
Front.Comput.Sci.
DOI

RESEARCH ARTICLE

Adam revisited: a weighted past gradients perspective

Hui ZHONG 1, Zaiyi CHEN 2, Chuan QIN 1, Zai HUANG 1, Vincent W. ZHENG3, Tong XU 1,
Enhong CHEN 1

1 Anhui Province Key Laboratory of Big Data Analysis and Application,
University of Science and Technology of China, Hefei 230027, China

2 Zhejiang Cainiao Supply Chain Management Co. Ltd
3 Advanced Digital Sciences Center, Singapore

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2019

Abstract Adaptive learning rate methods have been
successfully applied in many fields, especially in training
deep neural networks. Recent results have shown that
adaptive methods with exponential increasing weights on
squared past gradients (i.e., ADAM, RMSPROP) may fail to
converge to the optimal solution. Though many algorithms,
such as AMSGRAD and ADAMNC, have been proposed to
fix the non-convergence issues, achieving a data-dependent
regret bound similar to or better than ADAGRAD is still a
challenge to these methods. In this paper, we propose a
novel adaptive method Weighted Adaptive Algorithm
(WADA) to tackle the non-convergence issues. Unlike
AMSGRAD and ADAMNC, we consider using a milder
growing weighting strategy on squared past gradient, in
which weights grow linearly. Based on this idea, we propose
Weighted Adaptive Gradient Method Framework (WAGMF)
and implement WADA algorithm on this framework.
Moreover, we prove that WADA can achieve a weighted
data-dependent regret bound, which could be better than the
original regret bound of ADAGRAD when the gradients
decrease rapidly. This bound may partially explain the good
performance of ADAM in practice. Finally, extensive
experiments demonstrate the effectiveness of WADA and its
variants in comparison with several variants of ADAM on
training convex problems and deep neural networks.

Keywords adaptive learning rate methods, stochastic
gradient descent, online learning

Received December 30, 2018; accepted May 10, 2019

E-mail: cheneh@ustc.edu.cn

1 Introduction

Recently, many adaptive learning rate variants of stochastic
gradient descent (SGD) algorithm [1] have been shown to be
very successful in training neural networks, such as
ADAGRAD [2], RMSPROP [3], ADADELTA [4], ADAM [5].
These methods can be applied to many training tasks, such
as, text recognition [6], image ranking [7], online
education [8, 9]. Especially for tasks with sparse data, such
as TF-IDF [10], or deep neural networks, i.e., multi-layer
perceptron, convolutional neural networks [11]. The idea of
these adaptive methods is to adjust the learning rate for
every parameter, by analyzing the gradients during past
iterations. ADAGRAD is the pioneer of these algorithms, and
it achieves the well-known data-dependent regret bound
O(

∑d
i=1

∥∥∥g1:T,i
∥∥∥

2), where T is the iteration number and g1:T,i

is a vector of historical gradients of the i-th dimension, in the
case of training online convex problems. The data-dependent
regret bound can be better than the original O(

√
T ) regret

bound, which is known to be optimal [12], when the
gradients are sparse, or very small. Although ADAGRAD

enjoys great benefits for sparse settings, it still suffers from
the rapid decay of learning rates [13], when training
nonconvex neural networks or problems with dense
gradients. Then, the exponential moving averages of squared
past gradients variants of ADAGRAD are proposed, which
slow down the decay of learning rates. These variants, such
as ADAM and RMSPROP, own better performance in
practice and have become standard methods in many deep

ar
X

iv
:2

10
1.

00
23

8v
1 

 [
cs

.L
G

] 
 1

 J
an

 2
02

1



2
Hui ZHONG et al. Adam revisited: a weighted past gradients perspective

learning libraries, such as TensorFlow1), Pytorch2). The
Exponential Moving Average (EMA) strategy actually gives
more weights on latest (smaller) gradients. However, recent
studies [13, 14] have found that these variants may suffer
from the non-convergence issues, since the aggressive EMA
strategy may lead to increasing learning rates.

AMSGRAD [13] is proposed to address the
non-convergence issues, and uses the maximum of all
exponential moving averages to avoid increasing learning
rates. However, AMSGRAD can only be proved with a
O(
√

T ) regret bound, which can be much larger than the
data-dependent regret bound of ADAGRAD. Its convergence
analysis depends on the maximum of all moving averages,
which can be very large and never change when choosing a
bad initialization point. Thus, AMSGRAD may fall into a
coordinate-wise vanilla SGD algorithm. Another solution,
ADAMNC [13], applies the equal weighting strategy on
squared past gradients, which is actually a momentum based
variant of ADAGRAD. Although ADAMNC achieves similar
regret bound as ADAGRAD, it cannot give more weights on
the latest (smaller) gradients as the exponential increasing
weights methods. Thus, it remains an open problem to
develop new algorithms to fix the non-convergence of
ADAM, which can enjoy great benefits from sparse
stochastic gradients, and in the meanwhile, give more
attention on recent smaller past gradients.

To address problems mentioned above, we provide an
affirmative solution in this paper. Specifically, we conclude
these adaptive methods and propose the general Weighted
Adaptive Gradient Methods Framework (WAGMF) , which
include most existing adaptive methods. Based on our
framework, we develop the Weighted Adaptive Algorithm
(WADA), which not only ensures the convergence of
algorithm, but also applies linear growing weights on past
gradients. Besides, we prove that WADA can achieve a
weighted data-dependent regret bound, which can be better
than the regret bound of ADAGRAD and may partially
explain the good performance of ADAM in practice. Finally,
extensive experiments demonstrate the effectiveness of our
methods. The mainly contributions of this paper can be
summarized as follows:

• We propose a general form of several existing adaptive
methods named weighted adaptive gradient method
framework. Moreover, we make a detailed discussion
about different weights design strategies in WAGMF.

1) https://www.tensorflow.org
2) https://pytorch.org

• We develop a novel adaptive method WADA by
applying the linear growing weighting strategy to
WAGMF. We provide a convergence analysis of WADA,
and demonstrate that it can achieve a weighted
data-dependent regret bound, which can be better than
the data-dependent regret bound of ADAGRAD when
the gradients decrease rapidly. Further, we introduce
several variants of WADA.

• We provide extensive experiments in comparison with
existing adaptive methods on three widely used datasets.
The experimental results demonstrate that our methods
outperform ADAM and its variants on training convex
problems and deep neural networks.

The rest of the paper is organized as follows. First, we
provide a brief review of related work in Section 2, and
present some notations and preliminaries in Section 3. Then,
we present the technical details of WAGMF in Section 4.
Afterwards, in Section 5, we implement WADA algorithm on
WAGMF and give a detailed convergence analysis of WADA.
And in Section 6, we report the performance of each
algorithm on experiments. Finally, we conclude the paper in
Section 7.

2 Related work

In this section, we first give a brief introduction of stochastic
gradients descent algorithms. Then we introduce the
developments of the adaptive variants of SGD.

SGD algorithm has attracted much attention in the field of
machine learning and optimization. The update rule of SGD
is to move towards the opposite direction of stochastic
gradient gt = ∇ ft(xt). Many variants of SGD have been
proposed and analyzed [15–17] and have achieved great
success on many problems. The SGD (with appropriate step
sizes and averaging scheme) suffers from an O(1/

√
T ) error

bound for general convex problems and enjoys an improved
O(1/T ) error bound for strongly convex problems. Although
these algorithms have achieved the well-known convergence
rate, they may suffer from slower learning speed on sparse
features, since all parameters adopt the same learning rate.

ADAGRAD have introduced a novel approach to utilize
the historical gradients and adjust the learning rate for every
parameter, which achieved great benefits from sparse
settings. Owing to its adaptive learning rates for different
parameters, ADAGRAD has recently witnessed great
potential on training deep neural networks [18], where the



Front. Comput. Sci.
3

scale of the gradients in each layer is often different by
several orders of magnitude [4]. There are many variants of
ADAGRAD have been developed for different tasks. For
strongly convex problem, variants like SADAGRAD [19],
SC-ADAGRAD [14], have been proposed and also enjoyed
great benefits on sparse settings. To speed up the training
process of dense or nonconvex problems, the EMA
descendants of ADAGRAD have been developed and found
to be effective for deep learning, e.g., RMSPROP [3],
ADAM [5], ADADELTA [4]. ADAM not only applies the
EMA technique, but also combines the momentum
acceleration, which make it very popular in practice. Then,
AMSGRAD and ADAMNC [13] have been proposed to fix
the non-convergence issues of these EMA variants. The
AMSGRAD have involved an additional maximization
operator in ADAM, which maintained the EMA technique.
ADAMNC have abandoned the EMA technique, and adopted
the same weighting strategy as ADAGRAD. However,
AMSGRAD could not achieve similar regret bound as
ADAGRAD, and ADAMNC could not enjoy more benefits
from the latest (smaller) gradients.

