gener-

ating valid test cases that satisfy the corresponding language

grammars is a much more difficult issue. In the case of C

language, undefined behaviors make this issue a challenge.

Undefined behaviors, such as zero division, signed overflow,

and invalid pointer, may result in false positives. In other

words, bugs are triggered by erroneous test case structures

or erroneous data, rather than the compiler under test. Since

possible undefined behaviors of C language may cause unex-

pected results and terminating execution, test cases must are

free from these undefined behaviors.

The Purdom’ algorithm [60] is an early prominent algo-

rithm to generate test cases based on grammar rules, and has

been extended to other test case generation approaches [61,

62]. Then, gaussian elimination [14] is applied to an in-

dustry example to test Fortran90D compiler. In addition, an

ASM-based montages framework is proposed to generate test

cases for mpC parallel programming language compiler [68],

and find a lot of inconsistent places in the Montages speci-

fications, as well as bugs in the compiler. After that, a tool

named Quest can randomly generate test cases without un-

defined behaviors focusing on testing the consistency of C

compilers. Randprog, another random C program generator,

aims at detecting bugs in compiling accesses to volatile ob-

jects. JTT, an integrated tool, is driven by test specification to

automatically generate test cases for UniPhier compiler. Sub-

sequently, Csmith extends and adapts Randprog to find bugs

in C compilers, utilizing random C programs with complex

control flow and data structures, such as pointers, arrays, and

structs. Furthermore, CLsmith [16] has been proposed for

many core compiler testing based on Csmith. However, nei-

ther Csmith nor CLsmith generates test programs for floating

point test, which remains a challenge in the further test case

generation.

More recently, Epiphron tools [4] targeted compiler warn-

ing bugs support nearly all the language structures of the

C language. Other semantics and skeleton equivalent test

cases are generated based on metamorphic testing and Skele-

tal Program Enumeration (SPE) [65] respectively, to accel-

erate compiler testing. As so far, abundant test cases have

http://www.plumhall.com/suites.html
http://www.ace.nl/compiler/supertest.html
http://gcc.gnu.org/install/test.html
http://www.actest.co.uk/

4
Compiler Testing: A Systematic Literature Analysis

been prepared to feed into compilers. Simultaneously, the

expected outputs of these test cases should be collected.

2.3 Test oracle issue

In this subsection, we illustrate the challenge in the test oracle

issue and the solutions to the challenge.

Given a test case to a compiler under test and a test in-

put to the test case, the task to distinguish the expected and

correct behavior of the test case from the potential incorrect

behavior is called the “test oracle problem” [29]. However,

the challenge is that it is difficult to determine whether the

observed behavior is correct, because the expected behavior

is difficult to be accurately described. In the literature, sev-

eral approaches have been proposed to mitigate this issue.

We categorize these approaches into two groups, namely the

differential testing and the metamorphic testing.

Differential testing needs two or more compilers under the

same specification to determine whether there is a bug by

comparing the behaviors of these compilers given the same

test cases as inputs. There are three strategies to implement

differential testing, i.e., cross-compiler strategy [20], cross-

optimization strategy [25], and cross-version strategy [4].

Cross-compiler strategy detects bugs by comparing the be-

haviors produced by different compilers; cross-optimization

strategy compares the behaviors of different optimizations

implemented in a single compiler, whereas cross-version

strategy uses different versions of a single compiler to de-

termine whether there is a bug. However, to the best of our

knowledge, there are only a few formal verification compil-

ers that can be used as a golden reference compiler for test-

ing compilers, because of the difficulty of formal verification

problem [23,24]. As a result, differential testing has its weak-

ness when new programming languages are involved.

Notably, metamorphic testing introduces an alternative

view on differential testing. If the behaviors of a set of se-

mantically equivalent test cases dissatisfy the metamorphic

relations, there is a bug manifests in the compiler under test.

The advantages of metamorphic testing are that the approach

can not only mitigate the test oracle problem, but also can

be regarded as an effective complement to differential test-

ing, especially when there are no available reference compil-

ers. Furthermore, Equivalence Modulo Input (EMI) which

is derived from metamorphic testing adopts the equivalence

relation under a set of oracle data as the metamorphic re-

lation. The key insight behind EMI is to compare the re-

sults of source test case and its equivalent variants under

the same oracle data to determine whether there is a bug

in a compiler. Any detected deviant behavior on the same

oracle data indicates a bug in the compiler. In fact, EMI

has three instantiations, i.e., Orion, Athena [58], and Her-

mes [59]. Orion stochastically prunes program statements in

dead regions. Athena utilizes Markov Chain Monte Carlo

optimization to guide both code deletions and insertions in

dead regions, and Hermes allows mutations in both live and

dead regions to help more thoroughly stress test compil-

ers. An empirical study [6] shows that different testing ap-

proaches are effective at detecting distinct types of compiler

bugs. Cross-optimization strategy is more effective at de-

tecting optimization-related bugs, and cross-compiler strat-

egy can substitute EMI and Cross-optimization strategy in

detecting optimization-irrelevant bugs. It is time consuming

to test software, test case prioritization is a challenging task

to accelerate software testing [7], especially in compiler test-

ing [67].

2.4 Test case reduction issue

We present the challenge in the test case reduction issue and

the corresponding solutions in this subsection.

To report a compiler bug, a test case that triggers the bug

must be as small as possible because it is more difficult to

reproduce due to the lengthy bug reports with diverse sen-

tences and large size of test case [17]. In most cases, test

cases are manually reduced which is laborious and time-

consuming. Automatic test case reduction is required to help

minimize test cases before reporting them to compiler devel-

opers. However, in the case of C language, undefined behav-

iors make this issue a challenge, because the test case should

be free from undefined behaviors during the reduction pro-

cess, and the reduced test case must trigger the same bug as

the original one.

There are several reducers to automatically reduce test

cases, including Berkeley Delta, C-Reduce, and CL-reduce.

Berkeley Delta is based on delta debugging algorithm which

reduces test cases at line granularity. C-Reduce is a state-of-

the-art tool for reducing C programs which refers to abundant

static and dynamic analyses to avoid undefined behaviors.

Subsequently, C-Reduce is extended to CL-reduce which

provides test case reduction for OpenCL kernels. Another ap-

proach adopts top-down minimization and bottom-up mini-

mization algorithms alternately to reduce a tree structure con-

structed by arithmetic expressions until there is no space to

minimize any more [18]. As a result, a test case with thou-

Front. Comput. Sci.
5

sands of lines of code can be reduced to a few lines. How-

ever, all these reduction approaches only support single-file

program reduction, whereas multiple-file programs reduction

and real-world projects reduction still require further efforts.

Conclusion. The compiler testing area includes three cru-

cial issues, i.e., the test case generation issue, the test oracle

issue, and the test case reduction issue. In order to address

these three issues, two challenges need to be avoided, i.e., the

undefined behaviors in test cases and the test oracle problem.

In the literature, several approaches and tools are proposed

to address these challenges. In order to investigate which

approaches and tools are frequently employed when testing

compilers, we conduct a bibliometric analysis, and present

the results in Section 4.

3 Framework

The whole framework consists of three components, i.e., the

dataset, the bibliometric analysis, and the collaboration anal-

ysis, as shown in Fig. 2. First, we construct a dataset con-

taining the most important information of papers related to

compiler testing in the dataset component. Then, the biblio-

metric analysis component provides three modules to present

an overview of compiler testing. Last, we constructs three

networks in the collaboration analysis component to present

the internal evidence on collaborations between researchers

and their interests. We detail each component of the frame-

work in the following subsections.

3.1 Dataset

To construct the dataset, we refer to the processes of re-

view study to find relevant published papers in journals and

conference proceedings. We search three major online aca-

demic search engines, i.e., IEEE Xplore7), ISI Web of Sci-

ence (WoS)8), and Scopus9). These search engines are widely

accepted in review studies [45, 46], and support advanced

search. Then, we define a search string “compiler AND

(test OR bug)”, and limit the search within titles, abstracts,

and keywords for paper selection. We do not limit a spe-

cific published time or journal/conference when conducting

the searching. Therefore, the papers in our initial dataset are

published before February 2018.

7) http://ieeexplore.ieee.org
8) http://apps.webofknowledge.com
9) https://www.scopus.com

Since the focus of this paper is on compiler testing, many

papers that target compiler verification and other software

testing are included in our searching results. Thus, it is nec-

essary to define comprehensive inclusion/exclusion criteria to

select only the papers that provide evidence supporting for

compiler testing.

For the inclusion criteria, we include the:

• Research papers that describe at least one compiler test-

ing technology.

• Cases studies and surveys of compiler testing experi-

ences.

• Papers of reference lists that are relevant to compiler

testing.

For the exclusion criteria, we exclude the:

• Papers that are not published in English.

• Resources of papers that are not available online.

• Short papers that are less than four pages.

• Papers that are duplications.

• Papers that are not related to compiler testing.

