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Abstract Temporal action recognition always depends on
temporal action proposal generation to hypothesize actions
and algorithms usually need to process very long video se-
quences and output the starting and ending times of each po-
tential action in each video suffering from high computation
cost. To address this, based on boundary sensitive network
we propose a new temporal convolution network called Mul-
tipath Temporal ConvNet (MTN), which consists of two parts
i.e. Multipath DenseNet and SE-ConvNet. In this work, one
novel high performance ring parallel architecture based on
Message Passing Interface (MPI) is further introduced into
temporal action proposal generation, which is a reliable com-
munication protocol, in order to respond to the requirements
of large memory occupation and a large number of videos.
Remarkably, the total data transmission is reduced by adding
a connection between multiple computing load in the newly
developed architecture. It is found that, compared to the tra-
ditional Parameter Server architecture, our parallel architec-
ture has higher efficiency on temporal action detection task
with multiple GPUs, which is suitable for dealing with the
tasks of temporal action proposal generation, especially for
large datasets of millions of videos. We conduct experiments
on ActivityNet-1.3 and THUMOS14, where our method out-
performs other state-of-art temporal action detection methods
with high recall and high temporal precision. In addition, a
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time metric is further proposed here to evaluate the speed per-
formance in the distributed training process.

Keywords temporal convolution, temporal action proposal
generation, deep learning.

1 Introduction

With the rapid development of the Internet and camera, the
number of videos is increasing at a very high speed. There are
millions of video submissions on video-sharing websites like
YouTube every day. Besides, the video surveillance system
plays an important role in maintaining security [1] [2] [3].
These video files contain a lot of information for human,
such as time duration and action classify [4] [5]. Making full
use of videos is an indispensable step for building a smart
city. It is vital for the development of information age to ex-
tract information from a large number of videos by automat-
ically. Action is the most important information for videos
because the essence of the video is recording varieties of mo-
tion. So a significant branch of video task is action recog-
nition, which aims to recognize the class of action from a
trimmed video. But the task is limited because its research
object is videos that have been manually trimmed and only
contain single action. The majority of videos in the real world
are untrimmed videos and contains multiple action instances
in a single video. The problem requires another challeng-
ing task: temporal action detection, which aims to recognize

ar
X

iv
:1

90
6.

06
49

6v
4 

 [
cs

.C
V

] 
 2

4 
A

pr
 2

02
0



2
Tian Wang: Accelerating Temporal Action

the temporal boundaries and classes of action instance from
untrimmed videos.

Temporal action detection usually includes two steps: pro-
posal and classification. Proposal stage focuses on detect-
ing action boundary and generating action instance with
untrimmed video. Classification is aim to recognize the class
of action instance produced in the previous step. For the task
of temporal action detection, classification has achieved high
accuracy. And the precision of proposals is the main factor
limiting temporal action detection [6] [7].

High-quality proposals should meet two requirements [8]:
(1) high recall; (2) high overlap with ground truth. And a
good algorithm of generating proposal should not only gen-
erate excellent proposals, but its speed should be as fast as
possible. Because videos occupy a large amount of memory,
and we must improve the speed of method so for being ap-
plied to practice.

Most proposal generation algorithms generate generation
by using sliding windows [9] [10] [11] [12]. But the pre-
defined durations and intervals of sliding windows cannot
generate proposals with flexible length, which greatly re-
duced the precision of proposals. Boundary Sensitive Net-
work (BSN) [8] used a temporal network with 3 convolution
layers to deal with video feature sequences and could gener-
ate proposals with flexible duration. But BSN cannot extract
enough information from videos due to its simple network
architecture.

To address these problems and improve the quality of pro-
ducing proposals, we designed a temporal convolution net-
work architecture, which adopted two channel convolution
for extracting both temporal and spatial information from
video feature sequence. While we made the network architec-
ture more complicated, a new parallel computing framework
was used to accelerate our algorithm with higher efficiency
compared to the popular Parameter-Server Framework [13].

In summary, the main contribution of our work is three-
fold:

(1) We proposed Multipath Temporal Network that could
extract effective information from video feature se-
quence.