In addition, we noticed that some on going works also
tried to propose new algorithms to fix the non-convergence
of ADAM. Nostalgic Adam [20] also considered using
different weights on past gradients, but it only considered
decreasing weighting strategy, which make it can’t give
more focus on the recent past gradients. New variant of
AMSGRAD, the PADAM [21], also tried to fix the issues.
Nevertheless, PADAM could not be proved with O(

√
T )

data-dependent regret bound as the original AMSGRAD.

3 Preliminaries

In this section, we first introduce some notations and
assumptions. Then, we present the online convex
optimization problem. Finally, we introduce the generic
framework of adaptive methods and give a preliminary
comparison of some existing adaptive methods.

3.1 Notations and assumptions

In this sequel, vectors and scalars are lower case letters, such
as x ∈ Rd. The subdifferential set of a function f at x is
denoted by ∂ f (x), and the subgradient used in practice is gt,
where gt ∈ ∂ ft(xt) and gt, j denotes its j-th coordinate. The
diag(gt) function changes the vector gt to a diagonal matrix,
and g1:t = [g1, g2, ..., gt] denotes the matrix obtained by

concatenating the subgradient sequence. Furthermore, for
any vector a ∈ Rd, we use p

√
a for element-wise p-th root and

ap for element-wise p-th power. Let S+
d denote the set of all

positive definite matrices in Rd×d. Then, for a symmetric
matrix V ∈ S+

d , we denote
∑d

i, j=1 Vi jxiy j as 〈x,Vy〉 or 〈x, y〉V ,
and define ‖x‖V =

√
〈x, x〉V . The weight projection PV

F
(y) for

V ∈ S+
d on feasible set F ⊂ Rd, is defined as

PV
F

(y) = arg minx∈F ‖x − y‖2V for y ∈ Rd .
Similar to [2, 14], we assume that the feasible set F have

bounded diameter i.e., ‖x − y‖∞ 6 D∞ for every point x, y ∈
F . Also, we assume that the subgradient gt has a bounded
infinity norm on F , i.e., ‖g(xt)‖∞ 6 G∞,∀xt ∈ F .

3.2 Problem statement

In this paper, we consider the Online Convex Optimization
(OCO) problem. In the online setup, the problem is defined
on a closed convex set F ∈ Rd. At each round t, a loss
function ft : F → R is then revealed, and we predict a point
xt ∈ F with a loss ft(xt). Let T ∈ N denote the total number
of iterations. The optimal goal of the problem is
x∗ = arg minx∈F

∑T
t=1 ft(x). Then, the regret of the problem is

defined as the difference between the total loss and the
optimal goal. That is

R(T ) =

T∑
t=1

( ft(xt) − ft(x∗)). (1)

The optimal regret bound for this problem is O(
√

T ), which
can be achieved by online gradient descent algorithm [22].
The update rule of the algorithm is defined as xt+1 = PF (xt −

αtgt), which moves towards the opposite direction of gradient
gt = ∇ ft(xt) with step size αt = α

√
t
, in the meanwhile, uses

projection step to maintain next point xt+1 onto the feasible
set F .

The OCO problem is closely related to the stochastic
optimization problem. In particular, an online optimization
algorithm with vanishing average regret yields a stochastic
optimization algorithm for the empirical risk minimization
problem [13, 23]. Thus, in this paper, we use online gradient
descent and stochastic gradient descent synonymously.

3.3 Generic framework of adaptive method

To demonstrate the differences of existing adaptive methods,
we introduce the generic framework of adaptive methods in
the work [13], which includes most existing adaptive
methods. As the generic adaptive method is shown in
Algorithm 1, the main difference between adaptive methods



4
Hui ZHONG et al. Adam revisited: a weighted past gradients perspective

Algorithm 1 Generic adaptive method
Input: x1 ∈ F , step sizes {αt}

T
t=1,sequence of functions

{ψt, φt}
T
t=1

for t = 1 to T do
gt ∈ ∂ ft(xt)
mt = φt(g1, ..., gt)
Vt = ψt(g1, ..., gt)
xt+1 = PVt

F
(xt − αtV−1

t mt)
end for

is the choice of the "averaging" function φt and ψt. Here
φt : F t → Rd , ψt : F t → S+

d and V−1 represents the inverse
of matrix V . Different from its original form in [13], we
consider Vt as a generic adaptive learning rate estimation
matrix, not limited to the square root form.

Generally speaking, the averaging function φt is to get an
approximation of the real gradient 1

T
∑T

i ∂ fi(xt). Since each
function only comes at one round, we have
E(gt) = 1

T
∑T

i ∂ fi(xt). Therefore, gt is a good approximation
of the real gradient. However, the momentum form of
gradient gt is more popular in practice which appears to
significantly boost the performance [13]. The averaging
function ψt is an approximation of the inverse matrix of
adaptive learning rates. ψt is the key secret of adaptive
methods. We demonstrate the averaging function φt and ψt

of several adaptive methods in the Table 1.

Table 1 The averaging function φt , ψt of different adaptive methods

Algorithm φt ψt

Online GD gt I

SIGNSGD3) gt diag(‖gt‖)

ADAGRAD gt diag(
√∑t

i g2
i )

RMSPROP gt diag(
√∑t

i=1 β
t−i+1
2 g2

i )

RMSPROP4) gt diag(
√∑t

i g2
i /t)

ADAM5) ∑t
i=1 β

t−i+1
1 gi diag(

√∑t
i=1 β

t−i+1
2 g2

i )

ADAMNC
∑t

i=1 β
t−i+1
1 gi diag(

√∑t
i g2

i /t)

AMSGRAD
∑t

i=1 β
t−i+1
1 gi

√
max(ψ2

t , (ψ
2
t )adam)

3) We refer [24] for this method.
4) The RMSPROP’s revision in [14]. we use βt = 1 − 1/t .
5) For ADAM and its variants, we omit the bias correction terms.

4 Weighted adaptive gradient method
framework

In this section, we first review some existing adaptive
methods in weighted past gradient perspective. Then, we
formally introduce the technical details of the Weighted
Adaptive Gradient Method Framework (WAGMF). At last,
we make a detailed discussion about three weighting
strategies in WAGMF.

4.1 Adaptive methods revisit

Before introducing our framework, we revisit the averaging
function ψt of some existing adaptive methods. The pioneer
of adaptive method, ADAGRAD, sums all squared gradient
equally in in the averaging function. The formal averaging
function ψadagrad

t is:

1
t
ψ2

t (g1, ..., gt) =
diag(

∑t
i=1 g2

i )
t

. (2)

These variants of ADAGRAD, such as ADAM and
RMSPROP, use the exponential moving averages of squared
past gradients in the averaging function ψt. If we set ADAM

with a constant β2 ∈ [0, 1), the averaging function ψadam
t is:

1
t
ψ2

t (g1, ..., gt) = (1 − β2)diag(
t∑

i=1

βt−i
2 g2

i ). (3)

By comparing the two averaging functions, we can find
that the main difference is that ADAM uses exponential
growing weights on squared past gradients while ADAGRAD

utilizes equal weights. Intuitively, the recent past gradients
are more accurate approximations of the current gradient
than the early past ones, since the recent points are generally
close to the current point. Based on this intuition and the
good performance of ADAM in practice, we think using
growing weights on past gradients should be reasonable in
adaptive methods.

4.2 Details of WAGMF

Since the key difference is the weighting strategy, we can
choose different weighting strategies to design new adaptive
methods. Here, we propose the weighted adaptive gradient
method framework which attaches different weights on the
past gradients. The formal algorithm is presented in
Algorithm 2. Specifically, for the averaging function φt,
WAGMF chooses the most widely used momentum form as it



Front. Comput. Sci.
5

Algorithm 2 Weighted adaptive gradient methods framework
Input: x1 ∈ F , step sizes {αt}

T
t=1,{β1t}

T
t=1, {γt}

T
t=1, gradient

power p1, the p2-th root
Initialize: set m0 = 0, v0 = 0
for t = 1 to T do

gt ∈ ∂ ft(xt)
mt = β1tmt−1 + (1 − β1t)gt

vt = vt−1 + γtg
p1
t

bt = 1∑t
i=1 γi

, Vt = diag( p2
√

vt · bt)

xt+1 = PVt
F

(xt − αtV−1
t mt)

end for

appears to significantly boost the performance [13]. And for
the key part of the averaging function ψt, WAGMF use the
p1-th power of gradients instead of the squared gradients,
which have been adopted by most existing adaptive
methods. What’s more, WAGMF attaches weight γt on the
past gradients gp1

t . Since all past gradients are in the
weighted form, WAGMF introduce another weight balance
term bt = 1∑t

i=1 γi
to get the weighted average of all gradients.

To correspond with p1-th power of gradients, WAGMF adopt
p2-th root to get the final estimation matrix Vt instead of the
squared root. There are more details in Algorithm 2.