With the above search string, we find 6,731 papers in our

initial dataset. We conduct the paper selection process, and

present the collection of the number of papers after perform-

ing each criterion in parentheses as shown in Fig. 3. First,

we check their titles to remove duplicates, and obtain 4,776

papers. Second, we excluded those papers that are less than

four pages, and are not written in English. After applying this

step, 711 papers are filtered. Then, we check the titles, key-

words, and abstracts to eliminate irrelevant papers. In other

words, only a paper describing the solutions to at least one is-

sue in the compiler testing area is included in our dataset. We

find that most papers are filtered out in this step because these

papers are related to compiler verification or other software

testing process. It is time-consuming and laborious work to

exclude irrelevant papers. Nonetheless, we design and con-

duct such a concise search string to describe the compiler

testing area and include many more papers that may be re-

lated to this area in the initial dataset. Manually checking

on the papers can ensure that most papers related to compiler

testing are included in our dataset, and filter out those papers

that do not focus on compiler testing issues. Thus, only 51

papers are left in our dataset after this step. Last, we apply

the same selection criteria to the reference lists of the selected

51 papers to find additional papers. Nine papers that are not

retrieved by the search keywords are included. Finally, we

obtain 60 papers related to compiler testing for the following

procedures.

http://ieeexplore.ieee.org
http://apps.webofknowledge.com
https://www.scopus.com

6
Compiler Testing: A Systematic Literature Analysis

Data Source Data Extracting Data Preprocessing

Impact AnalysisProductivity Analysis

Dataset

Bibliometric

Analysis

Co-authorship Network Author Co-keyword Network

Collaboration

Analysis
Keyword Co-occurrence Network

Paper Selection

Content Analysis

Fig. 2 The components of framework

 !"#$%&

'&()*+$(&*

,&-&%$)!%

 !"#./&%*

0-1&%*)&()

2%$""$%*!3*

/$-,0$,&

'&()*+$(&

45#&+)&1*

6&7$8.!%

45&+0)$6/&

9+)0$/*

6&7$8.!%
'&()*+$(&*,&-&%$).!-*.((0&

:&)&+)&1*60,(
;!*1&)&+)&1*

60,(

'&()*!%$+/&*.((0&

'&()*+$(&*

%&10+&%

<&#!%).-,*

60,(

'&()*+$(&*%&10+).!-*.((0&

'&()&%(

:&8&/!#&%(

@%$+/&*1$)$

9##%!$+7*+$)&,!%.&(A*1.33&%&-).$/*)&().-,*B*

"&)$"!%#7.+*)&().-,

'!!/(*A* (".)7* C0&() %$-1#%!, DDD

'!!/(*A* E&%F&/&G*:&/)$ B* <&10+& DDD

2 *B*IIJK* @#&-LM @#&- I DDD

N&6*!3*(+.&-+&

O=PML*#$#&%(Q

R+!#0(

O>LP=*#$#&%(Q

S444

O>>TM*#$#&%(Q

<&/&8$-)*#$#&%(*3!0-1*.-*1$)$6$(&*

OLU?=*#$#&%(Q

45+/01.-,*10#/.+$).!-

OMUUL*#$#&%(*/&3)Q

45+/01.-,*(7!%)*#$#&%(*

V*-!-H&-,/.(7*#$#&%(

OMTLW*#$#&%(*/&3)Q

 !"!#$%&'() *!+)'#$),)("-%.

45+/01.-,*.%%&/&8$-)*#$#&%(

OW=*#$#&%(*/&3)Q
R+$--.-,*/.()(*!3*

%&3&%&-+&(

S-+/01.-,*%&3&%&-+&(

OX*#$#&%(Q

Y.-$/*1$)$(&)

OLT*#$#&%(Q

Fig. 3 The process of paper section

We design a data extraction form to collect needed infor-

mation to support the bibliometric analysis and the collabo-

ration analysis, as shown in Table 1. In addition to the bib-

liographic information of title, keywords, abstract, author(s),

institution(s), country, and published year, the data form also

includes the citation number of each paper which is collected

from Google Scholar10), the identified subject of compiler un-

der test, the tools and the methods used for test case genera-

tion, and the types of compiler testing technologies.

Table 1 Extraction data item and description

Data Item Description

Title Title of paper

Author Authors’name of paper

Abstract Abstract of paper

Keywords Keywords presented on paper

Institution Institution of author

Country Country of author

Published year Year that the paper was published

Citation Citation number of paper

Subject Types of compiler under test

Data generation Tools/methods proposed to generate test

case

Compiler testing technology Types of testing method used

When we collect the bibliographic information from pa-

pers, we find that not all of the selected papers contain key-

words due to the different formatting template of different

journals/conferences. To accurately analyze the keywords,

we furnish keywords information of these papers by extract-

ing three keywords from the abstract information using the

TextRank [47] algorithm, which is a graph-based ranking

10) http://scholar.google.com

model for text processing, and has been successfully used in

natural language applications for term identification [48, 49].

We select at least three keywords by the TextRank algorithm

for each paper in the following analyses.

However, the items of subject, data generation, and com-

piler testing technology cannot be directly extracted from pa-

pers. For these pieces of information, we employ three post-

graduates of Dalian University of Technology to manually

identify the relevant items. Each of them needs to scan each

paper to answer the following questions:

• What types of compilers are tested in the paper?

• How the test cases are generated for compiler testing?

• Which testing technology is employed when testing

compilers?

We adopt the most consistent answers for each question.

If there are no consistent answers to a question, we invite

another three postgraduates to answer the question until there

is a consistent agreement.

All the needed information of selected papers in the data

extraction form is constructed into our dataset. Subsequently,

we conduct bibliometric analysis and collaboration analysis

based on this dataset, and detail these analyses in the follow-

ing subsections.

3.2 Bibliometric analysis

The bibliometric analysis consists of three modules, i.e., the

productivity analysis, the impact analysis, and the content

analysis. We show the details of each module in the following

subsections.

3.2.1 Productivity analysis

The productivity analysis is mainly used to identify the most

productive authors, institutions, countries, and popular topics

in the compiler testing area. Thus, we calculate the number

of papers for each author, institution, and country to identify

the most productive ones. In order to avoid the ambiguity of

the authors with the same name, we calculate the published

http://scholar.google.com

Front. Comput. Sci.
7

number of each author with the institution when the paper is

published. Once there are authors with the same name but

different institutions, we check the homepage of authors to

distinguish them. In addition, if the authors of a paper are

from different institutions and counties, we calculate the dis-

tinct institution and country for once.

Then, we count the frequencies of keywords to identify

the most popular topic and the trends of several popular top-

ics. Notably, we delete the keywords “compiler testing”

and “compiler bugs” when calculating the frequency of key-

words, since the keywords are our search strings and the fo-

cus of this study.

3.2.2 Impact Analysis

The impact analysis is used to identify the influential authors

and papers in the compiler testing area. We detail the mea-

surement of the impact of papers and authors as follows.

1) Impact of papers: The motivation behind this indicator

is that, the higher the citation number is, the higher impact

of a paper receives. We use Google Scholar to find all pa-

pers’ citation number before February 3rd, 2018. However,

the newly published papers tend to have a smaller citation

number compared with the previous ones. Therefore, we use

Normalized Citation Impact Index (NCII) [50] which consid-

ers the impact of a publication’s longevity to solve this issue.

The score of NCII can be calculated as follows:

NCII =
Total citation per referenced publication

Publication Longevity(inyears)
. (1)

Publication longevity indicates the number of years that a

paper has been in print. With respect to this paper, the year

2018 is considered as the end point of the period.

2) Impact of authors: We utilize individual contributions

of papers to measure the impact of authors. Specifically, we

employ Adjusted Citation Score (ACS) [51], to calculate the

individual contributions based on both papers’ number of the

author and the citation number of each paper.

Given a set of papers P={p1, ...pn} and a set of published

numbers N={n1, ...nn}, each paper pi in P has been published

by the corresponding ni authors in N in our dataset. Then, the

score of ACS is defined as follow:

ACS =
∑

p∈P

NCII
n
. (2)

We modify the calculation of ACS, and replace the citation

number of each paper with the score of NCII. Thus, equa-

tion 2 evaluates a paper’s quality by the corresponding NCII

value.

3.2.3 Content analysis

The content analysis is used to identify the frequently used

compilers, popular test case generators, and testing technolo-

gies. Thus, we analyze the frequency of each compiler under

test, the widely-used test case generator and the test suite, the

compiler testing technology, and the approach based on the

manual extraction data items in our dataset.

3.3 Collaboration Analysis

The collaboration analysis is mainly used to reveal the co-

operative relationships between authors and their interests.

Thus, we generate three collaboration networks, i.e., the co-

authorship network, the author co-keyword network, and the

keyword co-occurrence network, to realize this analysis. We

construct these networks because the collaborations between

authors can be directly reflected in the co-authorship network,

the common interests among authors can be found in the au-

thor co-keyword network, and the core topics in compiler

testing can be detected by similar keywords in the keyword

co-occurrence network. We also employ community detect-

ing algorithm [53] to find different communities in networks.

In addition, all networks are visualized as undirect graphs,

because the collaborations among authors and keywords can

be undisputedly viewed as parallel.

3.3.1 Collaboration networks associations

The information of authors and keywords are needed to con-

struct the networks. In the co-authorship network and the au-

thor co-keyword network, the nodes stand for authors, while

the nodes in the keyword co-occurrence network stand for

keywords. Specifically, we use association rule mining [52]

to help mine useful collaboration associations.