(2) We adopted a new parallel computing framework to
speed up our temporal convolution network with high
efficiency.

(3) A metric is put forward to evaluate the time consumption
in the distributed deep learning field.

2 Related work

Temporal action detection aims to detect action instance from
the untrimmed video. The task could be divided into two
steps: proposal and classification. Though some methods do
the two steps at the same time, the majority of methods take
the task as a serial process and finish proposal and classifica-
tion separately.

Temporal action proposal generation. Proposal gener-
ation is the distinct characteristic of Temporal action recog-
nition. Proposal generation aims to detect the start and end
boundary of action instance in the untrimmed video. Ear-
lier methods used sliding windows to generate proposals [14]
[15]. Then some algorithms [9] [16] [10] [11] began to
pre-define temporal duration and intervals of proposals, and
evaluated them with multiple methods like recurrent neural
network (RNN) and dictionary learning. Another popular
method for proposal generation is TAG [17], which utilized
watershed algorithm to do the project. Though TAG can gen-
erate proposals with flexible boundaries and durations, it is
lack of evaluation to these proposals. BSN [8] has a good
performance of generating proposals, which is benefit from
its temporal convolution network. But the weak extraction
capacity to video feature sequence because of the single tem-
poral convolution network and slow speed make it difficult to
be applied to practice.

Action recognition. The classification of action instances
is as the same as the task of action recognition. Before the
wide range applied of deep learning in computer vision, im-
proved Dense Trajectory (iDT) [18] has a very good perfor-
mance in action recognition. It adopted manual image fea-
tures such as Histogram of Oriented Optical Flow (HOF),
Histogram of Oriented Gradient (HOG) and Motion Bound-
ary Histograms (MBH), and used Fisher Vector to encode
these features. Then an SVM classifier was designed to clas-
sify the features encoded. With the rapid development of
deep learning, convolution neural network (CNN) brought
great effects to computer vision and showed strong strength
in action recognition. Two-stream network [19] has two parts
and extracts appearance features from RGB frame with us-
ing spacial CNN and extracts motion features from optical
flow field with using temporal ConvNet. TSN [20] improved
two-stream network by using multiple networks to capture
short-term temporal information. C3D network [21] is differ-
ent from two-stream network. It is 3-dimensional and extract
features from raw videos directly. There are also lots of 3D
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convolution structure be proposed for extracting more infor-
mation from videos.

Distributed deep learning Because deep learning has a
wide range of application, acceleration is significant to let it
more widely to be used. Distributed deep learning, which
is based on parallel computing, belongs to high performance
computing and accelerate CNN by using more machines like
GPUs.

MapReduce [22] was proposed by Google and dissemble
compute into map and reduce, which divided compute into
tow steps of Map and Reduce. But it has a strict requirement
of consistency. To address the problem, Graphlab [23] used
an abstract way like the image to communicate, which also
lead to low scalability. Jeff Dean proposed Parameter-Server
Framework (PS) [13], which uses a parameter server to store
the newest weight parameters of CNN. When the number of
GPUs increases, the efficient of PS will have a great decline
because of the big communication.

Video task is closed to real life and Allied in practice is its
final goal. So besides accuracy, speed of methods is also an
important indicator. Based on these, our method is superior to
others in two aspects: (1) Our improved temporal convolution
has a more reasonable architecture for video files and could
extract more useful information from video feature sequence;
(2) We combine our proposal generation method with a new
framework of parallel computing for efficient acceleration.

3 Proposal generation

Based on SENet (Squeeze-and-Excitation Network) [24] and
exploring the meaning of video feature sequence, we pro-
posed Multipath Temporal Network (MTN).

3.1 Video feature sequence

For lots of tasks in video analysis, they do not handle video
directly but deal with video feature sequence. Video feature
sequence is usually encoded by neural network with special
structure. In this paper, we used two-stream network [25] as
an encoder to transfer video into a set of vectors.

In detail, the architecture of two-stream network is shown
as Fig. 1 (a). The network contains two part: spacial network
extracts information from RGB images and temporal network
is used to draw importance from optical flow images.