To fix the non-convergence issues of ADAM, we should
add additional condition to avoid increasing learning rate.
For any adaptive methods based on WAGMF, we should

ensure that b−p2
t
αt
>

b−p2
t−1
αt−1

for any t. By adding this condition,
we follow the convergence analysis in [5, 13], and present
the key result for WAGMF in Theorem 1. More details of the
proof are presented in appendixes.

Theorem 1 Let {xt} be the sequence generated by WAGMF

(Algorithm 2). Assume that F has bounded diameter D∞, the

subgradient gt has bounded infinity norm G∞ and b−p2
t
αt
>

b−p2
t−1
αt−1

,
then for any x∗ ∈ F , WAGMF have following regret bound:

R(T ) 6
D2
∞

2αT (1 − β1)

d∑
i=1

VT,i +
D2
∞

2

T∑
t=1

d∑
i=1

β1tVt−1,i

(1 − β1t)αt

+

T∑
t=1

αt

1 − β1
‖mt‖

2
V−1

t
.

Theorem 1 gives a basic convergence result for WAGMF.
The regret bound is mainly construct by three terms which
can be further bounded by setting other hyper-parameters.
So, we can design ideal adaptive methods by implementing
different weighting strategies on WAGMF.

4.3 Weighting strategy

Weighting strategy is the critical component of WAGMF, and
a suitable weighting strategy plays a key role in the adaptive
method. Here, we make a discussion about three types of
weights design strategies, i.e., equal weights, increasing
weights and decreasing weights.

Equal weights: Equal weights maybe the simplest and
most useful strategy. ADAGRAD and ADAMNC use this
strategy and achieve the data-dependent regret bound. So far,
to the best of our knowledge, equal weighting strategy is the
only strategy that can achieve the well-known
data-dependent regret bound O(

∑d
i=1

∥∥∥g1:T,i
∥∥∥

2). In this paper,
we extend the original squared gradients in ψt to the p-th
power of gradients and set p1 = p2 = p. Applying the
conclusion in Theorem 1, we have following regret bound
for this situation:

Theorem 2 Let {xt} be the sequence generated WAGMF in
Algorithm 2. Assume all conditions are held in Theorem 1,
we set equal weights γt = 1 on past gradients and set p1 =

p2 = p where p = 2s(s > 1, s ∈ N+), then for any x∗ ∈ F , we
have the following regret bound:

R(T ) 6
D2
∞

2(1 − β1)
T 1/2−1/p

d∑
i=1

∥∥∥g1:T,i
∥∥∥

p

+
β1D2

∞G∞
2(1 − β1)(1 − λ)2 +

2α
(1 − β1)3

d∑
i=1

∥∥∥g1:T,i
∥∥∥

2 .

Let p = 2, the above theorem can get the data-dependent
regret bound O(

∑d
i=1

∥∥∥g1:T,i
∥∥∥

2). For the worst case,
Theorem 2 can achieve the O(

√
T ) regret bound. Since the

gradients values are involved in the bound terms, the regret
bound can get significant improvement for sparse or small
gradients.

Increasing weights: The EMA variants adaptive methods
use exponential increasing weights on squared past
gradients. RMSPROP, ADAM, NADAM [25], and
ADADELTA are some distinguished algorithms which fall in
this category. The weight sequence γt of them is set as:

γt =
1
βt

2
, (4)

where 0 < β2 < 1. Recently proposed SIGNSGD [24] adopts
a more extreme increasing weighting strategy:

γt = ∞ · γt−1, (5)

where the next weight γt is the higher order infinity of γt−1.
These aggressive weighting strategies may lead to the



6
Hui ZHONG et al. Adam revisited: a weighted past gradients perspective

increasing learning rates, which make these methods can not
converge for general OCO problem. Although there are
some convergence issues for these methods, they are very
popular and have made a significant contribution for the
deep learning community.

Decreasing weights: Decreasing weighting strategy is
not widely used in practice. Actually, if the weight γt

gradually decays to zero, the latest (smaller) gradient is less
important, so we can hardly obtain benefits from the latest
sparse or small gradients. Nostalgic Adam falls in the
decreasing weighting strategy category which [20] consider
following hyper-harmonic series as the weight sequences:

γt =
1
tη
, η > 0.

If we choose η > 0, γt will decay to 0 over time, and the esti-
mation matrix Vt will hardly change. So, these methods may
behave like the momentum based vanilla SGD algorithm.

5 Weighted adaptive algorithm

In this section, we introduce a novel weighted adaptive
algorithm (WADA) to fix the non-convergence issues of
ADAM, which implements a linear growing weighting
strategy on WAGMF. WADA is more consistent with the
original ADAM in the perspective of weighting strategy.
Besides, we also propose some variants of WADA.

5.1 Details of WADA

Because of the aggressive exponential increasing weighting
strategy, the EMA adaptive methods like ADAM, may lead
to the non-convergence issues [13]. Since the ADAMNC

chooses an equal weighting strategy to fix the issues, there
may still be some doubts whether increasing weights
strategy would lead to the non-convergence, and whether it
is possible to design new adaptive methods, which adopts
increasing weighting strategy and guarantees the
convergence. To answer these problems, we consider
applying a milder increasing weighting strategy to WAGMF,
the simplest linear growing weighting strategy. We propose
the Weighted Adaptive Algorithm (WADA) based on this idea
which attaches linear growing weights on squared past
gradients. The formal algorithm of WADA is presented in
Algorithm 3.

WADA uses linear growing weights sequence {γt = t} and
set p1 = 2 to get the squared gradients. The linear growing
weights lead the

∑t
i=1 γt = O(t2) , so we set p2 = 4 to ensure

Algorithm 3 Weighted adaptive algorithm (WADA)
Input: x1 ∈ F , step sizes {αt}

T
t=1,{β1t}

T
t=1,

Initialize: set m0 = 0, v0 = 0
for t = 1 to T do

gt ∈ ∂ ft(xt)
mt = β1tmt−1 + (1 − β1t)gt

vt = vt−1 + t · g2
t

Vt = diag( 4
√

2vt
t(t+1) )

xt+1 = PVt
F

(xt − αtV−1
t mt)

end for

the assumption b−p2
t
αt
>

b−p2
t−1
αt−1

in Theorem 1. For the convergence
analysis of WADA, we present following key result:

Theorem 3 Let {xt} be the sequence generated WADA in
Algorithm 3. Assume all conditions are held in Theorem 1,
γt = t, p1 = 2, p2 = 4 and αt = α

√
t
, for any x∗ ∈ F , we have

the following regret bound:

R(T ) 6
D2
∞

2(1 − β1)

d∑
i=1

4

√√√ T∑
j=1

j · g2
j,i

+
D2
∞

2

T∑
t=1

d∑
i=1

β1tVt−1,i

(1 − β1t)αt
+

αdG∞
(1 − β1)2

d∑
i=1

4

√√√ T∑
j=1

j · g2
j,i.

By setting the β1t sequence, we can get following corollary
for Theorem 3.

Corollary 1 Suppose β1t = β1 · λ
t−1 in Theorem 3, since

Vt−1,i 6
√

G∞, we have

R(T ) 6
D2
∞

2(1 − β1)

d∑
i=1

4

√√√ T∑
j=1

j · g2
j,i +

β1D2
∞

√
G∞

2(1 − β1)(1 − λ)2

+
αdG∞

(1 − β1)2

d∑
i=1

4

√√√ T∑
j=1

j · g2
j,i.

The above corollary shows that WADA achieves an

O(
∑d

j=1
4
√∑T

i=1 i · g2
i, j) weighted data-dependent regret

bound. Similar to the data-dependent regret bound

O(
∑d

j=1

√∑T
i=1 g2

i, j) of ADAGRAD [2], the above bound can

be considerably smaller than the O(
√

T ) regret bound. When
the gradients are sparse or in general small, most of values
gi, j are close to zero, which makes the above bound∑d

j=1
4
√∑T

i=1 i · g2
i, j �

√
T . The intuition of WADA is to give

more focus on the recent past gradients, and the above
weighted data-dependent regret bound also shows that the
latter gradients have more influence on the bound. For a



Front. Comput. Sci.
7

general optimization task, the gradients at first can be very
large because of bad initialization point, while the gradients
will become very small when it comes close to optimal point
(or critical point). As weighted data-dependent regret bound
is well consistent with the feature of optimization task, we
think weighted data-dependent regret bound can be better
than the well-known bound of ADAGRAD when the
gradients decrease rapidly.

Although many adaptive methods have been using
increasing weighting strategy on squared past gradients,
none of them could be proved with a weighted form
data-dependent regret bound, not even data-dependent regret
bound. The weighted data-dependent regret bound shows
that we can indeed obtain more benefits from recent past
small gradient, by applying increasing weights on past
gradients. This may partially explain the good performance
of other adaptive methods (such ADAM and RMSPROP) with
increasing weights strategy.

