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Abstract—Speaker verification systems have been used in many
production scenarios in recent years. Unfortunately, they are still
highly prone to different kinds of spoofing attacks such as voice
conversion and speech synthesis, etc. In this paper, we propose
a new method base on physiological-physical feature fusion to
deal with voice spoofing attacks. This method involves feature
extraction, a densely connected convolutional neural network
with squeeze and excitation block (SE-DenseNet), multi-scale
residual neural network with squeeze and excitation block (SE-
Res2Net) and feature fusion strategies. We first pre-trained a
convolutional neural network using the speaker’s voice and face
in the video as surveillance signals. It can extract physiologi-
cal features from speech. Then we use SE-DenseNet and SE-
Res2Net to extract physical features. Such a densely connection
pattern has high parameter efficiency and squeeze and excitation
block can enhance the transmission of the feature. Finally, we
integrate the two features into the SE-Densenet to identify the
spoofing attacks. Experimental results on the ASVspoof 2019 data
set show that our model is effective for voice spoofing detection.
In the logical access scenario, our model improves the tandem
decision cost function (t-DCF) and equal error rate (EER) scores
by 4% and 7%, respectively, compared with other methods. In
the physical access scenario, our model improved t-DCF and
EER scores by 8% and 10%, respectively.

Index Terms—spoofing attacks, SE-DenseNet, physiological-
physical feature.

I. INTRODUCTION

MART voice assistants have come into our lives. At

present, many smart devices will integrate smart voice
assistants, such as Samsung’s Bixby, Apple’s Siri, and Mi-
crosoft’s Cortana. These smart voice assistants can provide
personalized services to users by recognizing their voices.
Automatic speaker verification (ASV) is the main technique
used to recognize speaker voice [[1]. It is a convenient
biometric person authentication system that recognizes the
speaker’s identification based on speech recordings. With the
development of deep neural network technology, the automatic
speaker verification system has achieved perfect effects and
has been applied to many life and production scenarios, such as
intelligent voice assistant, secure building access, e-commerce
and speech emotion recognition, etc. However, ASV systems
are still subject to many attacks [2]. The most common
attacks are voice conversion (VC), text to speech (TTS), and
replay attack. VC can convert the speech without losing the
target speaker’s distinct characters, which is one of the most
accessible methods of attack. TTS can intelligently convert
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text into natural speech, and the sound is smooth, so that the
listener feels natural when listening to information, without the
coldness and numbness of computer-generated speech. Replay
attack means that the attacker sends a received message to the
target host to achieve the purpose of deceiving the system. It is
mainly used in the process of identity authentication to destroy
the correctness of identity authentication. In ASV system,
replay attack is when the attacker records the voice of the
target speaker and tries to pass the ASV system authentication
as the target speaker. Due to the rapid development of deep
learning technology, these attacks can already be very similar
to real speech. This is a great challenge to the ASV system.

In order to overcome the above challenges, we need a
system with excellent performance to distinguish real speech
and spoofing speech. In the beginning stage, different evalu-
ation standards are used to carry out the study on different
datasets, and the results cannot be compared. In order to build
a community with standard datasets and evaluation metrics,
a series of anti-spoofing competitions were born, one of the
most famous is the automatic speaker verification spoofing
and countermeasures (ASVspoof) challenge. They raised this
serious question back in 2013. In versions of ASVspoof 2015
and ASVspoof 2017, the spoofing countermeasures (CM) for
synthetic speech and replay speech are designed respectively,
but all types of spoofing attacks are centralized for the first
time in ASVspoof 2019. It is divided into two scenarios,
logical access (LA) and physical access (PA). LA focused on
TTS and VC, while PA was designed to develop countermea-
sures capable of discriminating between genuine audios and
replay ones. For ASV systems, it is difficult to defend against
unknown attacks. To solve this problem, ASVspoof 2019
divided the data set into three parts: training set, development
set and evaluation set. The evaluation set contains attacks that
did not occur in the other two sets. So what succeeds in the
development set can still do badly in the evaluation set. This
requires our method to be universal to the unknown attack, and
build a wide range of applicable countermeasures to make our
system more robust.

At present, the research on anti-spoofing countermeasures
of ASV mainly focuses on two aspects: one is to research
the method of extracting features from speech; the other is
to Looking for more efficient classifiers [3]—[5[], The main
classifier types are statistical modeling [6]-[8] and deep
neural networks (DNNs) [9]-[13]]. Previous researches have
performed well in ASVspoof 2019. For example, the authors
of [13] proposed a light convolutional gated recurrent neural
network based on gated recurrent units (GRU) by fusing
Light RNN and CNN [[14]. They use this network as a deep
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feature extractor to extract deeper feature, so that assisting
in the training of the classifier. The authors of [9] built five
DNN models and used different forms of feature to detect
spoofing attacks. Features included a unified feature map,
acoustic features, and whole utterances, which were fed into
five DNN models based on variants of squeeze-excitation
networks (SENets) [15] and ResNets [16].

In this paper, Using the advantages of multi-feature fusion
and based on the success of deep neural networks in this
task, we propose two different strategies for PA and LA. For
the LA, we propose a new method, including feature extrac-
tion, a densely connected convolutional neural network with
squeeze and excitation block , and feature fusion strategies,
to deal with the spoofing attacks. Inspired by the success of
Speech2Face model [[17], which can translate speech into face
feature. We use the fine-tuned Speech2Face model as one
of the modules of our method. This module is to input a
speech and get 4096-D face features. We use it as a depth
feature extractor to extract face feature. We use SE-Densenet
as another depth feature extractor to extract 128-D speech
feature. Finally, we fused the two features and put them into
the classifier. For the PA, we still use Speech2Face Model
to capture face features. But we used a new neural network,
SE-Res2Net, to extract speech features. In addition, the fusion
strategy we used was also changed. In the PA, we adopted the
back-end fusion strategy. Experiments show that this fusion
strategy is more effective for PA. To address the challenges in
ASVspoof 2019, we compared the performance of our models
with the state-of-the-art models.

The major contributions of this work are as follows:

1. We design a novel convolutional network for audio spoof-
ing detection. The network contains dense connection and
squeeze and excitation block. As far as we know, this is the
first work for the audio spoofing detection task using dense
connection combined with squeeze and excitation block. Such
a densely connected pattern has high parameter efficiency and
squeeze and excitation block can enhance the transmission of
the feature.

2. We combine physiological and physical features for audio
spoofing detection. Through the network we designed, we can
extract face feature and speech feature, and fuse two features.
Our experiments show that this fusion feature can improve the
performance of our model.