We selected 1 RGB image and 2 optical images from every
16 frames and put them into two-stream network. The out-
puts of spacial network and temporal network are both 200-

dimensional vector. Through concatenating them, we can
get a 400-dimensional vector for the 16 frames finally. For
a video with n frames, two-stream network produced n/16
400-dimensional vectors, which are video feature sequence.

We denote an untrimmed video with N frames as X =

{xn}
N
n=1. For X, then two-stream network produced N/16 400-

dimensional vectors represented as V = {vn}
N/16
n=1 .

To normalize our inputs, Interpolation is applied to convert
the number of vectors, N/16, to 100 in our experience. So far,
a untrimmed video was transformed into V = {vn}

100
n=1, and V

is the input of our temporal convolution network.

3.2 Temporal convolution network

To generate flexible proposals, a temporal convolution net-
work is usually used to detect possibility with each vn in V ,
like Fig. 2. For a V = {vn}

100
n=1, temporal convolution net-

work generates 3 possibility sequence Ps = {ps
n}

100
n=1, Pa =

{pa
n}

100
n=1, Pe = {pe

n}
100
n=1. ps

n, pa
n, pe

n present the possibility of ac-
tion start, actionness and end in the duration of vn respec-
tively.

The traditional temporal convolution network uses 3 one-
dimensional convolution network to extract information from
video feature vectors. A video feature sequence can be seen
as a vector which length is 100 and the channel is 400. A tem-
poral convolution layer can be denoted as Conv(n f , nk, act),
where n f , nk, act denote the number of filters, kernel size and
activation function, respectively. So traditional temporal con-
volution network could be defined as Conv(512, 3,ReLU)→
Conv(512, 3,ReLU)→ Conv(3, 1, S igmoid).

The network can acquire temporal information from fea-
ture sequence, but its simple network is not enough power
to extract lots of complicated information in the video. It
just focuses on the temporal information of video feature se-
quence but overlooks the meaning of the single feature vector
in video feature sequence.

Inspired by the ability to extracting information from mul-
tiple channel feature maps of SENet and excellent dimen-
sional representation of dense connect layer, we proposed
Multipath Temporal Network (MTN), which could better ex-
tract information from video feature sequence. Fig. 1 (b)
shows the structure of MTN. There are two networks of Mul-
tipath DenseNet and SE-ConvNet in multipath temporal net-
work. Multipath DenseNet with 3 dense connect layers is
used to detect the deep meaning of the single feature vector
one by one.

In the original convolution process, lots of feature maps
are produced by using a large number of convolution kernel.
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Fig. 1: The framework of our approach. (a) Two-stream network is used to encode visual features in snippet-level. (b) The ar-
chitecture of Multipath Temporal Network:SE-ConvNet extract temporal information from video feature sequence; Multipath
DenseNet uses multiple dense layers to explore the meaning of single feature vector. (c) Boundary-Sensitive Network is used
for generating proposals by probabilities sequence

Beside, because of one-dimension, only a few information
is contained in a single feature map, which increases the re-
liance of network on raw input data. In convolution layer, all
of feature maps in the same layer have the same weights for
the next layer. But some of feature maps contain more effec-
tive information compared with others in the same convolu-
tion layer. If we could pay more attention to these effective
feature maps, and ignore useless feature maps properly, our
temporal convolution network will have a better effect and its
robustness will be more strong.

we improved the ConvNet by using the squeeze-excitation
block. In squeeze, global pooling is applied to compress fea-
ture maps on the spatial dimension. Each feature map will be
transformed into a single number and the number of channels
is constant. Then we put the output of squeeze into dense
connected neural network and generate weights for all the
feature maps, which is called excitation. The shape of output
and input in excitation stage are consistent. Multiply weights
for these feature maps so we get the final result of ConvNet.
We apply the squeeze-excitation block after every convolu-
tion layer in our temporal convolution architecture to enhance
the ability to extracting information.