5.2 Variants of WADA

In this subsection, we present several variants of WADA. We
consider a more general form of WADA, which uses
different the p1-th power in the averaging function ψt.
Specifically, among most of existing adaptive methods, the
result of φt and ψt have the same order compared with gt. In
the design of the adaptive methods, if we take gt as a random
variable (to be precise, not), then it is held for most of
adaptive methods,

φt = Θ(gt), ψt = Θ(diag{gt}). (6)

Following Equation 6, we have

φt

ψt
≈

Θ(gt)
Θ(diag{gt})

≈ sign(gt). (7)

But for WADA, we use ψt = Θ(diag{
√

gt}) instead of
Θ(diag{gt}) , which is the biggest difference between
existing adaptive methods and WADA. Therefore, we extend
the original WADA by changing the hyper-parameter p1 to
get different averaging function ψt. In this paper, we
introduce two variants, WADA-V3 (p1 = 3) and WADA-V4
(p1 = 4).

Due to the fact that vt can be very large in WADA and
its variants, we introduce another numerically stable iterative
form for these methods. Let vnew

t = vt ∗ bt, since γt = t and

p2 = 4, we can use the vnew
t in the algorithm instead of vt:

vt = vt−1 + t · gp1
t

⇒ vnew
t ·

1
bt

= vnew
t−1

1
bt−1

+ t · gp1
t

⇒ vnew
t

t(t + 1)
2

= vnew
t−1

t(t − 1)
2

+ t · gp1
t

⇒ vnew
t = (1 −

2
t + 1

)vnew
t−1 +

2
t + 1

gp1
t .

(8)

Algorithm 4 Numerically stable iterative form of WADA
(p=2) , WADA-V3 (p=3) and WADA-V4 (p=4)

Input: x1 ∈ F , step sizes {αt}
T
t=1,{β1t}

T
t=1, {γt}

T
t=1, gradient

order p
Initialize: set m0 = 0, v0 = 0
for t = 1 to T do

gt ∈ ∂ ft(xt)
mt = β1tmt−1 + (1 − β1t)gt

vt = (1 − 2
t+1 )vt−1 + 2

t+1 gp
t

Vt = diag( 4
√

vt),
xt+1 = PVt

F
(xt − αtV−1

t mt)
end for

Given the new update rule, we present the numerically
stable version of WADA in Algorithm 4. Similar to
ADAM [5], WADA and its variants are also easy to
implement and have high computational efficiency and low
memory requirements, which making them ideal for
problems that are large in terms of data and/or parameters.
All experiments for our methods are based on the
numerically stable iterative form.

6 Experiments

In this section, we mainly evaluate our proposed algorithms
in comparison with existing adaptive methods on training
convex problems and neural networks. Specifically, we study
the multiclass classification problem using softmax
regression, multi-layer perceptron and convolutional neural
networks. To demonstrate the convergence of our proposed
algorithms, we also involve the similar synthetic
experiments of the work [13]. All methods are implemented
within Keras6) (with TensorFlow as the backend) and the
experiments are conducted on a Standard Server with Intel
Xeon CPU E5-2630 v4 and Nvidia GPU Titan X.

Datasets: We conduct experiments on three popular
datasets, i.e., MNIST [11], CIFAR10 and CIFAR100 [26].
The three datasets represent for different difficulty to achieve

6) http://keras.io/



8
Hui ZHONG et al. Adam revisited: a weighted past gradients perspective

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.0

0.1

0.2

0.3

0.4

0.5

Re
gr

et
/T

adam
amsgrad
wada

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

X_
t

adam
amsgrad
wada

0.0 0.2 0.4 0.6 0.8 1.0
Iterations 1e7

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Re
gr

et
/T

adam
amsgrad
wada

Fig. 1 Synthetic Experiments Results. Performance comparison of ADAM, AMSGRAD and WADA on synthetic experiments. The first two plots (left and
center) are R(t)/t and xt vs iteration numbers for stochastic setting. For comparison, we also show the R(t)/t plot (right) for online setting.

1 50 100 150 200
epochs

0.252

0.254

0.256

0.258

0.260

Tr
ai

ni
ng

 L
os

s

adam
amsgrad
adamnc
wada
wada-v3
wada-v4

(a) MNIST

1 50 100 150 200
epochs

1.6

1.7

1.8

1.9

2.0

Tr
ai

ni
ng

 L
os

s

adam
amsgrad
adamnc
wada
wada-v3
wada-v4

(b) CIFAR10

1 50 100 150 200
epochs

2.4

2.6

2.8

3.0

3.2

3.4

Tr
ai

ni
ng

 L
os

s

adam
amsgrad
adamnc
wada
wada-v3
wada-v4

(c) CIFAR100

Fig. 2 Training Loss vs Number of Epoch for Softmax Regression on MNIST, CIFAR10 and CIFAR100 dataset.

Table 2 The statistics of the datasets
Dataset train samples test samples classes

MNIST 60000 10000 10
CIFAR10 50000 10000 10
CIFAR100 50000 10000 100

good performance. Table 2 shows the basic statistical
properties of the datasets.

Algorithms: Since WADA aims to give a better solution
to fix the non-convergence issues of ADAM, we mainly
compare with ADAM and its variants in the experiments. As
PADAM and Nostalgic Adam are the variants of AMSGRAD

or ADAMNC, the difference of these algorithms are
relatively small. So, we choose the original widely used
AMSGRAD and ADAMNC as our baselines. Here are some
brief introduction of all methods involved in the
experiments:

• ADAM [5]: The origin ADAM have good performance
in practice, but may suffer from the non-convergence
issues.

• AMSGRAD [13]: AMSGRAD is a variant of ADAM,
which maintains the maximum of all past vt and uses
this maximum value for normalizing the running
average of the gradient instead of vt in ADAM.

• ADAMNC [13]: ADAMNC is also a variant of ADAM

which uses equal weight of squared past gradients in vt.
Actually, it is an momentum base variants of
ADAGRAD.

• WADA (Ours): WADA is an implementation of WAGMF

which uses the setting of γt = t, p1 = 2, p2 = 4.
• WADA-V3 (Ours): WADA-V3 is a variant of WADA

which uses the setting of γt = t, p1 = 3, p2 = 4.
• WADA-V4 (Ours): WADA-V4 is a variant of WADA

which uses the setting of γt = t, p1 = 4, p2 = 4.

Experiment Settings: To consistent with the theoretical
analysis, we adopt O(1/

√
t) step-size decay for all methods

on the convex problems. For the nonconvex problem, a
constant step-size is used to evaluate the performance in
practice. Besides, for better and more stable performance,
we use a fixed multi-stage learning rate decaying scheme on
nonconvex problem, which is widely used in many
works [21, 27, 28]. We decay the learning rate by 0.1 at the
80th, 120th and 160th epochs. We set β1 = 0.9 for all
methods and β2 = 0.999 for ADAM and AMSGRAD. These
values are most commonly used in practice. The batch size
of all experiments is set to 128, and we also add an
additional small ε = 10−7 on Vt to avoid dividing by zero.
For better performance and avoid overfitting problem, we



Front. Comput. Sci.
9

1 50 100 150 200
epochs

0.08

0.10

0.12

0.14

0.16

0.18

Tr
ai

ni
ng

 L
os

s

adam
amsgrad
adamnc
wada
wada-v3
wada-v4

(a) MNIST

1 50 100 150 200
epochs

1.3

1.4

1.5

1.6

1.7

Tr
ai

ni
ng

 L
os

s

adam
amsgrad
adamnc
wada
wada-v3
wada-v4

(b) CIFAR10

1 50 100 150 200
epochs

3.0

3.2

3.4

3.6

3.8

Tr
ai

ni
ng

 L
os

s

adam
amsgrad
adamnc
wada
wada-v3
wada-v4

(c) CIFAR100

Fig. 3 Training Loss vs Number of Epoch for 3-layer MLP on MNIST, CIFAR10 and CIFAR100 dataset.

1 50 100 150 200
epochs

0.95

0.96

0.97

0.98

0.99

Te
st

 A
cc

ur
ac

y

adam
amsgrad
adamnc
wada
wada-v3
wada-v4

(a) MNIST

1 50 100 150 200
epochs

0.40

0.45

0.50

0.55

0.60

Te
st

 A
cc

ur
ac

y

adam
amsgrad
adamnc
wada
wada-v3
wada-v4

(b) CIFAR10

1 50 100 150 200
epochs

0.10

0.15

0.20

0.25

0.30

Te
st

 A
cc

ur
ac

y

adam
amsgrad
adamnc
wada
wada-v3
wada-v4

(c) CIFAR100

Fig. 4 Test Accuracy vs Number of Epoch for 3-layer MLP on MNIST, CIFAR10 and CIFAR100 dataset.

use data augmentation [29] for all neural network
experiments. We follow [30] and randomly initialize
parameters with uniform distribution in the range between
−
√

6/(nin + nout) and
√

6/(nin + nout), where nin and nout
are the numbers of input and output units of the
corresponding weight tensor, respectively. All methods have
only one varying parameter: the step-sizes α, which are
chose by grid search for all experiments.