3. The developed network model achieves better results in the
challenges of ASVspoof 2019 than state-of-the-art methods.
For example, in the logical access scenario, our model im-
proves the tandem decision cost function and equal error rate
scores by 28% and 11%, respectively, compared with state-of-
the-art methods.

The other parts of this paper are organized as follows. In
section 2, we introduce the relevant technologies used in this
paper. The model we proposed is introduced in section 3.
Section 4 gives our specific experimental steps and results,
and finally we draw a conclusion in Section 5.

II. RELATE WORK

A. Voice Spoofing Detection

Synthetic speech is the main way of spoofing attack.
ASVspoof proposes an anti-spoofing research based on ASV
system. The main goal of this research is to protect ASV
systems away from the threat of spoofing attack. The early
work of fake audio detection focuses on extract features
from audio. For example, [18] proposed a fusion model for
automatic spoofing detection. They used different methods to
extracting audio feature, and research the effect of these meth-
ods on automatic spoofing detection. They used the constant Q
cepstrum coefficient (CQCC) and the Mel frequency cepstrum
coefficient (MFCC) to extract feature from the audio. Then
they used GMM, ResNet, and DNN as classifier. They research
the effects of different combinations. Similarly, [[19] proposed
anti-spoofing Systems. They tried to use different feature
extraction methods to influence the effect of the systems. They
use different methods to extract feature, for example, constant
Q transform (CQT), fast fourier transform (FFT), discrete
cosine transform (DCT). Then they look for which works best
for the systems. Besides, [20]] proposed a robust anti-spoofing
System for the ASVspoof 2019 challenge. They use log-CQT,
log mel spectrogram (LMS), and Phase feature to extract
feature, and use ResNet, ResNet with i-vector, LightCNN
with multi-task outputs, Context Gate CNN as classifier. They
explore the detection effects of different feature extraction
methods and different model combinations. To sum up the
above research, we can divide fake audio detection models
into the following categories:

1) Voice spoofing detection based on gaussian mixture
model: The Gaussian model can break things down into
one model of several models based on gaussian probability
density functions and accurately quantify things. The original
speech data will become feature sequences after short-time
Fourier transform or cepstrum. Under the condition of ignoring
the timing information, the gaussian mixture model is very
suitable for fitting such speech features. Therefore, ASVspoof
2019 uses a common gaussian mixture model as a baseline
system for spoofing audio detection.

2) Voice spoofing detection based on convolutional neu-
ral network: In general, audio spoofing detection is usually
based on matrix containing speech information, which has the
characteristics of structure. In order to improve the accuracy
of spoofing audio detection, it is necessary to overcome the
diversity of speech signals. Convolutional neural networks can
provide translational invariant convolutional in time and space.
When applying the idea of convolutional neural network to
acoustic modeling of audio spoofing detection, convolutional
invariance can be used to overcome the diversity of speech
signals themselves.From this perspective, we can think of the
matrix derived from speech as an image matrix and process
speech in the same way that images are processed, such
as deep convolutional neural networks. This can effectively
improve the accuracy of audio spoofing detection.

3) Voice spoofing detection based on recurrent neural net-
work: Recurrent neural network is a kind of neural network
with memory function, which is suitable for modeling se-
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quence data. It has achieved success in speech recognition,
natural language processing, and other fields. Compared with
the convolutional neural network, the recurrent neural network
has the advantages of accepting the sequence data of variable
length as input and has the memory function. Because the
context correlation of speech fragments is very strong, the
recurrent neural network is very helpful for the detection of
spoofing audio.

These systems have achieved good results and achieved
excellent results in spoofing detection of known systems,
but their detection of spoofing attacks on unknown systems
still falls short. We think it has to do with the input, the
model we proposed in this paper not only take audio feature,
but also extract physiological feature from audio. Then we
fuse physiological feature and audio feature as input to the
classifier.

B. Speech2Face Model

In natural face images, the large variability of facial expres-
sions, head poses, occlusion and lighting conditions makes it
very important to design and train a speech-face model. For
example, the method of directly returning from input voice
to image pixels is not feasible; such a model must learn to
extract many irrelevant changes from the data, and extract
some significative internal representations of the face. This
in itself is a challenging task.

To overcome these challenges, [17] A trained their model
to return to the low-dimensional middle face representation.
More specifically, they use the VGG-Face model, which is
a face recognition model pre-trained on a large face data set
[21]], and extract 4096-D face features from the second layer of
the network. These face features contain enough information
to reconstruct the corresponding facial image, and are robust
to many of the above-mentioned changes.

Their speech2face model mainly consists of the following
parts: 1) The voice encoder uses a complex speech spectro-
gram as input to predict the low-dimensional face features
corresponding to the relevant face; 2) The face decoder, which
uses facial features as input to generate face images in standard
forms (frontal and neutral expressions). During the training
process, the face decoder is fixed, and we only train the voice
encoder to predicts face features. The voice encoder is a model
they designed and trained, however the face decoder uses the
model previously proposed by [22].

The voice encoder module is actually a convolutional neural
network, which converts the spectrogram of the short input
speech into pseudo-face features, and then inputs the pseudo-
face features into the face decoder to reconstruct the face
image. The blocks of convolutional layer, batch normalization
[23] and ReLU alternate with the max-pooling layer. The max-
pooling layer only pools along the time dimension of the
spectrogram, while retaining frequency information. This is to
preserve more sound features because they are better contained
in frequency content, while language information usually lasts
longer [24]. At the end of these blocks, we apply average
pooling along the time dimension. This allows us to efficiently
aggregate information over time and makes the model suitable

for input speech of different durations. Then, these pooled
features are fed into two fully connected layers to generate a
4096-D face feature.

The goal of the face decoder is to reconstruct face images
from low-dimensional face features. They choose to eliminate
any irrelevant changes (posture, lighting, etc.) while preserving
facial attributes. To this end, they used the face decoder model
of Cole et al. [22] to reconstruct a standard facial image of
a frontal face containing only neutral expressions. They used
the same face features extracted from the VGG-Face model
as input to the face decoder to train this model. The model is
trained separately and remains fixed during the training of the
voice encoder.