As we are interested in constructing collaboration net-

works, we need to identify the frequent pairs of collabora-

tions between authors and keywords. In the co-authorship

network, a pair of authors is a frequent item if the proportion

of the number of papers that are co-authored by this pair of

authors is above the minimal support threshold ts. Similarly,

in the author co-keyword network, if the proportion of the

number of papers that are organized using the same keywords

by a pair of authors is above the minimal support threshold,

we incorporate this pair of authors into frequent items. In

8
Compiler Testing: A Systematic Literature Analysis

the keyword co-occurrence network, a pair of keywords is a

frequent item if the proportion of the number of papers that

are organized with this pair of keywords is above the mini-

mal support threshold. An association rule is generated from

such pair if the confidence of this rule is above the minimal

confidence threshold tc. The confidence threshold is calcu-

lated as the proportion of the number of papers that contain

the frequent pair of collaborations compared with the number

of papers that contain only the first one in the frequent pair.

Given the mined association rules, we can construct three

collaboration networks. Each network is an undirected graph

N = {A/K, E,W}, where the node set A/K contains authors or

keywords that appear in the association rules. The link set E

contains undirect links that connect two authors or two key-

words, and the weight set W represents the confident attribute

indicating the strength of association rules.

3.3.2 Community detection

A network can consist of a large number of authors or key-

words, as well as links between them. In graph theory, a node

would be tightly linked with other relevant nodes, but loosely

linked with irrelevant nodes. A set of highly correlated nodes

is referred to as a community in the network. For example,

in the author co-keyword network, authors with the same in-

terests are most likely to be a community, because most of

them focus on a specific topic in compiler testing. We use

the Louvain method [53] implemented in the Gephi [54] tool

to detect communities in the networks. The Louvain method

partitions each network into a finite number of communities

by using an iterative modularity maximization method, rather

than requiring users to specify the number of communities.

The modularity is defined as follow:

Q = 1
2m

∑

i j

[

Vi j −
did j

2m

]

δ(ci, c j), (3)

where the δ-function is 1 if nodes i and j belong to the same

community, otherwise the δ-function is 0. Also, the Vi j is 1

if the two nodes i and j are linked, otherwise the Vi j is 0. m

indicates the number of links in the network, and the di rep-

resents the degree number of the node i. Each node must be

assigned to a specific community. Intuitively, the links in the

same community will enhance the density of the network, and

perform a positive effect to increase the modularity, whereas

the links across different communities have a negative effect

on modularity.

3.3.3 Visualizing the networks

We use the Gephi [54] tool to visualize the collaboration net-

works. Forceatlas2 layout [63] is used to achieve spatializa-

tion, because this layout is convenient to investigate different

communities. Nodes and links in the same community are

shown in the same color, whereas the nodes and links are

shown with different or similar colors in different communi-

ties. The size of a node (author/keyword) represents the num-

ber of collaborations. The larger a node is, the more authors

or keywords collaborate with the node. The thickness of links

represents the strength of associations rules. The wider a link

is, the more times that the two nodes collaborate with each

other. However, the length of links bears no meaning in this

paper due to the use of Forceatlas2 layout.

4 Results and Analysis

In this section, we present the results of the analyses based on

our framework using the constructing dataset. In particular,

we investigate the following research questions:

RQ1. What are the influential authors, institutions, and the

trends in the area of compiler testing?

RQ1.1 What are the productive authors, institutions or

countries?

RQ1.2 What are the frequent keywords and the trends

of popular topics?

RQ1.3 What are the influential authors and papers in

the area of compiler testing?

RQ2. What are the research situations of compiler testing?

RQ2.1 What compilers are frequently tested?

RQ2.2 What test cases and testing technologies are em-

ployed when testing compilers?

RQ2.3 How to reduce the large test cases before report-

ing?

RQ3. What are the author communities and topic communi-

ties in the compiler testing area?

RQ3.1 What are the relationships among authors of

compiler testing?

RQ3.2 What are the same interests of authors?

RQ3.3 What are the frequent co-occurrence keywords

in the area of compiler testing?

We conduct the bibliometric analysis to help mine infras-

tructural information of compiler testing to address the for-

mer two main questions. Then, we conduct the collabora-

tion analysis to explore the relationships among authors and

Front. Comput. Sci.
9

keywords to address the last main question. In addition, we

visualize the collaboration networks to characterize the col-

laborations more clearly.

4.1 Investigation to RQ1

We detect a large number of excellent authors and institutions

that plays major roles in the development of the compiler test-

ing area by conducting the productivity analysis and the im-

pact analysis. In the following subsections, we only list some

top-ranked results due to space restrictions.

1 2 3 4 5 6 7

Zhendong Su

Vu Le

Chengnian Sun

John Regehr

Eric Eide

Andrei Lascu

Alastair F. Donaldson

Nagisa Ishiura

Xuejun Yang

Yang Chen

Junjie Chen

Dan Hao

Yingfei Xiong

Hongyu Zhang

Bing Xie

A. Kalinov

A. Kossatchev

V. Shishkov

Eriko Nagai

Number of paper

Fig. 4 The most productive authors

4.1.1 RQ1.1 What are the productive authors, institutions

or countries?

As for the statistical account of authors and institutions, we

list the number of published papers for each author and insti-

tution in Fig. 4 and Fig. 5, respectively. The results show that

several authors, such as Zhendong Su, Vu Le, and Chengnian

Sun, have published more papers related to compiler test-

ing. In addition, most productive authors have collaborations

with others. For example, top three productive authors have

co-published seven papers in our dataset. Other researchers

also make many contributions to promote the development of

compiler testing. When calculating the number of papers for

each institution, we find that many universities have multiple

campuses which are usually located in different areas, and

1 2 3 4 5 6 7

University of California at Davis

University of Utah

Institute for System Programming

of Russian Academy of Sciences

Imperial College London

Kwansei Gakuin University

Peking University

Pusan National University

Chinese Academy of Sciences

CEA LIST

University of Illinois

Microsoft Research

University of Newcastle

Saarland University

University of Maryland

Number of paper

Fig. 5 The most productive institutions

 !"#$%&#$%'(

)*+*,#$-&#$--(.#$/#$0(
123,*#$4#$/(

56*,78#$9#$4(

:86;*,<#$=#$9(

.>68*#$'#$'(

?@AA3*#$'#$=(

BC*D<#$'#$=(

EC286A#$-&#$--(

Fig. 6 The number of papers and ratio for countries/regions

have different research contributions. Thus, we distinguish

each campus of a university, and find that the branch campus

of University of California at Davis has published the most

papers in the compiler testing area.

In addition, we present the number of papers and the ra-

tio of per country/region in Fig. 6. The results show that the

USA is the leading country with 30 published papers in our

dataset, which is consistent with the results obtained in pre-

vious studies for ranking analyses of both paper quantity and

quality [55]. We can also notice that Japan, the UK, China,

and France are the most active countries, which indicates that

the researchers in these countries tend to pay more attention

to compiler testing.

10
Compiler Testing: A Systematic Literature Analysis

1 3 5 7 9 11 13 15 17

random testing

test case generation

automated testing

c compilers

test-case reduction

compiler defect

compiler validation

compiler optimizations

compilers

correctness

program testing

metamorphic testing

bug reporting

equivalent program variants

differential testing

effectiveness

arithmetic optimization

Frequency

Fig. 7 The most frequent keywords

!"
#
$
"
%
&
'
(

!

"

#

$

%

%!

%"

%#

%$

%&'#(%&$! %&$)(%&$& %&& (%&&# %&&'(!) ! "(! % ! %%(! %'

+,-./012314,5 123106+32052,2+14.,
+71./+12-012314,5 606./8492*3
1231(6+320*2-7614., 6./8492*0-2:261

)"*!(

Fig. 8 The trends of top six keywords

4.1.2 RQ1.2 What are the frequent keywords and the trends

of popular topics?

We also investigate the frequencies of keywords, and list

the top-ranked keywords that occur more than three times

in Fig. 7. The top three active keywords are “random test-

ing”, “test case generation”, and “automated testing”. The

first keyword and the third keyword focus on mitigating the

test oracle problem, and the second keyword aims to address

the difficulty in test case generation.

In addition, we analyze the trends of several keywords. As

the papers in our dataset are published from 1976 to 2017, we

split the papers into six periods. We accumulate the frequen-

cies of top six keywords on each period to analyze the trends

of them, as shown in Fig. 8. We can observe that the keyword

“test case generation” has a sharp increase during 1997 and

2003, while presenting a smooth increase after 2003. Indeed,

test case generation is a difficult task in compiler testing, and

the existing generator tools are only prepared for several lan-

guages. In the future, there would be more generator tools

to improve testing compilers that support various languages.

Notably, the keyword “random testing” attracts much more

attention after 2010, and becomes the most popular keyword

in recent years. Simultaneously, the keyword “automatic test-

ing” also shows a sharp increase during the past decade. The

reason may be that as an automatic test case generation tool,

CSmith, is proposed in 2011, enormous test cases are gener-

ated, making the random testing and automatic testing pos-

sible. Furthermore, as the compiler is generally of complex

structure and the functionality of generating target machine

code is the only concern, randomly automatic testing based

on enormous test cases is critical in comprehensive testing

compilers [56]. Other keywords also show a great increase

after 2010, such as test-case reduction, which is an emerging

topic in recent years.