Synthetic Experiments: To demonstrate the convergence
of our algorithm, we conduct the synthetic experiments in the
work [13], which use a synthetic example on a simple one-
dimensional convex problem. Specifically, we consider the
following convex problem:

ft(x) =

{
1010x, with probability 0.01
−10x, otherwise, (9)

with the constraint set F = [−1, 1]. Obviously, the optimal
solution for this problem is x = −1, and we expect to see
whether the algorithms will converge to x = −1. We
demonstrate our results in Figure 1. The figures show the
average regret (R(t)/t) and the iterate (xt) for the problem
(for comparison, we also show the R(t)/t plot for online
setting, which sets the first part of the function ft(x) to
f or t mod 101 = 1). We can see that the average regret of
ADAM does not converge to 0 with increasing t, while

AMSGRAD and WADA do. Furthermore, for the iterates xt,
WADA and AMSGRAD converge very well to the optimal
value xt = −1. Based on this experiments, we can see that
WADA does fix the non-convergence issues of ADAM.

Softmax Regression: To investigate the performance of
our methods on convex problem, we conduct experiments on
L2-regularized softmax regression problem. Softmax
regression uses a linear model with cross entropy loss and
L2-regularized loss. The objective function is defined as

F(w) = −
1
n

n∑
i=1

log
(

ewT
yi

xi+byi∑K
j=1 ewT

j xi+b j

)
+ λ

K∑
k=1

‖wk‖
2. (10)

We use the regularization parameter which can achieve the
best performance on the test set. Figure 2 shows the training
loss results on softmax regression. As shown in the figures,
our methods achieve lower training loss. WADA and
WADA-V4 perform better than all the other methods in
terms of training loss on MNIST dataset. On both CIFAR10
and CIFAR100, our methods outperform all baselines.

In the following several paragraphs, we mainly focus on
the performance of our methods on nonconvex problems. In
particular, we conduct experiments on multi-layer
perceptron, simple convolutional neural networks and
residual neural networks. For the computational complexity



10
Hui ZHONG et al. Adam revisited: a weighted past gradients perspective

1 50 100 150 200
epochs

0.3

0.4

0.5

0.6

0.7

0.8

Tr
ai

ni
ng

 L
os

s

adam
amsgrad
adamnc
wada
wada-v3
wada-v4

(a) CIFAR10 Training Loss

1 50 100 150 200
epochs

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850

Te
st

 A
cc

ur
ac

y

adam
amsgrad
adamnc
wada
wada-v3
wada-v4

(b) CIFAR10 Test Accuracy

1 50 100 150 200
epochs

1.0

1.2

1.4

1.6

1.8

Tr
ai

ni
ng

 L
os

s

adam
amsgrad
adamnc
wada
wada-v3
wada-v4

(c) CIFAR100 Training Loss

1 50 100 150 200
epochs

0.30

0.35

0.40

0.45

0.50

0.55

Te
st

 A
cc

ur
ac

y
adam
amsgrad
adamnc
wada
wada-v3
wada-v4

(d) CIFAR100 Test Accuracy

Fig. 5 Training Loss and Test Accuracy vs Number of Epoch for Simple CNN on MNIST, CIFAR10 and CIFAR100 dataset.

of single batch, our methods almost have the same
computational time as baselines, i.e., for the following
experiments on the CIFAR dataset, approximately 6 ms, 12
ms, 52 ms per batch.

Multi-Layer Perceptron: We conduct experiments on a
simple 3-layer multi-layer perceptron, with 2 hidden full
connected layers and 1 softmax layer for the multiclass
classification problem on three datasets. The hidden layers
have 512 units for each layer in which ReLU activation
function [31] and 0.5 dropout [32] are used. The number of
units in final softmax layer is consistent with the classes of
each dataset. The results are shown in Figure 3 and 4. Since
the MNIST dataset is easy to achieve good performance, all
methods perform similarly. WADA achieves better
performance on CIFAR10 and CIFAR100 for both training
loss and test accuracy. Other variants of WADA also achieve
good performance.

Simple Convolutional Neural Network: We also
conduct experiments on a simple convolutional neural
network. This network is constructed with several layers of
convolution, no-linear and pooling units. In particular we
first use two convolution layers with 32 channels and kernel

size of 3 × 3 and followed by 2 × 2 max pooling layer. Then
we repeat the first part with two 64 channels convolution
layers and max pooing layers. Finally, we flatten the output
and follow by a softmax layer. The results are shown in
Figure 5. WADA and WADA-V3 achieve better performance
on CIFAR10 dataset for both training loss and test accuracy.
Though WADA-V4 seems not perform very well on training
loss, it achieves better performance on test accuracy. For
CIFAR100 dataset, WADA, ADAMNC and WADA-V3
achieve better performance.

Residual Neural Network: Finally, we conduct
experiments for Residual Neural Network [27] (ResNet).
ResNet introduces a novel architecture of convolutional
neural networks with residual blocks, which utilize shortcut
connections to jump over some layers. Such shortcut
connections can ease the training of deeper networks. In this
experiments, we use ResNet-20, which contains 2 residual
blocks, to train on the CIFAR dataset. We report the results
in Figure 6. As the results shown in the figures, WADA and
WADA-V3 achieve best performance on both training loss
and test accuracy. All of our methods achieve better
performance on training loss on CIFAR100 dataset. Besides,



Front. Comput. Sci.
11

1 50 100 150 200
epochs

0.1

0.2

0.3

0.4

0.5

Tr
ai

ni
ng

 L
os

s

adam
amsgrad
adamnc
wada
wada-v3
wada-v4

(a) CIFAR10 Training Loss

1 50 100 150 200
epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 A
cc

ur
ac

y

adam
amsgrad
adamnc
wada
wada-v3
wada-v4

(b) CIFAR10 Test Accuracy

1 50 100 150 200
epochs

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Tr
ai

ni
ng

 L
os

s

adam
amsgrad
adamnc
wada
wada-v3
wada-v4

(c) CIFAR100 Training Loss

1 50 100 150 200
epochs

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Te
st

 A
cc

ur
ac

y
adam
amsgrad
adamnc
wada
wada-v3
wada-v4

(d) CIFAR100 Test Accuracy

Fig. 6 Training Loss and Test Accuracy vs Number of Epoch for ResNet-20 on MNIST, CIFAR10 and CIFAR100 dataset.

WADA and WADA-V4 achieve best test accuracy on
CIFAR100. Our methods are significantly superior to all
baselines on CIFAR10 and CIFAR100 datasets in terms of
training loss and test accuracy.

Significance Tests: Besides, we also conduct significance
tests on our experiments (the detailed results and analyses
are shown in the Appendixes A.1). Specifically, we choose
the Student’s t-test to calculate the p_values on 8 samples of
each experimental result and set the statistical significance
threshold to 0.05. As we can see from the Table 3, in most
cases, the p_values < 0.05. In terms of these significance
tests results and the analyses, we think the performance of
our experiments can be considered to be very significant.

Based on these experiments, we can see that WADA not
only fixed the non-convergence issues of ADAM, but also
achieved batter performance on both convex and nonconvex
problems, especially deep neural networks. Given the
performance of WADA and its variants, we think they could
be powerful competitors among existing adaptive methods
and we hope they will be valuable for deep learning.

7 Conclusion

In this paper, we proposed a general Weighted Adaptive
Gradient Method Framework (WAGMF) and a novel
Weighted Adaptive algorithm (WADA). Specifically, WAGMF

give a general framework to design new adaptive methods
which include many existing algorithms. And WADA fixed
the non-convergence issues of ADAM by applying the linear
growing weighting strategy to WAGMF. Further, we
presented the convergence analysis of WADA on the Online
Convex Optimization problem. The regret bound of WADA

was in a weighted data-dependent form and can be better
than the regret bound of ADAGRAD when the gradients
decrease rapidly. This bound may partially explain the good
performance of ADAM in practice. Moreover, the
experimental results for different models and datasets clearly
demonstrated that WADA and its variants are powerful
competitors among existing adaptive methods. We hope this
work could give another perspective to understand the
design of adaptive methods, and suggest good design



12
Hui ZHONG et al. Adam revisited: a weighted past gradients perspective

principles for faster and better stochastic optimization.

Acknowledgements We thank the anonymous reviewers for their
insightful comments and discussions. This research was partially supported
by grants from the National Key Research and Development Program of
China (Grant No. 2018YFB1004300) and the National Natural Science
Foundation of China (Grant No. 61703386, 61727809, and U1605251).