C. Feature Extract

Feature extraction is to extract useful information from
speech. A good feature extraction method can improve the
efficiency of our system. At present, the common methods
are MFCC, LPC, LPCC, LFCC, etc [25]]. These methods
have been widely used in previous research and achieved
good results. This makes them highly reliable and acceptable.
[26] propose the Mel frequency cepstrum coefficient (MFCC),
which is a cepstrum parameter extracted in the Mel scale
frequency domain. It has been widely used in automatic speech
recognition. Spectrogram is a time-frequency graph based on
the characteristics of speech signal, which can reflect the
dynamic spectrum feature of audio data [27]]. Spectrogram is
a kind of 2-dimension spectrum, which represents the graph
that the spectrum of speech signal changes with time. The
vertical axis is frequency and the horizontal axis is time.
The shade of its tone indicates the energy intensity of the
corresponding frequency at the corresponding time, so it can
well display the characteristics of frequency and time-domain
waveform. LPC is mainly used in speech processing, it is a
tool that represents the spectrum limits of digital information
signals in compressed form based on linear prediction model
information. It is one of the most effective speech analysis
techniques and one of the most useful methods to encode
high quality speech at low speed. It also can provide very
accurate speech parameter prediction, because it simulates the
human vocal tract, so it has strong linearity and robustness.
LPCC is the cepstrum coefficient obtained from the spectrum
envelope calculated by LPC. It is the coefficient of the Fourier
transform of the logarithmic amplitude spectrum of LPC.
LPCC is a commonly used analysis method in the field of
speech processing because it can perfectly represent the speech
waveform and features with limited features. The LFCC is a
form of cepstrum. It is the result of taking the logarithm of the
spectrum of the input speech signal and then fourier transform
it. It is called linear cepstrum because these coefficients are
calculated by a linear filter bank with better resolution at
higher frequencies. In this paper, spectrogram and LFCC
is used as a method to extract audio feature, because they
contains a lot of time and space information, which have great
help to our classification task [28]].
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Fig. 1. Model structure. This model is for LA. The structure of our model mainly includes two branches. In the first branch, We extract the spectrogram of
speech. And then, we use the voice encoder module to turn the spectrogram into face feature. In the second branch, we extract the linear cepstral representation
of speech (LFCC). The SE-DenseNet module is used to get the speech feature. The input of SE-DenseNet is LFCC. Last, the features got by the two branches
is concatenated and put into a classification network to complete the spoofing attack detection.
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Fig. 2. Model structure. This model is for PA. The structure of our model mainly includes two branches. In the first branch, We extract the spectrogram of
speech. And then, we still added a voice encoder module, which can use face features to score input speech. In the second branch, we extract the Constant-Q
Transform (CQT). We then send it to the SE-Res2Net module, which scores the input speech using speech features. Finally, we use a weighted average to

get the final score. This final score can identify the spoofing attacks.

III. METHODOLOGY

We designed two different models for PA and LA respec-
tively. The main idea of the two models is the same, which is
to recognize spoofing speech by fusion of physiological and
physical features. But the two models are fused in different
ways. For LA, front-end fusion is adopted, and its model
structure is shown in Figure 1. It consists of four modules,
which are the speech processing module, the face feature
extraction module, the speech extraction module, and the
classification module. For PA, back-end fusion is adopted, and
its model structure is shown in Figure 2. It is composed of
four modules, namely, speech processing module, face feature
classification module, voice feature classification module and
fusion module. We will introduce these modules in detail in
this section.

A. Problem Definition

Our goal is to use the information contained in the audio
data to predict whether the speech is genuine or spoof. The
problem is defined as follows: given an audio file A, our goal

is to predict whether A is a real speech (y = 0) or a spoofing
speech (y = 1), to determine A — y(0,1).

B. Speech Processing

In a natural speech, there are great changes in accents,
speed, noise and so on, it makes feature extraction of speech
very important. Some important information may be lost by
using traditional methods, such as MFCC and LPCC. In this
paper, we use three different speech processing methods,
namely spectrogram, CQT, and LFCC. A large amount of
information related to speech presentation features is shown
in the spectrogram , so we use it processed the speech to
extract face feature. LFCC can capture more spectral details
in the high frequency region of the speech spectrum, so we use
LFCC processed speech to extract deep audio feature. CQT is
a time-frequency representation, where the frequency bins are
geometrically spaced, and the q factor (the ratio of the center
frequency to the bandwidth) of all bins is equal. This means
that the frequency resolution of the low frequency is better,
and the time resolution of the high frequency is better.

Spoof
Bonafide
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We use the STFT [29] to get a spectrogram of a speech
sample signal. A large amount of information related to the
feature of speech statements is shown in the spectrogram,
which combines the feature of spectrum and time waveform.
It can show how the speech spectrum changes over time. It
also contains a lot of space and time information, which can
accurately represent the sound waveform. This will be very
helpful for our later modules. In this module, we first frame
the audio sample and divide it into small frame sequences.
Framing is a necessary task, because we use the STFT
when we deal with speech signals, which requires that the
audio signal be stationary. The frequency of speech signals
is constantly changing. But in a short period of time we can
assume that the frequency of speech signals is fixed. So we
can use the audio after framing. Then we use the Hanmming
window [30] to window the audio and set the window length
to 400. Using the Hanmming window, multiplying each frame
signal with a smooth window function can reduce the spectrum
energy leakage and reduce the error caused by the spectrum
leakage. Finally, the speech signals that have no periodicity
show some characteristics of periodic function. We take the
STFT of each frame, the STFT is defined as:

X(n,w) = Z::ﬂx; z(m)w(n —m)e 7™ (1)

where x(m) is the input signal, w(m) is the window function,
it’s reversed in time, and it has n sample offsets. X (n,w)
is a two-dimensional function of time n and frequency w, it
connects the time domain and the frequency domain of the
signal. Then we transform the signal as:

S(n,w) = X (n,w)*? (2)

we splicing the Angle values of X(n,w) and S(n,w) on
dimension two to get the spectrogram.

The LFCC is a form of cepstrum, known as linear cepstrum
representation of speech. It is the result of taking the logarithm
of the spectrum of the input speech signal and then applying
a fourier transform to it, and it is called the linear cepstrum
because these coefficients are computed by a linear filter
bank which has a better resolution at higher frequencies.
To calculate the LFCC, the discrete cosine transform with a
log energy filter bank as shown in (3), where X; is the i-
th filter output of the log-energy, j denotes the exponent of
the linear frequency cepstral coefficients, M is the number
of coefficients to compute and B is the number of triangular
filters.

B
LFCC; = Xicos(j(i —1/2)/B),j =0..M  (3)

i=1

Constant-Q transform (CQT) refers to a technique that trans-
forms the time domain signal z(n) into the time-frequency do-
main, so that the center frequencies of the frequency boxes are
geometrically spaced, and the Q-factors are equal. In practice,
this means that the frequency resolution of the low frequency
is better, and the time resolution of the high frequency is better.