Table 2 Top scores of ACS

no. author name score

1 John Regehr 23.00

2 Eric Eide 22.07

3 Yang Chen 18.47

4 Xuejun Yang 17.66

5 Zhendong Su 14.14

6 Vu Le 13.81

7 William M. McKeeman 10.40

8 Robert Mandl 9.97

9 Mehrdad Afshari 8.00

10 Chengnian Sun 6.14

4.1.3 RQ1.3 What are the influential authors and papers in

the area of compiler testing?

As for the impact of authors, we calculate each ACS score,

and list the top ten authors in Table 2. We can observe that

John Regehr, Eric Eide, Yang Chen, Xuejun Yang, and Zhen-

dong Su have higher ACS scores, which indicates that they

are excellent researchers in the compiler testing area. Fur-

thermore, we also investigate that most of these authors have

published more than four papers in our dataset, such as Zhen-

dong Su, Ve Le, John Regehr, and Eric Eide, which implies

that authors with more published papers tend to have higher

impact in the compiler testing area.

As for the impact of papers, we calculate the NCII score of

each paper, and list the top ten influential papers in Table 3.

From the table, we can see that the most influential paper

focuses on addressing the difficulty in test case generation,

Front. Comput. Sci.
11

and creates a tool, Csmith, which can detect many unknown

compiler bugs. We can also observe that most papers in top

ten are published in the last decade, whereas only two papers

are published in the period of eighties and nineties. As for the

two early papers, one paper published in 1998 is the first time

to propose differential testing technology to test C compilers,

and emphasize the importance of avoiding undefined behav-

iors when generating C test programs, which attracts many

following researches. The other paper published in 1985 de-

signs an algebraic method for testing Ada compiler, which is

widely-used to generate optimal test cases in software testing.

Answer to RQ1: By conducting the productivity analysis

and the impact analysis, we find that the USA is the most in-

fluential country with a lot of excellent researchers and insti-

tutions in the compiler testing area. The keywords “random

testing” and “automated testing” show a sharp increase in re-

cent years and tend to be the most popular keywords from

academia.

4.2 Investigation to RQ2

We detect the most frequently tested compilers, popular com-

piler testing technologies, and available tools by conducting

the content analysis.

4.2.1 RQ2.1 What compilers are frequently tested?

We calculate the frequencies of tested compilers used by re-

searchers, and list the number of papers of tested compilers in

Fig. 9. Notably, most papers use various types of compilers

that support the same language or one type of compiler with

different optimization levels. The results show that C compil-

ers are frequently tested by most papers, especially GCC and

LLVM/Clang. In fact, GCC [3] is a compiler system support-

ing various languages and target architectures. LLVM [57] is

another popular compiler infrastructure, and has drawn much

attention from academia. Other compilers supporting differ-

ent languages also attract researchers to test their correctness,

ranging from C++, Java to Pascal. As a result, the quality

of compilers is critical for any language, and the compilers

should be comprehensively tested.

4.2.2 RQ2.2 What test cases and testing technologies are

employed when testing compilers?

In order to test compilers, test cases are needed as the in-

puts of compilers (see Section 3.2). To effectively generate

abundant test cases that conform to language standards and

specifications, many approaches and tools are proposed to

generate random test cases without undefined behaviors. We

identify each test case generator, and list the frequencies of

these generators in Fig. 10. The results show that most test

cases are generated based on the language grammar rules and

the coverage criteria. Several tools are frequently adopted by

researchers, such as Csmith, Quest, CLsmith, Orange4, rand-

prog, Epiphron, and JTT, whereas test suits are rarely em-

ployed because of the limitation of definite test cases. As for

the automatic test case generators, Csmith is the most widely-

used tool for C language test case generation, because Csmith

covers a broad range of syntax of the C language, including

arrays, structs, conditional statements, loop statements, and

function calls, which is more expressive than other tools. In

addition, several approaches can also generate abundant test

cases. For example, Purdom’ algorithm is a popular approach

which generates test cases based on the language specifica-

tions, and has been extended by other test case generation

approaches. Other approaches based on metamorphic testing

and SPE can generate a set of semantic equivalence test cases

as the inputs of compilers.

After the test cases are fed into compilers, we need to em-

ploy testing technology to test compilers based on these test

cases (see Section 3.3). Different testing technologies are

proposed to guarantee the quality of compilers as shown in

Fig. 11. Random testing and differential testing are the two

most frequently used technologies. Both of these two tech-

nologies can test compilers using randomly generated test

cases as long as time allows. The view behind the differ-

ential testing is that if more than two compilers under the

same test cases produce different results, there is a bug in

at least one compiler. EMI derived from metamorphic test-

ing attempts to construct equivalence-preservation relations

to generate equivalent test cases for testing compilers. In

addition, EMI is simple and widely applicable, which has

been employed by many researchers. Mutation testing, as a

trade off between the efficiency and the effectiveness in com-

piler testing, detects a mutant if errors manifest in a mutant,

which is adopted by several researchers. Other testing ap-

proaches, such as Optimizer Testing Kit approach [64] and

SPE approach, are also employed by researchers to test dif-

ferent compilers, and show their own effectiveness on bug

detection.

1
2

C
o
m

p
iler

T
estin

g
:

A
S
ystem

a
tic

L
itera

tu
re

A
n
a
lysis

Table 3 The most influential papers

no. title year citation NCII main contributions

1 finding and understanding bugs in c

compilers

2011 393 56.14
• A state-of-the-art test case generator named Csmith is developed, and many previous unknown compiler bugs are found.

• A qualitative and quantitative analysis is conducted to characterize the bugs.

2 compiler validation via equivalence

modulo inputs

2014 96 24.00
• A novel testing technology of equivalence module input (EMI) is introduced.

• An instance of EMI named Orion is developed for testing C compilers.

• A large number of bugs in GCC and LLVM are reported by the evaluation of Orion.

3 test-case reduction for c compiler bugs 2012 97 16.17
• Three new, domain-specific test case reducers for C codes are proposed in a general framework.

• A crucial test-case validity problem is identified, and can be solved by various solutions.

• The best reducer is much more effective which produces test cases more than 25 times smaller than that produced by a delta

debugger.

4 taming compiler fuzzers 2013 61 12.20
• The paper frames the fuzzer taming problem, which has not been addressed by researchers.

• The paper exploits the observation that automatic triaging of test cases and automatic test case reduction can be synergistic in

accelerating compiler testing.

• The paper leverages diverse sources of information about bug-triggering test cases to rank test cases.

• The furthest point first (FPF) technology is both faster and more effective to cluster test cases than other clustering algorithms.

• Many bugs in a JavaScript engine and a C compiler are found during the fuzzing run.

5 differential testing for software 1998 208 10.40
• A new testing technology, differential testing, is proposed, and discovers new bugs in C compilers.

6 many-core compiler fuzzing 2015 31 10.33
• The paper provides the evidence on the effectiveness of random differential testing and EMI testing in a new application domain.

• The paper proposes three novel methods for generating OpenCL kernels.

• An injection of dead-by-construction code enable EMI testing in the context of OpenCL.

• More than 50 OpenCL compiler bugs existing in commercial implementations are reported.

7 orthogonal latin squares: an application

of experiment design to compiler testing

1985 327 9.91
• The paper proposes a new method for testing compilers, i.e., orthogonal latin squares, which can facilitate exhaustive testing at

a fraction of the cost.

• The method is effective in designing some tests by using Ada Compiler Validation Capability test suites.

8 compiler testing via a theory of sound

optimisations in the c11/c++11 memory

model

2013 40 8.00
• A theory of sound optimizations in the C11/C++ memory model is proposed, which covers most optimizations in real compilers.

• A bug-hinting tool, cmmtest, is built based on the theory, and discovers some subtle concurrency bugs and unexpected bugs in

the C11/C++ memory model.

9 testing an optimising compiler by gen-

erating random lambda terms

2011 53 7.57
• The paper provides a workable solution to generate random and type-correct lambda terms, and discovers many bugs in the

Glasgow Haskell compiler.

10 volatiles are miscompiled, and what to

do about it

2008 72 7.20
• The paper shows that C’s volatile qualifier in compilers can produce incorrect object codes.

• The paper proposes a technique for generating C programs randomly.

• A new testing technique, access summary testing, is proposed, which is effective and automatical at detecting compiler bugs.

• The paper shows that the impact of compiler bugs can be mitigated by introducing small helper functions into a program.

• Several recommendations are provided for application developers and compiler developers.