While squeeze-excitation blocks are used to enhance our
one-dimension convolution layer, we only extract temporal

information between video feature sequences. For a single
video feature vector, we need to know what meaning it repre-
sents. In order to achieve this goal, we added multiple dense
layers named Multipath DenseNet. By using it, we can ex-
tract information from video feature sequence on the spa-
tial dimension. For our Multiple DenseNet, the number of
units in input layer is 400, corresponds to the dimension of
feature vectors. The number of unit in hidden layer is 512
with ReLU as the activation function. The number of unit
in output layer is 3 with so f tmax activation function for out-
putting the probability of action start, end, and actionness.
Dense layer could be presented as Dense(units, Act), where
units and Act are the number of units and activation func-
tion of dense connected layer. So Multipath DenseNet can
be defined as Dense(512,ReLU) → Dense(512,ReLU) →
Dense(3, S o f tmax).

We can see that our improvement for temporal convolution
network is not in depth but width. SE-ConvNet and Multipath
DenseNet deal with video feature sequence separately and
get their own probabilities sequence. Then through adding
them according to a weight parameter W, we can get the final
probabilities sequences PS , PE , PA.
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Fig. 2: Temporal convolution network generate probabilities sequences

3.3 Training of temporal convolution network

Because the output of temporal convolution network is 3
probabilities sequences, the overall loss function consists of
three parts, which is as below:

Loss = λ · Laction + Lstart + Lend (1)

where λ is a weight and set to 2 in our network.
To compute Loss, we need to convert the ground truth to

the label for training our network. The duration between vn

and vn+1 is denoted as lw, which is equal to l/100, where l
is the length of video. The moment of vn is tn, so we define
the region of vn is rn = [tn − lw/2, tn + lw/2]. And now we
get the set of region R = {rn}

N
n=1. Besides, There is only a

instant moment for the start and end of a action, for example,
ts and te, we also need to transfer them into regions rs = [ts −

lw/2, ts + lw/2] and re = [te − lw/2, te + lw/2]. For each region
rn, it consists of three parts: start, actionness and end. Then
we can get the label gn = (gs

n, g
a
n, g

e
n) for each vn, where gs

n and
ge

n are the proportion of rs and re in rn and gs
n = 1 − gs

n − ge
n.

We adopt cross entropy to compute our loss function:

L =
1
lw

lw∑
i=1

(
α+ · bi · log (pi) + α− · (1 − bi) · log (1 − pi)

)
(2)

where bi = sign(gi − θIoP) is a two-values function and θIoP

is set to 0.5 in our network. l+ =
∑

gi and l− = lw − l+. we
also introduced α+ =

lw
l− and α− =

lw
l+ to balance the error

caused by the imbalance between the number of positive and
negative samples.

4 Parallel computing acceleration

4.1 Classes of parallel computing

For training of the neural network, GPU is a much faster plat-
form than CPU because of its architectural advantage on ma-

trix computation. So we used GPU as the computing plat-
form for our temporal network. Further, we applied parallel
computing based on GPU to accelerate our network for more
powerful capabilities of processing video. The hard architec-
ture of GPU is shown as Fig. 3. Stream Processor (SP) is
the basic computing unit of GPU and Stream Multiprocessor
(SM) is composed of a certain number of SM, register, share
memory and L1/L2 cache. From the picture, we can see that
one SM contains multiple SP but only one instruction unit.
So for single SM, it only supports single instruction multi-
ple data (SIMD) but not multiple instruction multiple data
(MIMD). When GPUs are used to train CNN models, param-
eters of models are stored at device memory, which decided
that the form of parallel computing of GPU in deep learn-
ing field is SIMD. After determining SIMD, the parallel ar-
chitecture of GPU can be divided into two classes of model
parallelism and data parallelism.

Fig. 3: Hard architecture of GPU

4.2 Model parallelism

Model parallelism means different machines (GPU or CPU)
in a distributed system are responsible for different parts of
a network model. For example, different layers in a neural
network model or different parameters in the same layer are
assigned to different machines. The structure of model paral-
lelism is shown as Fig. 4. In general, the reason for applying
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model parallelism is oversized for the neural network.