The CQT transform X“%(k,n) of a discrete time-domain
signal x(n) is defined by

n+[Ne/2(

XCh,n)= > wx@apG-n+Ne/2)  (4)
Jj=n—|Ng/2|

where £k = 1,2,3..., K indexes the frequency bins of

the CQT, || stands for rounding towards negative infinity,
and aj,(n) stands for the complex conjugate of ar(n). The
basis function ay(n) is a time-frequency atom, also called a
complex-valued waveform.

C. Voice Encoder Module

Our voice encoder module consists of convolutional neural
network and fully connected layer, which converts spectrum
of the speech into face feature. This module is indepen-
dently trained and remains fixed during the experiment. The
structure of this module is shown in Table [l The blocks
of a batch normalization [23] alternate with max-pooling
layers, ReLU and convolution layer. In order to retain the
frequency information of speech, it is only pooled along the
time dimension of the spectrogram. There are many acoustic
features in the frequency information, which can help improve
the performance of our model. Finally, we add an average
pooling layer. This can not only accommodate different length
of speech input, but also better aggregation of information. At
the end of the module, we add two fully connected layers to
generate 4096-D face features.

We pre-trained this model in a self-supervised manner [31].
Using the speaker’s voice and face in the video as surveillance
signals. For this reason, we used the AVSpeech datasets [32]],
which contains a large number of speakers’ voices and face
images in videos. First, extract a single frame containing the
face of the speaker from each video fragment, and input it into
the vgg-face model. This model is also a pre-trained model,
and it is used to extract the 4096-D feature vector vy. the
feature v, is the supervision signal for our voice encoder,
which is trained to predict vy.

To define the loss function, We use the L2 normal to
standardize vy and v,. the L2 normal is defined as:

2l = /> a2 (5)

where x; is a member of the matrix, ||x||2 is the L2 normal
of a matrix. We use it for vy and v,. Then the loss function
is defined as:

L = ([[ogll2 = llvs][2) (6)

where L is the loss function of this model, after that we use
it to train our model.

According to the acoustic features of speech in PA and
LA, we designed two different voice encoder modules. The
network structure of these two modules is roughly the same,
but the details are fine tuned. For LA, in order to finally output
the 4096-D speech feature, we designed two fully connected
layers with the number of channels of 4096 at the end of the
network, as shown in Figure 3(a). For PA, our goal is to get the
score of the input speech, so we designed two fully connected
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TABLE I
BASIC VOICE ENCODER ARCHITECTURE

CONV CONV CONV CONV

CONV CONV CONV CONV AVGPOOL

Layer Input BN BN BN MAXPOOL BN MAXPOOL BN MAXPOOL BN MAXPOOL BN BN CONV BN
RELU RELU RELU RELU RELU RELU RELU RELU RELU
Kernel size - 4x4 4x4 4x4 2x1 4x4 2x1 4x4 2x1 4x4 2x1 4x4 4x4 4x4 oo X1
Channels 2 64 64 128 - 128 - 128 - 256 - 512 512 512
Stride - 1 1 1 2x1 1 2x1 1 2x1 1 2x1 1 2 2 1

layers and a softmax function at the end of the network, as
shown in Figure 3(b).

Basic Voice Basic Voice
Encoder Encoder
v
FC
FC 4096
4096 l
FC
FC 2
4096 l
l Softmax
output output

(a) Voice Encoder
for LA

(b) Voice Encoder
for PA

Fig. 3. Fine-tuned the Voice Encoder module

D. SE-DenseNet Module

The overall structure of our proposed network model is
shown in Figure 4. the network consists of 11 regular con-
volutional layer groups, each of which consists of three parts:
convolution, batch normalization , and leaky-ReLU. Moreover,
it has a standard convolutional layer, four transition layers,
eight squeeze and excitation layers, one average-pooling layer,
two fully connected layers, and one softmax layer.

The filter size of the first standard convolution layer is 3x3,
with stride and padding one, and outputs 32 feature maps.
Four dense block in this structure. Each dense block structure
is shown in Figure 5. Densely connections are introduced in
each dense block. For the convolutional layers in each block
we take the feature maps of all previous layers as input. Three
convolutional layer groups are used in the first three dense
block and two convolutional layer groups in the last dense
block. The receptive field of the four dense blocks is 3 x 3.
The growth rate of all four dense block is 32, which means
that each convolutional layer outputs 32 feature maps in the
block. The transition layer after each block is designed as a
convolution of 1 x1, which is designed to reduce the number
of input feature maps. SE layer is composed of global average-
pooling layer, fully connection layer, ReLU layer and, sigmoid
function. By multiplying the output of the global average-
pooling layer with the output of the fully connected layer, the
SE layer output is obtained. The output of the global average-
pooling layer is sent to the full connection layer. Finally, the
distribution of two kinds of labels is generated through the
softmax layer.

The goal of the ASVspoof challenge is to calculate the
countermeasure (cm) score for each input audio file. High
cm scores represent bona fide speech, while low cm scores
represent spoofing attacks. Calculated from the softmax output
using the log-likelihood ratio:

CM(s) = log(p(bona fide|s; 0)) — log(p(spoof|s; 0)) (7)

where s is the audio signal under test and 6 represents the
model parameters, spoof represent spoofing attacks, bona fide
represent bona fide speech.

1) Dense Connectivity: Dense connectivity is introduced
to our model inspired by [33[]. In this mode, the output
of each convolutional layer is connected to all subsequent
convolutional layers, which all have the same size feature map.
As shown in Figure 4, the [*" layer receives the feature maps
from all previous layers, xg, x1, ..., Z;—1, as the input:

(8)

where xg, T1, ..., £;_1 refers to the concatenation of the feature
maps produced in layer 0, ..., [-1. H;(-) is a composite function
of operations including batch normalization, leaky-ReL.U and
convolution.

Propagate what is learned at the different layers back so that
input at the subsequent layers is dynamic and nondeterminis-
tic. This ensures the maximum flow of information between
network layers. With this densely connected mode, some audio
features that are only contained in the previous layer can be
transferred to the later layer. This allows the network to learn
more useful information. This also enhances the transmission
of audio feature. In addition, densely connected mode has
many advantages when it comes to back propagation. For
example, gradients can bypass activation functions and flow
directly from the lower layer to the previous layer, generating
implicit deep supervision [33]]. This can effectively alleviate
the problem of gradient disappearance and make the network
easier to train.Compared with L-layer traditional convolutional
neural networks with L connections, the dense connectivity
introduces % connections. This connection does not require
relearning redundant feature mappings. In the convolutional
network, the dense model has better parametric efficiency than
the traditional model.