Front. Comput. Sci.
13

 !"#$% &' ()($%

 !" #$%&'()* +,-)* .)/. /+&&$*.',0 # (!,0+!0)

 !"#$% &' ()($%

 1" #$%&'()* +,-)* .)/. /+&&$*.',0 $.2)* (!,0+!0)/

Fig. 9 Compiler under test supporting different languages

0 2 4 6 8 10 12 14 16

Csmith

Quest

CLsmith

Orange4

Randprog

Epiphron

JTT

Based on grammar rules genneration

 !"#$%&'()*+$",-.%

Equivalent test cases generation

ASM-based approach

Practice collection

Gaussian elimination

Mutation operators

Others

ACVC test suite

CppTestCase

Pascal Validation Suite

COBOL validation tests

T
o

o
ls

A
p
p

ro
ac

h
es

T
es

t
S

u
it

es

Number of paper

Fig. 10 Test case generation tool/approach

4.2.3 RQ2.3 How to reduce the large test cases before re-

porting?

Once a test case triggers a bug, the test case should be re-

duced before reporting, because large test cases are tedious

and time-consuming for developers to find the root cause of

the bug (see Section 3.4). Several automatic reducers are de-

0 5 10 15 20 25 30

Random testing

Differential testing

EMI

Mutation testing

Metamorphic testing

Others

Number of paper

Fig. 11 Different compiler testing technologies

veloped to help reduce large test cases, and ensure that the

reduced test cases still trigger the same bug, and do not in-

troduce new undefined behaviors. We identify each reducer

employed by researchers, and list the frequencies of these

reducers in Fig. 12. C-reduce is the most popular reducer

due to the high efficiency and effectiveness on reducing test

cases. Berkeley Delta and CL-Reduce are also adopted by re-

searchers when there is a need to reduce the large size of test

cases. Another reduction approach [18] employs top-down

minimization and bottom-up minimization algorithms to re-

duce the arithmetic expressions to a small program.

Answer to RQ2: By conducting the content analysis, we

find that C compilers are frequently tested by academia, and

random testing is the most popular testing technology. In ad-

14
Compiler Testing: A Systematic Literature Analysis

0 1 2 3

C-Reduce

Berkeley Delta

CL-Reduce

Manual reduction

Top-down and bottomup minimization

T
o

o
ls

A
p
p

ro
ac

h
es

Number of paper

Fig. 12 Tools of test case reducer

dition, several tools for test case generation and reduction are

available for the public, such as Csmith and C-reduce. How-

ever, the number of papers implementing test case reduction

is much smaller than that of test case generation, which also

encourages researchers pay more attention on the large test

case reduction, even for the real world projects.

4.3 Investigation to RQ3

We explore the relationships among authors and their inter-

ests by two collaboration networks using association rules,

i.e., the co-authorship network and the author co-keyword

network. In addition, we analyze the relationships between

the frequent co-occurrence keywords by the keyword co-

occurrence network. In the following subsections, we present

and analyze the collaborations in these networks.

4.3.1 RQ3.1 What are the relationships among authors of

compiler testing?

We present the collaboration relationships among authors in

the co-authorship network. Actually, the number of authors

in this network is affected by the minimal support ts and the

minimal confidence tc. When the minimal ts is set to 0.017,

and the minimal tc is set to 0, all the frequent pairs of authors

will be included in the network. Thus, the co-authorship net-

work has the maximum number of authors in the compiler

testing area.

The co-authorship network is shown in Fig. 13 which con-

tains 119 authors and 229 links, and includes 27 authorship

communities with the modularity of 0.893. In Fig. 13, au-

thors in compiler testing distribute in several scattered com-

munities, which only 32 authors (27% rate) collaborate with

more than five authors, and only one author (0.8% rate) col-

laborates with more than ten authors. The strength of collab-

orations is in a small rang from one to six cooperative times,

and only five pairs of authors (2.18% rate) collaborate with

each other more than three times. These communities are

isolated from each other, among which seven communities

follow an edge structure, six communities follow a triangle

structure, four communities follow a quadrilateral structure,

while the other ten communities follow a complex network

structure. In the following discussions, we only discuss the

ten complex communities, and use the high degree author or

the productive author to represent a community, such as the

John Regehr community and the Junjie Chen community.

In Fig. 13, the John Regehr community is the most com-

plex community with 14 collaborators and 51 links. In this

community, John Regehr is the central author, and has other

13 collaborators, especially collaborating with Eric Eide for

four times. John Regehr is also a productive author in Fig. 4,

and receives the most highest ACS score in Table 2. Other

productive authors also appear in this community, such as

Yang Chen and Xuejun Yang. All of these authors have broad

collaborations that form the biggest community in the com-

piler testing area. In the Junjie Chen community and the Ish-

tiaque Hussain community, there are eight and seven collabo-

rators respectively. Each pair of the collaborators in these two

communities has co-authored papers in our dataset. Specifi-

cally, there are three co-authored papers related to compiler

testing in the Junjie Chen community as shown in Fig. 4.

The other seven complex communities have more than five

collaborators, and surround with several productive authors,

such as Zhendong Su and Alastair F. Donaldson. Although

there are only five authors in the Zhendong Su community,

all the authors dominate the state-of-the-art technologies on

compiler testing. Another two communities, i.e., the Alastair

F. Donaldson community and the Nagisa Ishiura community,

have several strong associations among collaborators, while

other four complex communities have more collaborators but

weak associations.

We also investigate the determining factors of the co-

authorship phenomenon, and the impact of papers affected

by the collaborations. In our dataset, the authors of more

than half of papers are from the same institution, and of more

than two thirds papers are from the same country. For exam-

ples, all the authors in the Zhendong Su community are from

the University of California at Davis, and all the authors in

the Junjie Chen community are from China. Furthermore,

collaborations can increase the number of papers, as well as

the accepted rate for publication in a conference or journal.

However, the quality of co-authored work is the most critical

factor on the acception for a top conference or journal, which

Front. Comput. Sci.
15

 !"#$%&'('"

)*+,+-"%.'+-"/$*$

01%232$+45#"6

7'/3+%81%0'!!

2'*!"9"'%:1%;'<="+

0"6>?$,%@,

:=',+>.36A!"#%@$=B

C3$BB!34%D1%E$F

0"#3%:="/3#

G1%)1%@"9-/'66
G1%7$63+

H!1%01%2$5$I"9

H!1%J1%:$I'93I"9

H!1%01%K3/3!"6'9

."!6L,%)<'M,

D-36%N-'$

&'$4'%K'#3A'

?,6M-"%O,3

@36F"'6(%.,
P",/"6(%K'$

;"'6(%C,$

N-'$-,"%@'6(

@3"%@,@,<3"%8-36

0"9-'=%.1%2'=#'

:$36%D='3++36
)=3Q'6A!$%R,++$

)1%D3=36*'6$

81%D!3+5"%R3(-"MM"

K'#'-"A3%?$+-"#'<'

21%H3=='%J"(6'

:$,4'%8-"/,!'

D1%C-3MM"

K$+-"-"!$%SM'<'

C4,6%@$$

G!"'6%)1%0'==$4

.3,6(%83$#%D-'3

89$**%)1%;"6A3

.'6"=%7'6(

 A<'!A%G1%H,BB4
83!(34%N3=36$I

7'/3+%E1%E$<3!

8$5-"'%N3=36$I'

7$-6%.,(-3+

K'3%?3$6%:"/

7,6(%.$%G'3

@$6>?$,6(%:"/

O,3Q,6%?'6(

?'6(%D-36 !"9% "A3

7$-6%R3(3-!

2'+9'=%D,$T

D-,9#4% =="+$6

R$L"6%0$!"++3*

2'6#'Q%2'<'6

E!'693+9$%N'55'%&'!A3=="

)=3F%C!$93

D-'$T"'6(%N-'6(

@36(>:336%@$6(O"'$="%E3!6

2"3!!3>;$"9%C'!$9-3

E'=#%.$<'!
K3/3+(-36%:'-+'"

O'I"3!%K-"!"$,F

J,%;3

03-!A'A%)B+-'!"
N-36A$6(%8,

D-36(6"'6%8,6

D-!"+*$5-3!%;"AL,!4

)6A!3"%;'+9,

&'*-'6%D-$6(
)='+*'"!%E1%H$6'=A+$6
0$!"*M%2B='6M3!

C3$!(%SB36L39#
K"'!#%R$/5B

0'!#,+%2,+9-3=

:'M,-"!$%&'#'/,!'

&'("+'%U+-",!'

7,6Q"3%D-36?'6<3"%G'"

H'6%.'$?"6(B3"%O"$6(

.$6(4,%N-'6(

;,%N-'6(
G"6(%O"3

E'!'-%.'!"!"

),(,+*%8-"

.'43+%D$6I3!+3
8'!B!'M%:-,!+-"A

H'!#$%0'!"6$I

P"!,6%N-'6(

E!'69$%G'MM"9-"

U55$="*$%85'A'B$!'

H'I"A%D'=='-'6

7'9#%H$6('!!'

H'I"A%;3I"63

G36Q'/"6%0$6'*3

)663%2'9'=3*

J"!("=3%2!3I$+*$

G$!"+%?'#$L$<+#"

D171%G,!(3++

01%8'"A"

U+-*"'T,3%.,++'"6

D-!"+*$5-%D+'==63!