References

1. Robbins H, Monro S. A stochastic approximation method. The Annals

of Mathematical Statistics, 1951, 22(3): 400–407

2. Duchi J C, Hazan E, Singer Y. Adaptive subgradient methods for on-

line learning and stochastic optimization. Journal of Machine Learning

Research, 2011, 12: 2121–2159

3. Tieleman T, Hinton G. Lecture 6.5-rmsprop: Divide the gradient by

a running average of its recent magnitude. COURSERA: Neural net-

works for machine learning, 2012, 4(2): 26–31

4. Zeiler M D. Adadelta: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701, 2012

5. Kingma D P, Ba J. Adam: A method for stochastic optimization. In:

International Conference on Learning Representations. 2015

6. Yin Y, Huang Z, Chen E, Liu Q, Zhang F, Xie X, Hu G. Transcribing

content from structural images with spotlight mechanism. In: Proceed-

ings of the 24th ACM SIGKDD International Conference on Knowl-

edge Discovery & Data Mining. 2018, 2643–2652

7. Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with

deep convolutional neural networks. In: Advances in neural informa-

tion processing systems. 2012, 1097–1105

8. Su Y, Liu Q, Liu Q, Huang Z, Yin Y, Chen E, Ding C, Wei S, Hu G.

Exercise-enhanced sequential modeling for student performance pre-

diction. In: Thirty-Second AAAI Conference on Artificial Intelligence.

2018

9. Liu Q, Huang Z, Huang Z, Liu C, Chen E, Su Y, Hu G. Finding simi-

lar exercises in online education systems. In: Proceedings of the 24th

ACM SIGKDD International Conference on Knowledge Discovery &

Data Mining. 2018, 1821–1830

10. Salton G, Buckley C. Term-weighting approaches in automatic text

retrieval. Information processing & management, 1988, 24(5): 513–

523

11. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning ap-

plied to document recognition. Proceedings of the IEEE, 1998, 86(11):

2278–2324

12. Hazan E. Introduction to online convex optimization. Found. Trends

Optim., 2016, 2(3-4): 157–325

13. Reddi S J, Kale S, Kumar S. On the convergence of adam and beyond.

In: International Conference on Learning Representations. 2018

14. Mukkamala M C, Hein M. Variants of RMSProp and Adagrad with

logarithmic regret bounds. In: Proceedings of the 34th International

Conference on Machine Learning. 2017, 2545–2553

15. Rakhlin A, Shamir O, Sridharan K. Making gradient descent optimal

for strongly convex stochastic optimization. In: Proceedings of the 29th

International Conference on Machine Learning. 2012, 1571–1578

16. Shamir O, Zhang T. Stochastic gradient descent for non-smooth op-

timization: Convergence results and optimal averaging schemes. In:

Proceedings of the 30th International Conference on Machine Learn-

ing. 2013, 71–79

17. Lacoste-Julien S, Schmidt M, Bach F. A simpler approach to obtain-

ing an o (1/t) convergence rate for the projected stochastic subgradient

method. arXiv preprint arXiv:1212.2002, 2012

18. Dean J, Corrado G, Monga R, Chen K, Devin M, Mao M, Senior A,

Tucker P, Yang K, Le Q V, others . Large scale distributed deep net-

works. In: Advances in neural information processing systems. 2012,

1223–1231

19. Chen Z, Xu Y, Chen E, Yang T. SADAGRAD: strongly adaptive

stochastic gradient methods. In: Proceedings of the 35th International

Conference on Machine Learning. 2018, 912–920

20. Huang H, Wang C, Dong B. Nostalgic adam: Weighing more of the

past gradients when designing the adaptive learning rate. arXiv preprint

arXiv:1805.07557, 2018

21. Chen J, Gu Q. Closing the generalization gap of adaptive gra-

dient methods in training deep neural networks. arXiv preprint

arXiv:1806.06763, 2018

22. Zinkevich M. Online convex programming and generalized infinitesi-

mal gradient ascent. In: Proceedings of the 20th International Confer-

ence on Machine Learning. 2003, 928–936

23. Cesa-Bianchi N, Conconi A, Gentile C. On the generalization ability of

on-line learning algorithms. IEEE Transactions on Information Theory,

2004, 50(9): 2050–2057

24. Bernstein J, Wang Y, Azizzadenesheli K, Anandkumar A. SIGNSGD:

compressed optimisation for non-convex problems. In: Proceedings of

the 35th International Conference on Machine Learning. 2018, 559–

568

25. Dozat T. Incorporating nesterov momentum into adam. In: Inter-

national Conference on Learning Representations, Workshop Track.

2016

26. Krizhevsky A, Hinton G. Learning multiple layers of features from

tiny images. Technical report, Citeseer, 2009

27. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recog-

nition. In: Proceedings of the IEEE conference on computer vision and

pattern recognition. 2016, 770–778

28. Yang T, Yan Y, Yuan Z, Jin R. Why does stagewise training

accelerate convergence of testing error over sgd? arXiv preprint

arXiv:1812.03934, 2018

29. Perez L, Wang J. The effectiveness of data augmentation in image

classification using deep learning. arXiv preprint arXiv:1712.04621,

2017

30. Glorot X, Bengio Y. Understanding the difficulty of training deep feed-

forward neural networks. In: Proceedings of the thirteenth international

conference on artificial intelligence and statistics. 2010, 249–256

31. Nair V, Hinton G E. Rectified linear units improve restricted boltzmann

machines. In: Proceedings of the 27th International Conference on

Machine Learning. 2010, 807–814

32. Srivastava N, Hinton G E, Krizhevsky A, Sutskever I, Salakhutdinov



Front. Comput. Sci.
13

R. Dropout: a simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research, 2014, 15(1): 1929–1958

A Appendixes

A.1 Significance test results analysis

We use the Student’s t-test to carry out significance tests on
the experimental results. Specifically, we choose 8 samples
of each experiment’s result to calculate the p_value, and set
the statistical significance threshold to 0.05. The p_values of
the significance tests are shown in Table 3. As we can see
from the Figure 2. (a) and the Table 3, though WADA-V3
performs the same with baselines, WADA and WADA-V4
significantly perform better than all baselines. For the
performance in Figure 3. (a), because of the MNIST dataset
is easy to achieve good performance, our methods and
baselines both perform well. Therefore, the p_values of
significance tests are relatively large. And for the simple
CNN and ResNet-20 experiments’ results in Figure 5 and
Figure 6, our methods significantly outperform the
baselines, and most of the p_values on the experiments are
very significant.

As we can see from the results and analyses, in most
cases, the p_values < 0.05. Based on these significance tests,
we think that the performance of our experiments can be
considered to be significant.

A.2 Lemmas

Lemma 1 Let function f : Rd → R be convex, then for all
x, y ∈ Rd, g(x) ∈ ∂ f (x), then

f (y) > f (x) + g(x)T (y − x).

Lemma 2 (Refer from [14]) Let V ∈ S+
d be a symmetric,

positive definite matrix and F ∈ Rd be a convex set, then∥∥∥PV
F

(x) − PV
F

(y)
∥∥∥

V 6 ‖x − y‖V .

Lemma 3 Let M ∈ R, xi ∈ R, 1 6 M and 0 6 xi 6 M2, we
have

n∑
i=1

xi

4
√∑i

j=1 j · x j

6 M · 4

√√ n∑
i=1

i · xi.

Proof The lemma is clearly true for n = 1. Fix some n, and
we assume the lemma holds for n − 1, that is

n−1∑
i=1

xi

4
√∑i

j=1 j · x j

6 M · 4

√√√n−1∑
i=1

i · xi.

Thus, we define Z =
√∑n

i=1 i · xi and x = xn, we have

n∑
i=1

xi

4
√∑i

j=1 j · x j

6 M · 4

√√√n−1∑
i=1

i · xi +
xn

4
√∑n

i=1 i · xi

6 M ·
4√
Z2 − nx +

x
√

Z
.

The derivative of the right hand side with respect to x is

D(xn) = −nM · (Z2 − nx)−3/4 + Z−1/2.

For x = 0, D(0) = Z−1/2(1−Mn/Z), for Z 6
√

n2M2, we have
D(0) 6 0. For x > 0, D(x) < D(0) < 0. So, the derivative is
negative for x > 0. Thus, subject to the constraint x > 0, the
right hand side is maximized at x = 0, and is therefore at most
M · 4

√∑n
i=1 i · xi. �

A.3 Proof of Theorem 1

The proof of the Theorem 1 follows the convergence analysis
of ADAGRAD [2] and Theorem 4 in [13].

Proof We assume that x∗ ∈ Rd is the optimal point of the
problem. Follow the update rules in algorithm 2, we have

‖xt+1 − x∗‖2Vt
=

∥∥∥PVt
F

(xt − αtV−1
t mt) − x∗

∥∥∥2

Vt

6
∥∥∥xt − αtV−1

t mt − x∗
∥∥∥2

Vt

= ‖xt − x∗‖2Vt
+ α2

t 〈mt,V−1
t mt〉 − 2αt〈mt, xt − x∗〉

= ‖xt − x∗‖2Vt
+ α2

t 〈mt,V−1
t mt〉

− 2αt〈β1tmt−1 + (1 − β1t)gt, xt − x∗〉.