2) Squeeze and Excitation Blocks: The squeeze and exci-
tation block can be added to any given structure.It’s actually
a computational cell. To describe the squeeze and excitation
block, we first define the concept of convolution:

Fyp: X = U X € RFWXC ¢ pHXWxC

x; = Hy([wo, 1, ..., 21-1])

9)

where X represents the input matrix, U represents the output
matrix, H, W, C represents the three dimensions of the matrix.
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Fig. 4. SE-DesneNet network structure
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Fig. 5. Ilustration of the dense connectivity in dense block.
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Fig. 6. A Squeeze-and-Excitation block

Let V = [v1, 09, ..., vc] represent the learned filter kernel set,
where v, represents the parameter of the ¢ — th filter. We can

then write the outputs of Fi,. as U = [uq, ua, ..., uc], at this
time u can be expressed as:
C/
uC:UC*X:Zvﬁ*xs (10)
s=1
where v, = [v},02,...,0S"], X = [2!,22,...,27], and x

represents convolution, while v is a two-dimensional space
core, so it represents a single channel of v. acting on the
corresponding channel of X. Since the output is generated
by the sum of all channels passed, the channel dependencies
are implicitly embedded in v., but these dependencies are
entangled with the spatial correlation captured by the filter.
Our goal is to enable the network to hold more useful feature
information. This allows subsequent steps to take advantage of
this information and discard some less useful feature informa-
tion. We do this through interdependencies between channels,
recalibrating the filter response by squeeze and excitation them
in two steps before they are fed into the next transformation.
An SE building block construction is shown in Figure 6.

E. SE-Res2Net Module

SE-Res2Net module is implemented by SE Block through
Res2Net network integration. This network architecture aims
to improve multiscale representation by increasing the number
of acceptance domains available. A comparison of base blocks,
bottleneck blocks, and Res2Net blocks is shown in Figure

Dense Blobk3 Dense Blobk3

|
SE layer
{
I
I
i
}
SE layer
|
Transition layer
|
SE layer
;
I
|
SE layer
|
Transition layer
|
SE layer

Growth rate = 32 Growth rate = 32

l 1x1
3x3
| |
3x3 x1 X2 X3 X4
; [
(a) Basic block 3x3 J'
l 3x3
1x1 3x3
l l
1x1 ™~
— — |
(b) Bottleneck block (c) Res2Net block
[Ope] w
o« )

(d) SE-Res2Net block

Fig. 7. Structure of basic block, bottleneck block, Res2Net block(scale
dimension s = 4), and SE-Res2Net block

7. Res2Net blocks are obtained by deforming bottleneck block,
while SE-Res2Net block are obtained by connecting Res2Net
block to SE block.

The structure of Res2Net block is shown in Figure 7(c).
After a 1 x 1 convolution. The input feature map is evenly
divided into s subsets according to the channel dimension,
expressed in x;, where i € {1,2,...,s}. Every x; is processed
by a 3 x 3 convolution filter K;(), except x;. Starting from
1 = 3, x; is added with the output of K;_; before being fed
into K;(). This process can be expressed as:

1 =2
2<1<s

(11)
Ki(zi +yi-1)

where s represents the scale dimension, which represents the
number of partitions applied to the segmentation feature map.
This hierarchical residual connection can realize multi-size
receptive fields within a block, thereby generating multiple
feature scales. Finally, it connects all the divided blocks and



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

TABLE II
CLASSIFICATION MODULE ARCHITECTURE

Layers Architecture Fusion Feature
Convolution 3 x3,stride 1 64X 66
SE Block - 64 <66
Dense Blockl B x3) x3 64 X 66
SE Block - 6466
Transition layer 1 X 1 conv 64X 66
Max pooling 2 X 2 max pool, stride 2 32x33
Dense Block2 B3 x3) x3 32x33
SE Block - 32x33
Transition layer 1 x 1 conv 32x33
Average pooling 2 x 2 average pool, stride 2 16x 16
Dense Block3 B3 x3) x3 16x 16
SE Block - 16x16
Transition layer 1 x 1 conv 16x 16
Max pooling 2 X 2 max pool, stride 2 8x8
Dense Block4 3 x3)x2 8x 8
SE Block - 8x8
Transition layer 1 x 1 conv 8x8

global average pool

Ix1
Dropout, 128 FC, softmax -

Classification layer

passes them through an 1 x 1 convolution filter to maintain
the channel size of this residual block.

In Res2Net block, segmentation is processed in a multi-
scale manner, which is conducive to extracting global and
local information. In order to better fuse the fusion informa-
tion at different scales, we spliced all the segments together
and passed 1 x 1 convolution. Segmentation and connection
strategies can enforce convolution to handle features more
efficiently. In order to reduce the number of parameters, we
omitted the first split convolution, which can also be seen as
a form of feature reuse. We implement hierarchical residual
connections between filter groups, which also can effectively
reduce the number of model parameters. Here, we use s as the
control parameter of the scale dimension. When the threshold
of s becomes larger, we can learn more abundant features of
the size of the receiving field. Since the connection operation
requires almost no calculation, the computational overhead
introduced by the connection can be ignored.

SE block recalibrates the features response of the channel
adaptively by explicitly modeling the interdependence between
the channels. We connect an SE block after the Res2Net block
to form an SE-Res2Net block, as shown in Figure 7(d). Our
experimental results show that this connection method can
further improve spoofing attack detection.

FE. Classification Module

The classification module is mainly prepared for logical sce-
narios, because logical scenarios need a classification module
to distinguish spoofing attacks after feature fusion. Our clas-
sification network is a variant of DenseNet. It mainly consists
of dense block, squeeze and excitation block, transition layer
and fully connected layer. This module is trained after the
other modules.

The input to our classification module is the fusion feature.
It’s a combination of physical features and physical features.
Through the Voice Encode module, we can get the 4096-D
face features , which contains some information related to the
speaker’s face, and we call it physiological features. With the

SE-Densenet module, we can get the speech feature of 128-
D, which contains the information about the speaker’s voice,
and we call the physical features. Then we use the splicing
function to splice these two features to form our fusion feature.