0'!#%C!39-'6"#

P"6(%O"3

8'6(/"6%2'!#

:,6'=%K'63Q'

G1%01%0'"6,=%.$++'"6

)181%G$,Q'!<'-

.,(,3+% I!'!A
:1%8'=3-

2',=%K-$/+$6

71%)=>H'=='=

)1%:'="6$I

)1%:$++'*9-3I

)1%23*!36#$

01%2$+45#"6

J1%8-"+-#$I

Fig. 13 Co-authorship network

can greatly improve the influence of a paper. In fact, collabo-

rations can certainly improve the quality of work, especially

collaborating with some productive authors, such as the most

influential papers listed in Table 3, which has received much

more citation numbers from academia.

 !"#$%&&

'("#)$*(&+$,-.(

,-(#$/-.&

01"21#)$3.&
4.56.7$,"&8

9.#:(1$;.1

<"$/-.#)

01="#$/-.#)

>?$4(@=(#+&

A?$4&5!B+1#

C"(D"#$9.#)

9.#)$,-(#

E"#D1($,-(#

F.#$'.&

91#)G(1$C1&#)

'&#)!"$/-.#)

;1#)$C1(

>?$H.71#&I

>?$H&55.@6-(I

J?$*-15-+&I

K=1+&$L.).1

K=16$K1M(

>#M=(1$<.56"

>7.5@.1=$N?$F&#.7M5&#

L.)15.$O5-1"=.

E&-#$P()(-=

J"$<(

,-(#)#1.#$*"#

/-(#M&#)$*"

Fig. 14 Author co-keyword network

4.3.2 RQ3.2 What are the same interests of authors?

In this subsection, we analyze the interests among authors

using the author co-keyword network. Similarly, given the

minimal support ts of 0.03, if the minimal confidence tc is set

to 0.09, authors that published more than two papers using

the same keywords more than three times are included in this

network. We set this pair of parameters in association rules

because it can significantly detect the same interests among

productive authors, and present a clear topological structure

in the network.

The author co-keyword network is shown in Fig. 14. We

can see that there are six communities clustered by 29 authors

and 65 links. Each community is composed of authors with

the same topic because the authors in a community tend to

use the same keywords. Thus, different communities share

different topics in the compiler testing area. As the same

in co-authorship network, we use the high degree author or

the productive author to represent a community, such as the

Alastair F. Donaldson community and the Junjie Chen com-

munity.

In Fig. 14, six communities are isolated from others.

16
Compiler Testing: A Systematic Literature Analysis

Among these communities, the largest community is domi-

nated by Alastair F. Donaldson, who is interested in graph-

ics shader compilers and many-core compiler testing, and fo-

cuses on CLsmith and CL-reduce tools for test case gener-

ation and reduction. Furthermore, this community is com-

posed of three collaboration communities in co-authorship

network, namely the John Regehr community, the Alastair

F. Donaldson community and the Qiuming Tao community,

as shown in Fig. 13. The Zhendong Su community aims at is-

sues of test case generation and compiler testing technology,

such as SPE and EMI.

The other three isolated communities have the same col-

laboration communities as Fig. 13 shows. The Junjie Chen

community aims to prioritize test cases for compilers to ac-

celerate the process of compiler testing [66,67]. The A. Kali-

nov community focuses on test case generation for mpC com-

piler [68], and the Heung Seok Chae community is interested

in test case reduction for retargeted compilers [62, 73].

 !"#$%&'()&*)$+,

'-+.!"()&*)$+,

)&*)(-*&(,&+&'-)$!+

-/)!"-)&.()&*)$+,

 (!"#$%&'*

)&*)0 -*&('&./)$!+

 !"#$%&'(.&1&)

 !"#$%&'(2-%$.-)$!+

 !"#$%&'(!#)$"$3-)$!+*

 !"#$%&'*

 !''&)+&**

#'!,'-"()&*)$+,

"&)-"!'#4$ ()&*)$+,

5/,('&#!')$+,

&6/$2-%&+)(#'!,'-"(2-'$-+)*

.$11&'&+)$-%()&*)$+,

&11&)$2&+&**

 !"#$%&'(5/,*

-'$)4"&)$ (!#)$"$3-)$!+

$+)&'"&.$-)&(!.&

'&)-',&)&.(!"#$%&'*

"/)-)$!+()&*)$+,

'-+.!"(#'!,'-"(,&+&'-)$!+

 !+ /''&+ 7

)&*)$+,(!2&'-,&

"$* !"#$%-)$!+

,#/*

)&*)(-*&(#'$!'$)$3-)$!+

&11$ $&+ 7

!#&+,%

)-)$ (-+-%73&'

#'!,'-""$+,(%-+,/-,&

#'!,'-""$+,(%-+,/-,&*

"# (!"#$%&'

"- 4$+&(.&* '$#)$!+(%-+,/-,&*

#'!,'-"(2&'1 -)$!+

%$*#

Fig. 15 Author co-keyword network

4.3.3 RQ3.3 What are the frequent co-occurrence keywords

in the area of compiler testing?

In this subsection, we present the major topics and the links

between keywords by the keyword co-occurrence network.

We analyze the structure of this network mined at the minimal

support ts of 0.033. When the minimal confidence tc is set to

0, all the keywords that occurred more than two times are in-

cluded in this network. We select these parameters due to two

reasons. First, 33.64% frequent keywords can be included in

this network when the minimal set is 0.033. Second, we can

discover a clear topological structure among these frequent

keywords.

The keyword co-occurrence network is shown in Fig. 15

which consists of 37 keywords and 117 links, and forms five

communities with the modularity of 0.248. We use the high

degree node or the major topic to define a community. Fur-

thermore, to avoid the ambiguity with nodes in a community,

we use the first-word-capitalized name to refer to a commu-

nity, such as the Compiler Test community.

In Fig. 15, most communities have complex links with

each other. We can see that a central keyword “compiler

testing” is linked with most keywords in these communities.

In addition, two keywords “random testing” and “test case

generation” have strong associations with the central key-

word, indicating that these two keywords are the most im-

portant topics related to compiler testing, and attract more

researchers to focus on. Simultaneously, these three core

keywords dominate the largest community in this network

which we define as the Compiler Test community. In this

community, there are 17 keywords, including the issues and

the solutions related to compiler testing, such as “test-case

reduction”, “equivalent program variants”, “random program

generation”, and “differential testing”, which defines a fine-

grained category of compiler testing. Another three key-

words, namely “efficiency”, “effectiveness”, and “test case

prioritization”, also surround with a high degree keyword

“random testing”, which form a community aimed at improv-

ing the performance of compiler testing technologies.

The Compiler Validation community is also a relatively

larger community that contains nine keywords which focuses

on test case generation for many core compilers. This com-

munity surrounds with keywords “gpus”, “opengl”, “concur-

rency”, “testing coverage”, “static analyzers”, “compiler val-

idation”, “programming languages”, “compilers”, and “meta-

morphic testing”. However, two other communities are rel-

atively smaller. The keywords in these two communities are

linked with each other which referred as the Program Verifi-

cation community and the Retargeted Compiler community,

respectively.

Answer to RQ3: With the analysis of the co-authorship

network and the author co-keyword network, we find that the

co-authorship in the compiler testing area distributes in sev-

eral scattered communities. Authors in the same institution

and the same country tend to collaborate with each other. In

Front. Comput. Sci.
17

addition, most productive authors have broad interests, and

the collaborations with the productive authors can improve

the influences of papers to a certain extent. By constructing

the keyword co-occurrence network, we find that the test case

generation and the test oracle problem are the two most criti-

cal issues in compiler testing, which surround with abundant

relevant keywords.

5 Related work

The most relevant work is literature analysis. In this sec-

tion, the majority of related work can be classified into two

aspects, i.e, the bibliometric analysis and the collaboration

analysis.

5.1 Bibliometric analysis

A large number of bibliometric studies have been published

in software engineering. Wohlin et al. [32–35] analyzed the

highly cited papers in software engineering published from

1999 to 2002. Wong et al. [36–38] identified top-15 re-

searchers and institutions for two five-year periods between

2008 and 2011. The rankings were based on the number

of published papers from seven leading software engineering

journals.

Focusing on the sub-areas of software engineering, Souza

et al. [39] presented a bibliometric analysis for ten years of

search-based software engineering that covered 740 papers

from 2001 to 2010. Jiang et al. [40] constructed a publica-

tion analysis framework to present some important domain

knowledge for mining software repositories. Some recent

systematic mapping studies also included bibliometric analy-

sis of sub-areas of software engineering, e.g., web application

testing [45].

In previous work, Garousi et al. [41] conducted the first

quantitative bibliometric analysis in total about 60% of the

software engineering literature, and reported interesting find-

ings, such as the USA is the clear leader, but the contributions

to software engineering by the American researchers have de-

creased from 71.43% (in 1980) to 14.90% (in 2008). More

recently, Garousi et al. [42] utilized automated topic analysis

to characterize and understand massive software engineering

literature.

5.2 Collaboration analysis

The co-authorship network aims to find the cooperative rela-

tionship among authors. Velden et al. [43] studied patterns

of collaboration in the co-authorship networks with the data

obtained from Web of Science. They identified two types

of coauthor-linking patterns between authorship communi-

ties with the name disambiguation. But they distorted the

topological structure of the co-authorship networks in some

cases because a small set of common surnames are widely

used in some East Asian countries. Madaan et al. [44] found

interesting features in the co-authorship network, such as the

collaborations between researchers is increasing over time,

and few researchers published a large number of papers in

DBLP Computer Science Bibliographic database.