Since PVt
F

(x∗) = x∗ ,we can get the first inequality and by
applying lemma 2. Then, by rearrange the above inequality



14
Hui ZHONG et al. Adam revisited: a weighted past gradients perspective

Table 3 Significance test results (p_values) for Figure.2 to Figure.6. All significance tests are conduct on Student’s t-test, and the statistical significance
threshold is set to 0.05. In the table, the p_values below the significance threshold are shown in black font, otherwise gray.

Baseline vs. ADAM ADAM ADAM AMSGRAD AMSGRAD AMSGRAD ADAMNC ADAMNC ADAMNC
Ours WADA WADA-V3 WADA-V4 WADA WADA-V3 WADA-V4 WADA WADA-V3 WADA-V4

Figure 2. (a) 6.79e-08 3.81e-01 5.28e-07 1.55e-07 1.37e-01 4.46e-06 7.02e-11 2.93e-01 6.97e-09
Figure 2. (b) 5.61e-09 1.11e-13 1.17e-08 9.56e-02 2.05e-12 7.01e-05 4.51e-03 1.66e-10 2.30e-05
Figure 2. (c) 1.49e-12 2.68e-11 1.19e-11 1.23e-09 1.00e-07 2.60e-08 2.32e-06 2.86e-04 5.26e-05
Figure 3. (a) 7.72e-01 1.21e-02 1.07e-01 7.83e-01 1.21e-02 1.04e-02 8.24e-01 1.47e-02 1.43e-02
Figure 3. (b) 3.61e-07 2.72e-01 8.19e-02 1.85e-01 4.01e-04 1.56e-03 3.89e-06 1.58e-01 5.86e-02
Figure 3. (c) 3.02e-12 8.41e-06 2.08e-01 2.64e-09 2.14e-04 3.63e-10 9.69e-15 3.42e-10 1.92e-08
Figure 4. (a) 6.61e-11 4.01e-02 1.37e-09 0.00e+00 2.34e-06 0.00e+00 1.25e-19 3.73e-14 2.34e-06
Figure 4. (b) 9.57e-24 2.78e-18 5.64e-16 1.34e-18 4.01e-14 2.65e-17 5.13e-20 8.16e-14 2.71e-10
Figure 4. (c) 8.09e-29 2.40e-26 1.77e-21 3.26e-19 2.99e-17 3.09e-17 3.06e-28 1.48e-25 4.55e-19
Figure 5. (a) 8.60e-04 8.41e-06 1.85e-08 4.65e-08 7.34e-09 1.86e-03 8.64e-05 1.24e-06 1.45e-09
Figure 5. (b) 1.85e-15 1.97e-16 3.58e-15 1.51e-16 3.70e-17 2.91e-16 4.68e-15 3.56e-16 8.96e-15
Figure 5. (c) 3.72e-10 1.09e-11 5.54e-07 1.63e-09 9.11e-11 7.57e-06 9.65e-01 6.46e-01 1.93e-08
Figure 5. (d) 2.11e-19 1.48e-21 1.78e-09 5.46e-15 1.14e-17 7.34e-11 3.42e-01 2.31e-14 4.70e-20
Figure 6. (a) 3.68e-09 2.36e-08 2.71e-10 6.18e-15 9.44e-16 9.69e-02 7.13e-13 7.10e-13 2.56e-03
Figure 6. (b) 4.49e-13 6.79e-11 4.22e-12 3.30e-17 4.50e-17 2.47e-07 4.27e-14 8.77e-13 1.37e-01
Figure 6. (c) 1.81e-18 2.21e-17 3.01e-17 5.88e-19 1.23e-17 2.18e-17 3.73e-16 1.71e-14 1.90e-14
Figure 6. (d) 1.29e-19 2.41e-15 2.48e-18 9.62e-16 1.88e-05 9.93e-15 6.07e-19 3.33e-11 3.98e-17

we can get

<gt, xt − x∗ >

6
1

2αt(1 − β1t)

[
‖xt − x∗‖2Vt

− ‖xt+1 − x∗‖2Vt

]
+

αt

2(1 − β1t)
〈mt,V−1

t mt〉 +
β1t

1 − β1t
〈mt−1, xt−1 − x∗〉

6
1

2αt(1 − β1t)

[
‖xt − x∗‖2Vt

− ‖xt+1 − x∗‖2Vt

]
+

αt

2(1 − β1t)
‖mt‖

2
V−1

t
+

β1tαt

2(1 − β1t)
‖mt−1‖

2
V−1

t−1

+
β1t

2αt(1 − β1t)
‖xt − x∗‖2Vt−1

.

(11)

The second inequality follows Cauchy-Schwarz inequality.
Hence we can upper bound the regret by applying above
inequality:

R(T ) =

T∑
t=1

ft(xt) − ft(x∗) 6
T∑

t=1

< gt, xt − x∗ >

6
T∑

t=1

[
1

2αt(1 − β1t)

[
‖xt − x∗‖2Vt

− ‖xt+1 − x∗‖2Vt

]
+

αt

2(1 − β1t)
‖mt‖

2
V−1

t
+

β1tαt

2(1 − β1t)
‖mt−1‖

2
V−1

t−1

+
β1t

2αt(1 − β1t)
‖xt − x∗‖2Vt−1

]
.

(12)

By applying β1t 6 β1 6 1, we have

R(T ) 6
T∑

t=1

[
1

2αt(1 − β1t)

[
‖xt − x∗‖2Vt

− ‖xt+1 − x∗‖2Vt

]
+

β1t

2αt(1 − β1t)
‖xt − x∗‖2Vt−1

]
+

T∑
t=1

αt

1 − β1
‖mt‖

2
V−1

t

6
1

2α1(1 − β1)
‖x1 − x∗‖2V1

+

T∑
t=2

1
2(1 − β1)

 ‖xt − x∗‖2Vt

αt
−
‖xt − x∗‖2Vt−1

αt−1


+

T∑
t=1

β1t

2αt(1 − β1t)
‖xt − x∗‖2Vt−1

+

T∑
t=1

αt

1 − β1
‖mt‖

2
V−1

t
.

So, since Vt =
p2
√

vt · bt, vt > vt−1 and b−p2
t /αt > b−p2

t−1 /αt−1,
we have Vt,i/αt > Vt−1,i/αt−1. Then

R(T ) 6
1

2α1(1 − β1)

d∑
i=1

V1(x1,i − x∗i )2

+
1

2(1 − β1)

T∑
t=2

d∑
i=1

(xt,i − x∗i )2
[
Vt,i

αt
−

Vt−1,i

αt−1

]

+

T∑
t=1

d∑
i=1

β1t(xt,i − x∗i )2Vt−1,i

2αt(1 − β1t)
+

T∑
t=1

αt

1 − β1
‖mt‖

2
V−1

t

6
D2
∞

2αT (1 − β1)

d∑
i=1

VT,i +
D2
∞

2

T∑
t=1

d∑
i=1

β1tVt−1,i

(1 − β1t)αt

+

T∑
t=1

αt

1 − β1
‖mt‖

2
V−1

t
.

The last inequality is using the assumption ‖xT − x∗‖∞ 6 D∞.
�



Front. Comput. Sci.
15

A.4 Proof of Theorem 2

Proof Based on the result of Theorem 1, we further bound
the three terms in Theorem 1.

R(T ) 6
D2
∞

2αT (1 − β1)

d∑
i=1

VT,i +
D2
∞

2

T∑
t=1

d∑
i=1

β1tVt−1,i

(1 − β1t)αt

+

T∑
t=1

αt

1 − β1
‖mt‖

2
V−1

t
.

First, we bound the last term
∑T

t=1
αt

1−β1
‖mt‖

2
V−1

t
. let αt = α

√
t

,Vt,i = t−1/p p
√∑t

j=1 gp
j,i, we have

T∑
t=1

αt

1 − β1
‖mt‖

2
V−1

t

=

T−1∑
t=1

αt

1 − β1
‖mt‖

2
V−1

t
+

α

1 − β1

d∑
i=1

mT,i
p
√

T p/2−1vT,i

.

We can further bound the m2
T,i term by applying

Cauchy-Schwarz inequality:

m2
T,i = (

T∑
j=1

T− j∏
k=1

β1(T−k+1)g j,i)2

6 (
T∑

j=1

T− j∏
k=1

β1(T−k+1))(
T∑

j=1

T− j∏
k=1

β1(T−k+1)g2
j,i)

6 (
T∑

j=1

β
T− j
1 )(

T∑
j=1

β
T− j
1 g2

j,i) 6
1

1 − β1

T∑
j=1

β
T− j
1 g2

j,i.