The overall structure of the classification module is shown
in Table @ It consists of a convolution layer, four dense
blocks, four transition layers,squeeze and excitation block,
two max pooling layers, an average polling layer and two
fully connected layers. The first convolutional layer has a
convolutional kernel size of 3x3 and a step size of 1. The
first three dense blocks contain three convolutional layers with
3x3 convolutional cores; the last dense block only contains
two convolutional layers, and the convolutional cores are also
3x3. All transition layers in this module are convolutional
layers of 1x1, which are placed behind each dense block. In
order to better transmit network information backwards, we
set the growth rate of each dense block as 32, which means
that each convolutional layer will output 32 feature maps. We
add a pooling layer behind each transition layer to prevent
unnecessary parameters from adding time complexity and to
increase feature integration. After the first transition layer and
the third transition layer, we add the max pooling layer, which
can ensure the invariance of translation and rotation of the
feature map, and the receptive field of the current feature map
can also be increased. We add the average pooling layer after
the second transition layer, which can reduce the size of spatial
information, reduce the number of network parameters and
reduce the risk of overfit. After the last transition layer, we
add a global average pool layer, which can pool the feature
map of the last layer by an average value of the whole image
to form a feature point, and these feature points can be used
to form the final feature vector. The last two fully connected
layers are used for classification.

G. Concatenation and average strategy

In the logical scenario, we use the concatenation strategy.
We use this strategy to fuse face features with speech features.
In the previous module, we have successfully extracted 128-
D speech features and 4096-D face features. In this module,
we connect the voice features to the back of the face features
to form the 4224-D fusion features. In order to enhance the
receptive field of fusion features, we add a dimension to the
fusion features, turning one-dimensional fusion features into
two-dimensional fusion features. Once this is done, we have
completed the concatenation strategy for the logical scenario.

In the physical scenario, we used the averaging strategy.
This strategy can be used to synthesize the scores obtained
in previous modules into the final score. In this method, we
evaluated various averaging strategies and finally found that
the weighted averaging strategy was most suitable for physical
scenarios, so we finally chose the weighted averaging method.
Because of the large dimension of face features, we give it a
smaller weight. The dimension of the speech feature is small,
so we give it bigger weight. Finally, after adjustment, we
determine the weight of face features is 0.1, and the weight
of speech features is 0.9.
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IV. EXPERIMENTS

A. Datasets

TABLE III
THE NUMBER OF SPEAKERS AND THE NUMBER OF SPEECHS IN THE
DEVELOPMENT SET AND TRAINING SET, IN THE ASVSPOOF 2019

DATABASE.
Speakers Utterances
Subset Female  Male Physical access Logical access
Spoof ~ Bona fide  Spoof  Bona fide
Training 12 8 22800 2580 48600 5400
Development 12 8 22296 2548 24300 5400

The ASVspoof 2019 data set contains two partitions for
the evaluation of LA and PA scenarios. They are both from
the VCTK basic corpus, which includes voice data captured
from 107 speakers (46 males, 61 females). The LA and PA
databases themselves are divided into three data sets, namely
training, development and evaluation, which include 20 (8
males, 12 females), 10 (4 males, 6 females) and 48 ( (21
males, 27 females) speakers’ speeches. The data of these three
sets are not duplicated. In both the development set and the
evaluation set, spoofing attacks from the training set using the
same algorithm occur (designated as known attacks). Spoofing
attacks that have never been seen before will also appear
in the evaluation set, and they are generated using different
algorithms (designated as unknown attacks). The number of
bona fide speech and spoofing speech in the development
set and training set is shown in Table Therefore, reliable
spoofing detection performance requires that the system can
well summarize previously invisible spoofing attacks.

ASVspoof 2019 is a datasets for anti-spoofing research for
automatic speaker verification. ASVspoof 2019 has been the
third version of the datasets, which mainly contains three
kinds of spoofing attacks: TTS, VC and replay attack. In
LA, TTS, and VC are the main way of attack, however,
PA primarily contains physical attack. We will design two
different strategies for resisting spoofing attacks against these
two different attack methods. This datasets divides the data
into three parts: training set, development set and evaluation
set. In the training set, 17 different TTS systems and the
VC systems were used to generate spoofing speech, and the
speech generated by these different systems made the experi-
ment more robust. Spoofing speech generated by 17 different
systems was also used in the development set, but only 6 of
these systems have been used in the training set, and the other
11 systems have not been used. In the evaluation set, they even
use eleven unknown systems and two known systems. These
systems include many advanced systems, such as generation of
countermeasure network, neural waveform model, waveform
splicing, waveform filtering, etc . This makes the data sample
of this datasets extremely rich, and the experimental results
have high credibility.

1) Logical access: The LA data set contains spoofing voice
and bona fide voice data generated using 17 different VC and
TTS systems. The data used by the TTS and VC systems to
generate false speech comes from the VCTK database. The
speech data in the logical data set does not overlap with

the data in the previous version of the ASVspoof data set.
Among the 17 systems in LA, 6 systems were designated
as known attacks, and the other 11 systems were designated
as unknown attacks. Only known attacks are included in the
training set and development set, and both known attacks and
unknown attacks are included in the evaluation set. Among
the 6 known attacks, there are 2 VC systems and 4 TTS
systems. The TTS system uses neural network-based speech
synthesis or waveform cascade, using WaveNet-based vocoder
[34] or traditional source filtering vocoder [35]. The VC
system adopts methods based on neural network and spectral
filtering [36]. These 11 unknown systems are composed of
2 VCs, 6 TTSs and 3 hybrid TTS-VC systems, which are
implemented using various waveform generation methods,
including GriffinLim [37], classical speech coding, , neural
waveforms model [34]], [38]], generative confrontation network
[39], waveform filtering [40], waveform cascading, spectral
filtering and their combination.

2) Physical access: The bona fide speech and spoofing
speech contained in PA are generated by recording the micro-
phone of ASV system in real environment. It is also divided
into three subsets: training set, development set and evaluation
set.Training and development data are created based on 9
different playback configurations and 27 different acoustics.
The acoustic configuration includes a detailed combination of
3 types of speaker to asv microphone distance, 3 types of
reverberation, and 3 types of room sizes. The playback con-
figuration includes three types of attacker-to-speaker record-
ing distances and three types of speaker quality. A random
attacker-to-talker recording distance and random speaker qual-
ity corresponding to a given configuration category are used
to simulate a replay attack. The room size, the reverberation
level and the distance from the speaker to the asv microphone
for bona fide and spoofing speech are all random.

The data generation method of the evaluation set is the
same as the generation method of the development set and
the training set, but the replay configuration and random
acoustics of the evaluation set are different. The room size,
the distance between the speaker and the asv microphone,
the reverberation level, the recording distance between the
attacker and the speaker, and the speaker quality settings are
all different from the training and development set settings.
Although the configuration categories of these sets are the
same and the setting parameters are known, the spoofing voice
used by the specific playback device to simulate is different
and unknown. So even if the system achieves good results
in the training and development set, it may not perform well
in the evaluation set. This requires our system to have good
robustness.