Su et al. [55] created a three-dimensional research, focus-

ing on a parallel network, i.e., the keyword co-occurrence

network, and a two-dimensional knowledge map to visualize

the knowledge structure using the data of journal papers.

The difference between our work and previous work is that

we employ both bibliometric and collaboration analyses for

compiler testing literature analysis. In the bibliometric anal-

ysis, we not only distinguish the authorsąŕ names with their

institutions to avoid ambiguities, but also combine the ACS

score and the NCII score to measure the impact of authors.

In the collaboration analysis, we first incorporate the social

network and the data mining technique to construct the co-

authorship network, the author co-keyword network, and the

keyword co-occurrence network to help mine useful collabo-

rations.

6 Conclusion& Future work

In this study, we present a literature analysis framework, to

comprehensively characterize and understand the compiler

testing area. We illustrate how each component works in the

framework and obtain some useful information after conduct-

ing each component. The major contributions of this paper

include two aspects. In the aspect of bibliometics analysis,

we find that the USA dominates the area of compiler test-

ing, having a large number of influential researchers, such

as Zhendong Su, Vu Le, and Chengnian Sun. The keyword

“random testing” is the most frequently used keyword by re-

searchers, and C compilers are the most frequently tested

compilers. In the aspect of collaboration analysis, we con-

struct three collaboration networks, and find that collabora-

18
Compiler Testing: A Systematic Literature Analysis

tions with productive researchers can improve both the ac-

cepted rate and the quality of papers in the co-authorship

network. In addition, we detect several researchers with the

same interests in the author co-keyword network, and some

fine-grained categories of compiler testing in the keyword co-

occurrence network.

Although the previous work has proposed various solu-

tions to the issues existing in the compiler testing area, there

still remain several interesting challenges that need to be ad-

dressed in the future, such as using the real-world projects to

test compilers, reducing test cases for multiple files, improv-

ing both the effectiveness and efficiency of compiler testing

technologies, etc. In the future, we will focus on these chal-

lenges to improve test compilers and hope more researchers

devote to compiler testing to boom this area.

References

1. Howard M A. A process for performing security code reviews. IEEE

Security and Privacy, 2006, 4(4): 74-79

2. Pearse T, Oman P. Maintainability measurements on industrial source

code maintenance activities. In: Proceedings of International Confer-

ence on Software Maintenance. 1995, 295-303

3. Sun C N, Le V, Zhang Q, Su Z D. Toward understanding compiler

bugs in GCC and LLVM. In: Proceedings of the 25th International

Symposium on Software Testing and Analysis. 2016, 294-305

4. Sun C N, Le V, Su Z D. Finding and analyzing compiler warning de-

fects. In: Proceedings of 2016 IEEE/ACM 38th International Confer-

ence on Software Engineering. 2016, 203-213

5. Le V, Afshari M, Su Z D. Compiler validation via equivalence modulo

inputs. In: Proceedings of the 35th ACM SIGPLAN Conference on

Programming Language Design and Implementation. 2014, 216-226

6. Chen J J, Hu W, Hao D, Xiong Y F, Zhang H Y, Lu Z, Xie B. An

empirical comparison of compiler testing techniques. In: Proceedings

of 2016 IEEE/ACM 38th International Conference on Software Engi-

neering. 2016, 180-190

7. Mei H, Hao D, Zhang L M, Zhang L, Zhou J, Rothermel G. A static ap-

proach to prioritizing JUnit test cases. IEEE Transactions on Software

Engineering, 2012, 38(6): 1258-1275.

8. Ren Z L, Jiang H, Xuan J F, Yang Z J. Automated localization for unre-

producible builds. In: Proceedings of the 40th International Conference

on Software Engineering. 2018, 71-81

9. Yang X J, Chen Y, Eide E, Regehr J. Finding and understanding bugs in

C compilers. In: Proceedings of the 32th ACM SIGPLAN Conference

on Programming Language Design and Implementation. 2011, 283-

294

10. Chen Y, Groce A, Zhang C Q, Wong W, Fern X Z, Eide E, Regehr J.

Taming compiler fuzzers. In: Proceedings of the 34th ACM SIGPLAN

Conference on Programming Language Design and Implementation.

2013, 197-208

11. Lindig C. Find a compiler bug in 5 minutes. British Journal of Oph-

thalmology, 2005, 79(4): 387-396

12. Lindig C. Random testing of C calling conventions. In: Proceedings of

the 6th International Symposium on Automated Analysis-Driven De-

bugging. 2005, 3-12

13. Eide E, Regehr J. Volatiles are miscompiled, and what to do about it. In:

Proceedings of the 8th ACM International Conference on Embedded

Software. 2008, 255-264

14. Wu M Y, Fox G C. A test suite approach for fortran90D compilers

on MIMD distributed memory parallel computers. In: Proceedings of

Scalable High Performance Computing Conference. 1992, 393-400

15. Zhao C, Xue Y Z, Tao Q M, Guo L, Wang Z H. Automated test program

generation for an industrial optimizing compiler. In: Proceedings of

ICSE Workshop on Automation of Software Test. 2009, 36-43

16. Lidbury C, Lascu A, Chong N, Donaldson A F. Many-core compiler

fuzzing. In: Proceedings of the 36th ACM SIGPLAN Conference on

Programming Language Design and Implementation. 2015, 65-76

17. Li X C, Jiang H, Liu D, Ren Z L, Li G. Unsupervised deep bug report

summarization. In: Proceedings of IEEE/ACM International Confer-

ence on Program Comprehension Conference. 2018, 144-155

18. Nagai E, Awazu H, Ishiura N, Takeda N. Random testing of C compil-

ers targeting arithmetic optimization. In: Proceedings of Workshop on

Synthesis and System Integration of Mixed Information Technologies.

2012, 48-53

19. Nakamura K, Ishiura N. Random testing of C compilers based on test

program generation by equivalence transformation. In: Proceedings of

2016 IEEE Asia Pacific Conference on Circuits and Systems. 2016,

676-679

20. Sheridan F. Practical testing of a C99 compiler using output compari-

son. Software: Practice and Experience, 2007, 37(14): 1475-1488

21. Nagai E, Hashimoto A, Ishiura N. Reinforcing random testing of arith-

metic optimization of C compilers by scaling up size and number of

expressions. IPSJ Transactions on System LSI Design Methodology,

2014, 7: 91-100

22. McKeeman W M. Differential testing for software. Digital Technical

Journal, 1998, 10(1): 100-107

23. Leroy X. Formal verification of a realistic compiler. Communications

of the ACM, 2009, 52(7): 107-115

24. Kong W Q, Liu L Y, Ando T, Yatsu H, Hisazumi K, Fukuda A. Facil-

itating multicore bounded model checking with stateless explicit-state

exploration. The Computer Journal, 2014, 58(11): 2824-2840

25. Le V, Sun C N, Su Z D. Randomized stress-testing of link-time opti-

mizers. In: Proceedings of the 2015 International Symposium on Soft-

ware Testing and Analysis. 2015, 327-337

26. Hariri F, Shi A, Converse H, Khurshid S, Marinov D. Evaluating the

effects of compiler optimizations on mutation testing at the compiler ir

level. In: Proceedings of 2016 IEEE 27th International Symposium on

Software Reliability Engineering. 2016, 105-115

27. Tao Q M, Wu W, Zhao C, Shen W W. An automatic testing approach

Front. Comput. Sci.
19

for compiler based on metamorphic testing technique. In: Proceedings

of the 17th Asia Pacific Software Engineering Conference. 2010, 270-

279

28. Regehr J, Chen Y, Cuoq P, Eide E, Ellison C, Yang X J. Test-case re-

duction for C compiler bugs. In: Proceedings of the 33th ACM SIG-

PLAN Conference on Programming Language Design and Implemen-

tation. 2012, 335-346

29. Barr E T, Harman M, McMinn P, Shahbaz M, Yoo S. The oracle prob-

lem in software testing: a survey. IEEE Transactions on Software En-

gineering, 2015, 41(5): 507-525

30. Donaldson A F, Lascu A. Metamorphic testing for (graphics) compil-

ers. In: Proceedings of the 1st International Workshop on Metamorphic

Testing. 2016, 44-47

31. Pflanzer M, Donaldson A F, Lascu A. Automatic test case reduction for

opencl. In: Proceedings of the 4th International Workshop on OpenCL.

2016, 1-12.