(13)

The second inequality is for β1t 6 β1. Now, we have:

T∑
t=1

αt

1 − β1
‖mt‖

2
V−1

t

6
T−1∑
t=1

αt

1 − β1
‖mt‖

2
V−1

t
+

α

(1 − β1)2

d∑
i=1

∑T
j=1 β

T− j
1 g2

j,i
p
√

T p/2−1vT,i

6
T−1∑
t=1

αt

1 − β1
‖mt‖

2
V−1

t
+

α

(1 − β1)2

d∑
i=1

T∑
j=1

β
T− j
1 g2

j,i

p
√

jp/2−1v j,i

6
α

(1 − β1)2

d∑
i=1

T∑
j=1

∑T− j
l=1 β

l
1g2

j,i

p
√

jp/2−1v j,i

6
α

(1 − β1)3

d∑
i=1

T∑
j=1

g2
j,i

p
√

jp/2−1v j,i

.

Applying Cauchy-Schwarz Inequality, we get

jp/2−1v j,i = jp/2−1 ·

j∑
k=1

gp
k,i = jp/2−2 · j ·

j∑
k=1

(gp/2
k,i )2

> jp/2−2 · (
j∑

k=1

gp/2
k,i )2 = ( jp/4−1

j∑
k=1

gp/2
k,i )2

...

> (
j∑

k=1

g2
k,i)

p/2.

Then, we have

T∑
t=1

αt

1 − β1
‖mt‖

2
V−1

t

6
α

(1 − β1)3

d∑
i=1

T∑
j=1

g2
j,i√∑ j

k=1 g2
k,i

6
2α

(1 − β1)3

d∑
i=1

∥∥∥g1:T,i
∥∥∥

2 .

In the last step, we apply Lemma 5 of [2] in inequality. let
β1t = β1λ

t−1, we have

R(T ) 6
D2
∞

2(1 − β1)

d∑
i=1

bT

αT

p
√

vT,i +
D2
∞

2

T∑
t=1

d∑
i=1

β1tVt−1,i

(1 − β1t)αt

+
2α

(1 − β1)3

d∑
i=1

∥∥∥g1:T,i
∥∥∥

2

6
D2
∞

2(1 − β1)
T 1/2−1/p

d∑
i=1

∥∥∥g1:T,i
∥∥∥

p +
β1D2

∞G∞
2(1 − β1)(1 − λ)2

+
2α

(1 − β1)3

d∑
i=1

∥∥∥g1:T,i
∥∥∥

2 .

�

A.5 Proof of Theorem 3

Proof Similar to the proof of 2, we use the result of
Theorem 1, we have

R(T ) 6
D2
∞

2(1 − β1)

d∑
i=1

bT

αT

p
√

vT,i +
D2
∞

2

T∑
t=1

d∑
i=1

β1tVt−1,i

(1 − β1t)αt

+

T∑
t=1

αt

1 − β1
‖mt‖

2
V−1

t
.



16
Hui ZHONG et al. Adam revisited: a weighted past gradients perspective

First,we bound the last term of above inequality. Let αt = α
√

t
,

p1 = 2,p2 = 4, we have

T∑
t=1

αt ‖mt‖
2
V−1

t

=

T−1∑
t=1

αt ‖mt‖
2
V−1

t
+ α

4

√
(1 + T )T/2

T 2

d∑
i=1

m2
T,i

4
√

vT,i

=

T−1∑
t=1

αt ‖mt‖
2
V−1

t

+ α
4

√
(1 + T )

2T

d∑
i=1

(
∑T

j=1
∏T− j

k=1 β1(T−k+1)g j,i)2

4
√∑T

j=1 j · g2
j,i

6
T−1∑
t=1

αt ‖mt‖
2
V−1

t
+ α

d∑
i=1

(
∑T

j=1 β
T− j
1 )(

∑T
j=1 β

T− j
1 g2

j,i)

4
√∑T

j=1 j · g2
j,i

6
T−1∑
t=1

αt ‖mt‖
2
V−1

t
+

α

1 − β1

d∑
i=1

∑T
j=1 β

T− j
1 g2

j,i

4
√∑T

j=1 j · g2
j,i

6
T−1∑
t=1

αt ‖mt‖
2
V−1

t
+

α

1 − β1

d∑
i=1

T∑
j=1

β
T− j
1 g2

j,i

4
√∑ j

k=1 k · g2
k,i

.

The first inequality follows Cauchy-Schwarz inequality. For

the third inequality, we apply 4
√∑T

j=1 j · g2
j,i >

4
√∑ j

k=1 k · g2
k,i

when j 6 T . Then, we have

T∑
t=1

αt ‖mt‖
2
V−1

t

6
α

1 − β1

d∑
i=1

T∑
j=1

∑T− j
l=1 β

l
1g2

j,i

4
√∑ j

k=1 k · g2
k,i

6
α

(1 − β1)2

d∑
i=1

T∑
j=1

g2
j,i

4
√∑ j

k=1 k · g2
k,i

.

Since gi 6 G∞, applying Lemma 3, we can get

T∑
t=1

αt ‖mt‖
2
V−1

t
6

αdG∞
(1 − β1)2

d∑
i=1

4

√√√ T∑
j=1

j · g2
j,i. (14)

Finally, let β1t = β1 · λ
t−1, since Vt,i 6

√
G∞, we have,

R(T ) 6
D2
∞

2(1 − β1)

d∑
i=1

4

√
(1 + T )T/2

T 2
4

√√√ T∑
j=1

j · g2
j,i

+
D2
∞

2

T∑
t=1

d∑
i=1

β1tVt−1,i

(1 − β1t)αt
+ +

αdG∞
(1 − β1)2

d∑
i=1

4

√√√ T∑
j=1

j · g2
j,i

6
D2
∞

2(1 − β1)

d∑
i=1

4

√√√ T∑
j=1

j · g2
j,i

+
D2
∞

2

T∑
t=1

d∑
i=1

β1tVt−1,i

(1 − β1t)αt
+

αdG∞
(1 − β1)2

d∑
i=1

4

√√√ T∑
j=1

j · g2
j,i.

(15)
�

Hui Zhong received the B.S. degree in

Computer Science and Technology in

2016 from from the University of Sci-

ence and Technology of China(USTC).

He is currently a M.E. student in the

School of Computer Science and Tech-

nology at USTC. His major research

interests include machine learning and

optimization.

Zaiyi Chen received the Ph.D. degree

from University of Science and Tech-

nology of China (USTC), Hefei, China,

in 2018. His major research interests

include machine learning, optimization

and sampling. He has published sev-

eral papers in refereed conference pro-

ceedings, such as ICML’18, ICDM’16,

SDM’15.

Chuan Qin received the B.S degree

in Computer Science and Technology

from the University of Science and

Technology of China (USTC) in 2015.

He is currently working toward the

PhD degree in the School of Computer

Science and Technology, University of

Science and Technology of China. His

current research interests include natural language processing and

recommender system.



Front. Comput. Sci.
17

Zai Huang received the B.S. degree

in Computer Science and Technology

from University of Science and Tech-

nology of China (USTC) in 2016. He

is currently pursuing the M.S. degree

in Computer Application Technology

from USTC. His current research inter-

ests include data mining and machine

learning.

Vincent W. Zheng is an Adjunct

Senior Research Scientist at Advanced

Digital Sciences Center (ADSC), Sin-

gapore. He received his Ph.D. degree

from the Hong Kong University of

Science and Technology in 2011. His

research interests focus on mining with

heterogeneous and structured data. He

is the Associate Editor of Cognitive Computation. He has served

as PCs in many leading data mining and artificial intelligence

conferences such as KDD, IJCAI, AAAI, WWW, WSDM. He has

published over 60 papers in the refereed conferences, journals and

book chapters. He is a member of AAAI and ACM.

Tong Xu received the Ph.D. degree

in University of Science and Technol-

ogy of China (USTC), Hefei, China,

in 2016. He is currently working as

an Associate Researcher of the Anhui

Province Key Laboratory of Big Data

Analysis and Application, USTC. He

has authored 20+ journal and confer-

ence papers in the fields of social network and social media analysis,

including KDD, AAAI, ICDM, SDM, etc.

Enhong Chen is a professor and vice

dean of the School of Computer Sci-

ence at USTC. He received the Ph.D.

degree from USTC. His general area of

research includes data mining and ma-

chine learning, social network analysis

and recommender systems. He has pub-

lished more than 100 papers in refereed

conferences and journals, including IEEE Trans. KDE, IEEE Trans.

MC, KDD, ICDM, NIPS, and CIKM. He was on program commit-

tees of numerous conferences including KDD, ICDM, SDM. His

research is supported by the National Science Foundation for Dis-

tinguished Young Scholars of China. He is a senior member of the

IEEE.


	1 Introduction
	2 Related work
	3 Preliminaries
	1 Notations and assumptions
	2 Problem statement
	3 Generic framework of adaptive method

	4 Weighted adaptive gradient method framework
	1 Adaptive methods revisit
	2 Details of Wagmf
	3 Weighting strategy

	5 Weighted adaptive algorithm
	1 Details of Wada
	2 Variants of Wada

	6 Experiments
	7 Conclusion
	A Appendixes
	1 Significance test results analysis
	2 Lemmas
	3 Proof of Theorem 1
	4 Proof of Theorem 2
	5 Proof of Theorem 3 