B. Baseline Model

The organizers provided two baseline models, They are
based on two different acoustic features, namely linear fre-
quency cesptral coefficients (LFCC) and constant Q cepstral
coefficients (CQCC), and they are both use a GMM binary
classifier. The results of these two approaches are shown in
Table [V1
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TABLE IV
T-DCF AND EER RESULTS FOR TWO BASELINE COUNTERMEASURES AND
BOTH LOGICAL AND PHYSICAL ACCESS SCENARIOS.

Logical access Physical access

t-DCF EER(%) t-DCF EER(%)
LFCC-GMM 0.0663 2.71 0.2554 11.96
CQCC-GMM  0.0123 0.43 0.1953 9.87

1) LFCC-GMM: First, the power spectrum is integrated by
overlapping band-pass filter, the power spectrum is logarithmic
compressed and the cepstrum coefficients are obtained by
discrete cosine transform (DCT). A rectangular window was
used for integration, and a filter extracted LFCC according to
a linear scale interval, then a gaussian mixture model was used
as a classification network.

2) CQCC-GMM: Instead of the traditional fourier trans-
form, the constant Q transform (CQT) is used, where the
frequency multiplier of CQT is distributed geometrically,
and the center frequency of each filter is linearly spaced.
Its frequency spectrum is nonlinear, the center frequency is
distributed exponentially, the filter bandwidth is different, but
the center frequency and bandwidth ratio is constant Q filter
bank. This avoids the disadvantage of uniform time-frequency
resolution. Finally, the gaussian mixture model is used as a
classification network.

C. Evaluation Metrics

ASVspoof 2019 has two evaluation metrics. Among them,
tandem detection cost function (t-DCF) is the main evaluation
metrics, equal error rate (EER) was a secondary evaluation
metrics. Two indicators, t-DCF and EER, were calculated
using test scores. Each number corresponds to an audio file.
We should assign a real value to each trial, a finite number
that reflects the support of the two conflicting assumptions
that the trial was real or spoofed by the audio. Similar to the
previous two versions of ASVspoof, a high detection score
should indicate goodwill and a low detection score should
indicate spoofing attacks.

1) t-DCF: t-DCF 1is the main evaluation indicator of
ASVspoof 2019. It is an evaluation method of a series system,
which requires the use of both the spoofing countermeasure
(CM) (designed by the participant) and the ASV system (pro-
vided by the organizer). The performance of the two combined
systems is evaluated by a formal minimum normalized series
detection cost function (t-DCF). t-DCF is defined as follows:

t-DCF5, = min{BPr(s) + PR (s)} - (12)

where 3 depends on the performance of the ASV system and
the parameters of the anti-spoofing strategy. , while P ()
and Pf'(s) are the CM miss alarm rate and false alarm
rate under the threshold s. The minimum value in (12) is
to use a known key value on all thresholds of the given
data (development or evaluation), which corresponds to the
oracle calibration. When other conditions remain the same, /3
is inversely proportional to the ASV false acceptance rate of
a specific attack: when the CM incorrectly rejects bona fide

speech, the penalty is higher when the attack efficiency is low.
Similarly, for more effective attacks, when the CM mistakenly
accepts spoofs, the relative penalty is higher.

error rate

EER

threshold

Fig. 8. Error rate changes with the threshold.

2) EER: EER is a secondary evaluation metric, which was
used as the primary evaluation metric in the previous two
versions of ASVspoof. EER corresponds to the CM threshold.
At this threshold, the false alarm rate and the miss alarm
rate are equal. Same as t-DCEF, the calculation of EER is also
generated from the scoring file of our CM system. The CM
operating point corresponding to EER has the same false alarm
rate and miss alarm rate, which is the main measurement of
the previous version of ASVspoof. If there is no clear link
to the impact of CMs on the reliability of the ASV system,
EER may be more suitable as a measure of spoofing audio
detection, that is, in the absence of an ASV system.

EER is associated with false rejection rate Ey, and false
acceptance rate Fy,. We first define false rejection rate Ej,
and false acceptance rate Ey,:

Ny,

Epp = — 13

! Ntarget ( )
N¢a

Efa = ! (14)

Nnon—target

where Ny, and Ny, refer to the number of false rejections
and false acceptances in the test, respectively. Nyg, g and
Npon—target rEspectively refer to the total number of bona
fide speech and spoof speech in the test. When the threshold
in the system is fixed, Ef, and Ey, are fixed. As the threshold
decreases, more tests will be accepted, with Ey, increase
and Ey, decrease; On the contrary, when the threshold value
increase, the test will not be easy to pass, Ey, decrease, Ey,
increase. The change of error rate with threshold value is
shown in Fig 8. EER is the error rate when Ey, and Ey,
are equal, and is defined as: EER = Ey,. = Ey,.

D. Experimental setup

For the logical scenario, we trained the voice encoder
module of the first branch using ADAM as the optimizer and
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set the learning rate to 0.001. In the last layer of voice encoder,
we use a full connection layer to output 4096-D face features.
When training the SE-DenseNet module of the second branch,
we still use ADAM as the optimizer and set the learning rate to
0.0005. After 200 epochs of training, 128-D face features were
obtained. In the final classification module, we use binary cross
entropy as the loss function and log-softmax as the activation
function in the last layer to score the input features.

For physical scenarios, we trained the voice encoder module
differently. Since the voice encoder module directly outputs the
score obtained by face features in the physical scenarios, we
directly add two full connection layers and softmax functions
after the voice encoder module to score the speech. The
optimizer and learning rate in the voice encoder module are the
same as in the logical scenario. When training SE-Res2Net,
we also used ADAM as the optimizer, and the learning rate
was set to 0.0003. After 20 epochs of training, scores based
on the assessment of speech features were obtained.

E. Experimental Results

TABLE V
PERFORMANCE COMPARISON OF SE-DENSENET TO DENSENET ON THE
ASVSPOOF 2019 LA EVALUATION SET.

Logical Access

Model
EER(%) t-DCF
LFCC+DenseNet 4.74 0.1245
LFCC+SE-DenseNet 3.49 0.0914
LFCC&Face+SE-DenseNet 2.82 0.0742
TABLE VI

PERFORMANCE COMPARISON OF SE-RES2NET TO RES2NET ON THE
ASVSPOOF 2019 PA EVALUATION SET.