Fig. 4: Model parallelism

4.3 Data parallelism

Data parallelism means the input data are divided into several
parts and delivered to different machines. There is a complete
model in each machine and these machines run the same pro-
gram to deal with allocated data. Training CNN is a serial
process, i.e., only after computing the gradients for current
data and upgrading parameter weights, the next data can be
put into the machine. The key of model parallelism is that all
of GPUs have the same CNN model, which we called them
model replicas. But the data for each GPU is different. We
integrate different weight gradients ∇w calculated by all of
GPUs and upgrade parameters of the model.

With its simple and understandable structure, Parameter
Server (PS) becomes the main data parallelism framework
and got support from some mainstream deep learning frame-
work like TensorFlow [26]. The architecture of PS is shown
as Fig. 5, where ∆w is the weight gradients computed by
model replicas like GPUs and w′ is the newest weight param-
eters. PS stores the parameters of the model. Model replicas
compute different parameter weights and then upgrade the
parameters in the parameter server.

Fig. 5: Parameter Server framework

4.4 Ring parallel architecture

From Fig. 5 we can see that the communications volumes
increase linearly with the increasing number of GPUs. We
suppose the size of CNN model is M and N GPUs are used
in our distributed system, so the communications volume is
N ·M. If the number of GPUs achieved a high level, the large
communications volume will greatly limit the training speed
of CNN model.

To address the problem of large communication volume
in distributed deep learning system, we proposed ring paral-
lel architecture. By building communication between GPUs
with Message Passing Interface (MPI), our ring parallel ar-
chitecture can reduce the pressure of communication. The
ring parallel architecture is shown as Fig. 6. We changed the
parallel topology to ring and averaged the communications
volumes. The ring architecture upgrades weights through two
steps including scatter and gather.

Fig. 6: Ring parallel architecture. Multiple colors denote the
weight gradient computed by each GPU is different.
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4.4.1 Scatter

We divide weights in every GPU into N parts, where N is
the number of GPU utilized in the architecture. After all of
GPUs got different weight gradients by computing different
input data, like there are different colors in Fig. 6 and a row of
colored blocks denotes a part. The n-th GPU passes its own
(n − i)%N-th block of weight gradients to its right neighbor
and receives (n− i− 1)%N-th block of weight gradients from
its left neighbor, where i is the round of scatter. Fig. 7 shows
the detail after one round of scatter.

Fig. 7: Scatter. In the scatter step, the GPU passes a row
of weight gradient (all of the colors in this row) to the same
position in its next GPU.

After N − 1 rounds of scatter, n-th GPU has collected (n +

1)%N-th block of weight gradients from all GPUs, which is
shown as Fig. 8. After scatter, each GPU has a block of
gradients which is from all GPUs.

4.4.2 Gather

Like scatter, GPUs also pass a block of weight gradients to
the next GPU in the process of gather. Through N − 1 rounds
of gather, the (n + 1)%N-th block of weight gradients in the
n-th GPU is passed to all of other GPUs. In the i-th round of
gather, the n-th GPU passes its own (n − i − 1)%N-th blocks
of weight gradients to its right neighbor and receives the (n−
i−2)%N-th blocks of weight gradients from its left neighbor.
Different from scatter, GPUs don’t need to add but replace
its own block by the block received. After gather, we can see
that all of GPUs have obtained all weight gradients computed
by every GPU, which is shown as Fig. 9.

Fig. 8: Distribution of weight gradients after scatter. There is
a row in every GPU that has collected weight gradients from
all of GPUs (all of the colors).

Fig. 9: Distribution of weight gradients after gather. All of
the weight gradients are merged in each GPU.

4.5 Training time metrics

To explore the relationship between the number of GPUs and
training time and evaluate parallel architecture, we defined
training time metrics T (n), where n is the number of GPU
used.

Training time in distributed deep learning system could
consist of three parts:(1) t1 for forward propagation and back-
ward propagation of single GPU; (2) t2 for communication of
weight gradients between GPUs or between GPU and CPU;
(3) t3 for preparation before training process and finishing
work after training.