32. Wohlin C. An analysis of the most cited articles in software engi-

neering journals - 1999. Information and Software Technology, 2005,

47(15): 957-964

33. Wohlin C. An analysis of the most cited articles in software engi-

neering journals - 2000. Information and Software Technology, 2007,

49(1): 2-11

34. Wohlin C. An analysis of the most cited articles in software engineer-

ing journals - 2001. Information and Software Technology, 2008, 50(1-

2): 3-9

35. Wohlin C. An analysis of the most cited articles in software engi-

neering journals - 2002. Information and Software Technology, 2009,

50(1): 3-6

36. Wong W E, Tse T H, Glass R L, Basili V R, Chen T Y. An assessment

of systems and software engineering scholars and institutions (2001-

2005). Journal of Systems and Software, 2008, 81(6): 1059-1062

37. Wong W E, Tse T H, Glass R L, Basili V R, Chen T Y. An assessment

of systems and software engineering scholars and institutions (2002-

2006). Journal of Systems and Software, 2009, 82(8): 1370-1373

38. Wong W E, Tse T H, Glass R L, Basili V R, Chen T Y. An assessment

of systems and software engineering scholars and institutions (2003-

2007 and 2004-2008). Journal of Systems and Software, 2011, 84(1):

162-168

39. de Freitas F G, de Souza J T. Ten years of search based software en-

gineering: A bibliometric analysis. In: Proceedings of International

Symposium on Search Based Software Engineering. 2011, 18-32

40. Jiang H, Chen X, Zhang J X, Han X J, Xu X J. Mining software repos-

itories: contributors and hot topics. Journal of Computer Research and

Development, 2016, 53(12): 2768-2782

41. Garousi V, Ruhe G. A bibliometric/geographic assessment of 40 years

of software engineering research (1969-2009). International Journal

of Software Engineering and Knowledge Engineering, 2013, 23(09):

1343-1366

42. Garousi V, Fernandes J M. Highly-cited papers in software engineer-

ing: the top-100. Information and Software Technology, 2016, 71(C):

108-128

43. Velden T, Haque A, Lagoze C. A new approach to analyzing patterns

of collaboration in co-authorship networks: mesoscopic analysis and

interpretation. Scientometrics, 2010, 85(1): 219-242

44. Madaan G, Jolad S. Evolution of scientific collaboration networks.

In: Proceedings of 2014 IEEE International Conference on Big Data.

2014, 7-13

45. Garousi V, Mesbah A, Betincan A, Mirshokraie S. A systematic map-

ping study of web application testing. Information and Software Tech-

nology, 2013, 55(8): 1374-1396

46. Kanewala U, Bieman J M. Testing scientific software: a systematic

literature review. Information and software technology, 2014, 56(10):

1219-1232

47. Mihalcea R, Tarau P. Textrank: Bringing order into text. In: Proceed-

ings of the 2004 Conference on Empirical Methods in Natural Lan-

guage Processing. 2004, 404-411

48. Balcerzak B, Jaworski W, Wierzbicki A. Application of TextRank

algorithm for credibility assessment. In: Proceedings of the 2014

IEEE/WIC/ACM International Joint Conferences on Web Intelligence

(WI) and Intelligent Agent Technologies (IAT). 2014, 451-454

49. Rahman M M, Roy C K. TextRank based search term identification for

software change tasks. In: Proceedings of 2015 IEEE 22nd Interna-

tional Conference on Software Analysis, Evolution and Reengineering.

2015, 540-544

50. Holsapple C W, Johnson L E, Manakyan H, Tanner J. Business com-

puting research journals: a normalized citation analysis. Journal of

Management Information Systems, 1994, 11(1): 131-140

51. Mcclure C R. Foundations of library and information science. Journal

of Academic Librarianship, 1998, 24(6): 491-492

52. Agrawal R, Srikant R. Fast algorithms for mining association rules. In:

Proceedings of the 20th International Conference on Very Large Data

Bases. 1994, 1215: 487-499

53. Blondel V D, Guillaume J L, Lambiotte R, Lefebvre E. Fast unfolding

of communities in large networks. Journal of Statistical Mechanics:

Theory and Experiment, 2008, 2008(10): 10008-10020

54. Bastian M, Heymann S, Jacomy M. Gephi: an open source software for

exploring and manipulating networks. In: Proceedings of International

Conference on Weblogs and Social Media, 2009, 8: 361-362

55. Su H N, Lee P C. Mapping knowledge structure by keyword co-

occurrence: a first look at journal papers in Technology Foresight. Sci-

entometrics, 2010, 85(1): 65-79

56. Mei H, Zhang L. Can big data bring a breakthrough for software au-

tomation. Science China (Information Sciences), 2018, 61(5): 056101.

57. Lattner C, Adve V S. LLVM: a compilation framework for lifelong pro-

gram analysis and transformation. In: Proceedings of the International

Symposium on Code Generation and Optimization: Feedback-directed

and Runtime Optimization. 2004, 75-86

58. Le V, Sun C N, Su Z D. Finding deep compiler bugs via guided stochas-

tic program mutation. In: Proceedings of Conference on Object-

Oriented Programming Systems, Languages, and Applications. 2015,

386-399

59. Sun C N, Le V, Su Z D. Finding compiler bugs via live code mutation.

20
Compiler Testing: A Systematic Literature Analysis

In: Proceedings of the Conference on Object-Oriented Programming

Systems, Languages, and Applications. 2016, 849-863

60. Celentano A, Reghizzi S C, Vigna P D, Ghezzi C, Granata G, Savoretti

F. Compiler testing using a sentence generator. Software: Practice and

Experience, 1980, 10(11): 897-918

61. Boujarwah A S, Saleh K, Al-Dallal J. Testing syntax and semantic cov-

erage of Java language compilers. Information and Software Technol-

ogy, 1999, 41(1): 15-28

62. Chae H S, Woo G, Kim T Y, Bae, Jung H K, Won Y. An automated

approach to reducing test suites for testing retargeted C compilers for

embedded systems. Journal of Systems and Software, 2011, 84(12):

2053-2064

63. Jacomy M, Venturini T, Heymann S, Bastian M. ForceAtlas2, a contin-

uous graph layout algorithm for handy network visualization designed

for the Gephi software. Public Library of Science One, 2014, 9(6)

64. Zelenov S, Zelenova S. Model-based testing of optimizing compilers.

In: Proceedings of the International Conference on Testing of Software

and Communicating Systems. 2007, 365-377

65. Zhang Q, Sun C N, Su Z D. Skeletal program enumeration for rigorous

compiler testing. In: Proceedings of the 38th ACM SIGPLAN Con-

ference on Programming Language Design and Implementation. 2017,

347-361

66. Chen J J, Bai Y W, Hao D, Xiong Y F, Zhang H Y, Zhang L, Xie B.

Test case prioritization for compilers: a text-vector based approach.

In: Proceedings of 2016 IEEE International Conference on Software

Testing, Verification and Validation. 2016, 266-277

67. Chen J J, Bai Y W, Hao D, Xiong Y F, Zhang H Y, Xie B. Learning

to prioritize test programs for compiler testing. In: Proceedings of the

39th International Conference on Software Engineering. 2017, 700-

711

68. Kalinov A, Kossatchev A, Posypkin M, Shishkov V. Using ASM spec-

ification for automatic test suite generation for mpC parallel program-

ming language compiler. In: Proceedings of 4th International Work-

shop on Action Semantic. 2002, 99-109

69. Lammel R. Grammar testing. In: Proceedings of the International Con-

ference on Fundamental Approaches to Software Engineering. 2001,

201-216

70. Kossatchev A, Petrenko A, Zelenov S, Zelenova S. Using Model-Based

Approach for Automated Testing of Optimizing Compilers. In: Pro-

ceedings of the International Workshop on Program Undestanding.

2003

71. Ofenbeck G, Rompf T, Puschel M. RandIR: differential testing for em-

bedded compilers. In: Proceedings of the 2016 7th ACM SIGPLAN

Symposium on Scala. 2016, 21-30

72. Jiang H, Li X C, Yang Z J, Xuan J F. What causes my test alarm? Au-

tomatic cause analysis for test alarms in system and integration testing.

In: Proceedings of the 39th International Conference on Software En-

gineering. 2017, 712-723

73. Woo G, Chae H S, Jang H. An intermediate representation approach

to reducing test suites for retargeted compilers. In: Proceedings of the

International Conference on Reliable Software Technologies. 2007

	1 Introduction
	2 Background of compiler testing
	1 General compiler testing process
	2 Test case generation issue
	3 Test oracle issue
	4 Test case reduction issue

	3 Framework
	1 Dataset
	2 Bibliometric analysis
	1 Productivity analysis
	2 Impact Analysis
	3 Content analysis

	3 Collaboration Analysis
	1 Collaboration networks associations
	2 Community detection
	3 Visualizing the networks

	4 Results and Analysis
	1 Investigation to RQ1
	1 RQ1.1 What are the productive authors, institutions or countries?
	2 RQ1.2 What are the frequent keywords and the trends of popular topics?
	3 RQ1.3 What are the influential authors and papers in the area of compiler testing?

	2 Investigation to RQ2
	1 RQ2.1 What compilers are frequently tested?
	2 RQ2.2 What test cases and testing technologies are employed when testing compilers?
	3 RQ2.3 How to reduce the large test cases before reporting?

	3 Investigation to RQ3
	1 RQ3.1 What are the relationships among authors of compiler testing?
	2 RQ3.2 What are the same interests of authors?
	3 RQ3.3 What are the frequent co-occurrence keywords in the area of compiler testing?

	5 Related work
	1 Bibliometric analysis
	2 Collaboration analysis

	6 Conclusion & Future work