Physical Access

Model
EER(%) tDCF
CQT+Res2Net 1.26 0.0312
CQT+SE-Res2Net 0.93 0.0254
CQT&Face+SE-Res2Net 0.85 0.0230

We will evaluate the effectiveness of our model to audio
spoofing detection in this section. In this section, we will
further divide into two sections to discuss the performance
of our model on LA and PA respectively.

1) Logical Access Results: We evaluate the effectiveness
of audio spoofing detection based on SE-DenseNet model in
this section. Results based on DenseNet and SE-DenseNet
were used for comparison, as shown in Table E Their feature
input is speech feature and the fusion feature of speech feature
and face feature respectively. Our comparison shows that the
SE-DenseNet is superior to the DenseNet in all conditions.
This shows that squeeze and excitation Block can improve
the spoofing detection performance of the system. t-DCF
and EER were both reduced by 26% using the SE-DenseNet
model compared to the DenseNet model. Comparing the SE-
DenseNet model using fusion feature with the SE-DenseNet
model using only speech feature, we find that the system using
fusion feature has significantly better performance than the

TABLE VII
PERFORMANCE COMPARISON OF SOME KNOWN STATE-OF-THE-ART
SINGLE MODELS TO OUR PROPOSED MODEL ON THE ASVSPOOF 2019 LA
EVALUATION SET.

Logical Access

Model
EER(%)  t-DCF
Spec+ResNet+CE [41] 9.68 0.2741
MFCC+ResNet+CE [41] 9.33 0.2042
CQCC+ResNet+CE [41] 7.69 0.2166
Spec+ResNet+CE [12] 11.75 0.216
LFCC+LCNN+A-softmax [42] 5.06 0.1000
FFT+LCNN+A-softmax [42] 4.53 0.1028
FG-CQT+LCNN+CE [43] 4.07 0.102
Spec+LCGRNN+GKDE-Softmax [44] 3.77 0.0842
Spec+LCGRNN+GKDE-Triplet [44] 3.03 0.0776
Ours: LFCC&Face+SE-DenseNet+log-softmax 2.82 0.0742

system using speech feature. This indicates that the face fea-
ture extracted is helpful for the system performance. Compared
to the SE-DenseNet, which used the speech feature, the EER of
the SE-DenseNet using the fusion feature decreased by 19%.
A similar gain can be observed under the t-DCF metric. This
further verifies the efficiency of face feature and SE-DenseNet
architecture in spoofing attack detection.

We also compare some of the best single systems. SE-
DenseNet with the face and speech feature, with some of the
best single systems on the ASVspoof2019 LA evaluation sets.
Some individual systems that perform well are shown in Table
as far as we know. The names of these systems consist
of input feature, system structure, and loss functions.

We observed that only a few systems had EER below 4.0%
in the LA evaluation set, and very few systems had good
performance on both EER and t-DCF, indicating the challenge
of detecting unknown system attacks. Most well-performing
systems are exploring powerful model architectures and input
features. For LA attacks, the system in [44] surpasses all other
systems and it is the best single system model in the ASVspoof
2019 Challenge. However, compared to it, the EER of our
system was reduced by 6%, describing the effectiveness of
our proposed system.

TABLE VIII
PERFORMANCE COMPARISON OF SOME KNOWN STATE-OF-THE-ART
SINGLE MODELS TO OUR PROPOSED MODEL ON THE ASVSPOOF 2019 PA
EVALUATION SET.

Physical Access

Model
EER(%) -DCF
Spec+ResNet+CE [41] 3.81 0.0994
CQCC+ResNet+CE [41] 4.43 0.1070
Spec+ResNet+CE [12] 1.29 0.036
Joint-gram+ResNet+CE [45] 1.23 0.0305
GD-gram+ResNet+CE [45] 1.08 0.0282
LFCC+LCNN+A-softmax [42] 4.60 0.1053
CQT+LCNN+A-softmax [42] 1.23 0.0295
Spec+LCGRNN+GKDE-Softmax [44] 1.06 0.0222
Spec+LCGRNN+GKDE-Triplet [44] 0.92 0.0198
MGD+ResNeWt+CE [46] 2.15 0.0465
CQTMGD+ResNeWt+CE [46] 0.94 0.0250
Ours: CQT&Face+SE-Res2Net+log-softmax 0.8526 0.0230

2) Physical Access Results: In the physical scenario, we
evaluated the performance based on the SE-Res2Net model.
The ablation experiment was performed first, and the ex-



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

perimental results are shown in Table We first compare
the performance of models that use only physical features
CQT+SE-Res2Net with those that use physical and phys-
iological features CQT&Face+Res2Net. In the experiment,
EER of CQT+SE-Res2Net was 0.93% and t-DCF was 0.0254.
While EER and t-DCF of CQT&Face+Res2Net was 0.85%
and 0.023, respectively. Compared with CQT+SE-Res2Net,
EER and t-DCF of CQTé&Face+SE-Res2Net increased by
9% and 10%, respectively. This indicates that the physio-
logical features proposed by us are effective for spoofing
attack detection. We also conducted a group of experiments
with the model without SE block, called CQT+Res2Net. The
EER and t-DCF of CQT+Res2Net were 1.26% and 0.0312,
respectively. Compared to the model with SE block added,
the performance of CQT+Res2Net is worse. Compared with
CQT+Res2Net, CQT+SE-Res2Net had a 35% increase in EER
and 22% increase in t-DCF. This shows that SE block can still
significantly improve the performance of the model in physical
scenarios.

We also compared several systems that performed well in
physical scenarios, as shown in Table [VIII] It can be seen from
the table that the performance of our model is obviously better
than that of other models. Compared to the performance of the
best models in the table, our model improved by 10% and 8%
on EER and t-DCF, respectively.

V. CONCLUSION

According to the characteristics of logical scenario and
physical scenario, this paper designs methods to resist spoofing
attack for them respectively. For logical scenarios, our method
consists of feature extraction, a densely connected network,
squeeze and excitation block and feature fusion strategy. For
physical scenarios, our method consists of feature extraction,
multi-scale residual network, SE block and weighted average
strategy. Both methods creatively put forward the strategy of
combining physical characteristics with physiological char-
acteristics to resist spoofing attacks. Our experiments show
that this strategy is effective for both logical and physical
scenarios. We also compared our proposed method with the
most advanced DNN based method, and our method achieved
better performance in t-DCF and EER metrics. In the logi-
cal scenario, our model improved t-DCF and EER by 28%
and 11%, respectively. In the physical scenario, our model
improved t-DCF and EER by 8% and 10%, respectively.
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