For Parameter Server framework, t1 is inversely propor-
tional to the number n of GPUs used. t2 is proportional to the
number n of GPUs and t3 has nothing to do with n. So the
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training time metrics for PS framework TPS (n) is shown as
below:

t =
T
n

+ C · n + P, n = 2, 3, . . . (3)

Where T is the training time with using single GPU, C is the
communication time and P is the preparation time for open-
ing and closing deep learning platform.

For our ring parallel architecture, t1 is also inversely pro-
portional to the number of n of GPUs used. Let the size of
∆w in each GPU is K, single GPU send K

n to his right neigh-
bor each round. Every GPU do n − 1 rounds of scatter and
n − 1 rounds of gather, so the total communication volume
is 2K · n−1

n . Then we can get that t2 is proportional to n−1
n .

And t3 is also a constant. So the training time metrics for ring
parallel framework TRing(n) is shown as below:

t =
T
n

+ C ·
n

n − 1
+ P, n = 2, 3, . . . (4)

The most difference between these two training time met-
rics is t2. As the number of GPUs n increases, t2 in ring
parallel architecture will be smaller than PS framework.

5 Experiments

In this section, we evaluated our parallel temporal convolu-
tion network as two part. On the one hand, we tested the
accuracy of proposal generation based on MTN; on the other
hand, we evaluated the accelerated efficiency of our ring par-
allel architecture on MTN.

5.1 Temporal action detection

Dataset. ActivityNet-1.3 [6] is a normal video dataset for the
temporal action proposal generation task. It contains 19994
untrimmed videos containing 200 classes of action instance
and corresponding annotations. each untrimmed video in-
cludes one or more action instances. ActivityNet-1.3 is di-
vided into training set, test set and validation set in a ratio
of approximately 2:1:1. THUMOS14 [7] is a smaller video
database containing 20 class action instances but they have a
longer duration. THUMOS14 contains 213 and 200 tempo-
ral annotated untrimmed videos in testing and validation sets
separately. In this part, we will compare the performance of
various commonly used methods for temporal action detec-
tion on ActivityNet-1.3 and THUMOS14.

Evaluation metrics. Because it is rare that our generat-
ing proposals completely coincide with ground truth, we need
to set a threshold of IoU (Intersection over Union) to judge
whether proposals are correct or not. When the IoU between

the proposal and ground truth is higher than the threshold, it
is correct. In temporal action proposal generation task, Av-
erage Recall (AR) calculated with multiple IoU threshold is
usually used as evaluation metrics. For ActivityNet-1.3, we
set IoU threshold as [0.5: 0.05: 0.95] and [0.5: 0.05: 1.0] for
THUMOS14. Because AR increases with the increase of AR
with Average Number of proposals (AN), we use AR with
definite AN as metrics, which is denoted as AR@AN. Be-
sides, we also apply area under the AR vs. AN curve (AUC)
as metrics On ActivityNet-1.3.

Implementation details. Two-stream network [25] whose
temporal network is BN-Inception [27] and spacial network
is ResNet [28] is used to encode videos. About the param-
eters in SENet [24], we set reduction ratio with 512 feature
map as 16 and reduction ratio with 3 feature map as 1. Be-
sides, to test the impact of our improvement on final pro-
posal generation result, we apply proposal generation module
(PGM) and proposal evaluation module (PEM) in boundary
sensitive network (BSN) to deal with the output of our tem-
poral convolution network. The structure of BSN is shown in
Fig. 1 (c). We implement MTN with TensorFlow [26]. Our
parallel computing platform are 8 TITAN V-100 GPUs.

We tested the loss curve with validation set between the
original temporal convolution network and MTN. We also
briefly changed the original architecture by adding or reduc-
ing one convolution layer The result is shown as Fig. 10. We
can see that whatever we increase or decrease the number of
layers, the curve will be worse. But there is an obvious de-
cline with using our improvement.

Fig. 10: Loss curve with validation set. origin is the original
temporal convolution network and improved denotes MTN.
2-cnn-layers and 4-cnn-layers mean to reduce or add one
one-dimensional convolution layer based on origin

We also compared the final result of proposal generation
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between our MTN and other state-of-art proposal generation
algorithms, which is shown as Table 1 and Table 2.

Table 1: Comparison results between MTN and other state-
of-the-art proposal generation methods on the validation set
of ActivityNet-1.3 in terms of AR@AN and AUC.

Method AR@100 (val) AUC (val)

Zhao et al. [17] 0.653 53.02
Dai et al. [29] - 59.58
Yao et al. [30] - 63.12
Lin et al. [8] 0.748 66.17
MTN 0.756 67.26

Table 2: Comparison results between MTN and other state-
of-the-art proposal generation methods on the validation set
of THUMOS14 in terms of AR@AN. For simplicity, we use
@AN instead of AR@AN.

Method @50 @100 @200 @500

DAPs [11] 13.56 23.83 33.96 49.29
SCNN-prop [12] 17.22 26.17 37.01 51.57
SST [9] 19.90 28.36 37.90 51.58
TURN [16] 19.63 27.96 38.34 53.52
BSN [8] 29.58 37.38 45.55 54.67
MTN 30.61 38.12 46.24 55.31

Effectiveness of modules in MTN. To evaluate the effec-
tiveness of SENet and multipath dense layers, we demon-
strate an ablation study on ActivityNet-1.3. The result is
shown in Table 3. We can see from the table that the Mul-
tipath DenseNet has played a more effective role than SE-
ConvNet in MTN, this is because the information extracted
by Multipath DenseNet is a representation of information not
just a promotion of existing information.

Table 3: Ablation study of MTN based on ActivityNet-1.3.
MTN with SENet denotes the absence of dense layers and
MTN with Multipath denotes abandoning SENet in MTN.
For simplicity, we use @AN instead of AR@AN.

Methods @1 @5 @10 @50 @100 AUC

Origin 0.292 0.469 0.549 0.696 0.748 66.17
SE-ConvNet 0.303 0.476 0.553 0.699 0.750 66.57
Mul-DenseNet 0.317 0.482 0.556 0.702 0.751 66.85
MTN 0.332 0.490 0.562 0.706 0.756 67.26

5.2 Parallel computing acceleration

Because of occupying huge memory and a large number of
video files, distributed deep learning is indispensable for ap-
plying temporal action detection algorithm to the actual. Be-
cause of the inefficient of the traditional PS framework on
distributed deep learning, we applied parallel ring architec-
ture to our temporal convolution network and received a good
result. The speed ratio with these two parallel frameworks is
shown as Fig. 11. As the number of GPU increases, the
performance of parallel ring architecture is getting better and
better than PS architecture.

Fig. 11: Comparison of speed ratio between PS and parallel
ring architecture

To further explore the relationship between the number of
GPUs and training time, we defined training time function
T (n), where n is the number of GPU used.

In order to test the validation of our training time metrics,
we use the number of GPUs used, n, as the independent vari-
able and the training time as the dependent variable to fit the
Eq. 3. The fitting curve is shown in Fig. 12(a) and we can
get that T = 4223.8,C = 12.1, P = 290.8.

If we use the same training time metrics 3 to fit the training
time with using parallel ring architecture, we would get the
result of C = −3.8 < 0, which is obviously unreasonable.
The fitting curve for ring parallel architecture with using Eq.
4 is shown in Fig. 12(b) and we can get that T = 4400.1,C =

59.6, P = 363.5.

The parameter C is much bigger in parallel ring architec-
ture than it in PS, which indicates that parallel ring architec-
ture is lower than PS in transfer speed. But if the number of
GPUs increases to a obvious level, especially in large scale
deep learning like some video task, parallel ring architecture
will be a better choice than Parameter Server framework.
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(a) Parameter Server architecture

(b) Parallel ring architecture

Fig. 12: Fitting curve of training time function

6 Conclusion

In this paper, we proposed Multipath Temporal ConvNet
(MTN) for proposal generation task and applied a new par-
allel architecture, ring parallel architecture, to accelerate our
network by reducing the pressure of communication. Multi-
path Temporal Network can extract more effective informa-
tion from long video feature sequences. Our state-of-the-art
method here doesnâĂŹt only have a better performance but
have a higher acceleration efficiency compared with other ac-
tion proposal generation methods, which is significant for
dealing with large-scale video databases in industrial filed.
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