Skip to main content
Log in

SWARMORPH-script: a language for arbitrary morphology generation in self-assembling robots

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

In certain multi-robot systems, the physical limitations of the individual robots can be overcome using self-assembly—the autonomous creation of physical connections between individual robots to form a larger composite robotic entity. However, existing robotic systems capable of self-assembly have little or no control over the morphology of the self-assembled entities. This restricts the adaptability of such systems, since robots can carry out certain tasks more efficiently if their morphology is specialized to the task. In this paper, we extend the distributed mechanism presented in (Christensen et al. in IEEE Robot. Autom. Mag. 14(4):18–25, 2007) that allows autonomous mobile robots to self-assemble into specific morphologies. We present a simple language, SWARMORPH-script, that allows for concise descriptions of the rules that govern the distributed morphology growth process. Local visual communication allows physically connected robots to send and receive strings. A string can be a rule identifier that triggers execution of predefined logic for extending a morphology. Alternatively, whole scripts can be communicated and subsequently executed on the receiving robot. On real self-propelled robots capable of self-assembly, we demonstrate how specific morphologies can be constructed, how the size of a morphology can be regulated, and how multiple morphologies can be assembled. We also show how the transmission of entire scripts gives the robots the capacity to participate in the formation of morphologies of which they had no a priori knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Balch, T., & Arkin, R. C. (1998). Behavior-based formation control for multirobot teams. IEEE Transactions on Robotics and Automation, 14(6), 926–939.

    Article  Google Scholar 

  • Bojinov, H., Casal, A., & Hogg, T. (2000). Emergent structures in modular self-reconfigurable robots. In Proceedings of the IEEE international conference on robotics & automation (Vol. 2, pp. 1734–1741). Los Alamitos: IEEE Computer Society Press.

    Google Scholar 

  • Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: from natural to artificial systems. New York: Oxford University Press.

    MATH  Google Scholar 

  • Brown, H. B., Weghe, J. M. V., Bererton, C. A., & Khasla, P. K. (2002). Millibot trains for enhanced mobility. IEEE/ASME Transactions on Mechatronics, 7(4), 452–461.

    Article  Google Scholar 

  • Butler, Z., Kotay, K., Rus, D., & Tomita, K. (2004). Generic decentralized control for lattice-based self-reconfigurable robots. International Journal of Robotics Research, 23(9), 919–937.

    Article  Google Scholar 

  • Castano, A., Shen, W.-M., & Will, P. (2000). CONRO: Towards deployable robots with inter-robots metamorphic capabilities. Autonomous Robots, 8(3), 309–324.

    Article  Google Scholar 

  • Christensen, A. L., O’Grady, R., & Dorigo, M. (2007a). A mechanism to self-assemble patterns with autonomous robots. In Proceedings of the 9th European conference on artificial life (ECAL2007) (pp. 716–725). Berlin: Springer.

    Google Scholar 

  • Christensen, A. L., O’Grady, R., & Dorigo, M. (2007b). Morphology control in a multirobot system. IEEE Robotics & Automation Magazine, 14(4), 18–25.

    Article  Google Scholar 

  • Damoto, R., Kawakami, A., & Hirose, S. (2001). Study of super-mechano colony: concept and basic experimental set-up. Advanced Robotics, 15(4), 391–408.

    Article  Google Scholar 

  • Das, A. K., Fierro, R., Kumar, V., Ostrowski, J. P., Spletzer, J., & Taylor, C. J. (2002). A vision-based formation control framework. IEEE Transactions on Robotics and Automation, 18(5), 813–825.

    Article  Google Scholar 

  • Dorigo, M., Trianni, V., Şahin, E., Groß, R., Labella, T. H., Baldassarre, G., Nolfi, S., Deneubourg, J.-L., Mondada, F., Floreano, D., & Gambardella, L. M. (2004). Evolving self-organizing behaviors for a swarm-bot. Autonomous Robots, 17(2–3), 223–245.

    Article  Google Scholar 

  • Dorigo, M., Tuci, E., Trianni, V., Groß, R., Nouyan, S., Ampatzis, C., Labella, T. H., O’Grady, R., Bonani, M., & Mondada, F. (2006). SWARM-BOT: Design and implementation of colonies of self-assembling robots. In G. Y. Yen & D. B. Fogel (Eds.), Computational intelligence: principles and practice (pp. 103–135). New York: IEEE Computational Intelligence Society.

    Google Scholar 

  • Fukuda, T., Buss, M., Hosokai, H., & Kawauchi, Y. (1991). Cell structured robotic system CEBOT: control, planning and communication methods. Robotics and Autonomous Systems, 7(2–3), 239–248.

    Article  Google Scholar 

  • Groß, R., & Dorigo, M. (2008, in press). Self-assembly at the macroscopic scale. Proceedings of the IEEE.

  • Groß, R., Bonani, M., Mondada, F., & Dorigo, M. (2006). Autonomous self-assembly in swarm-bots. IEEE Transactions on Robotics, 22(6), 1115–1130.

    Article  Google Scholar 

  • Hirose, S., Shirasu, T., & Fukushima, E. F. (1996). Proposal for cooperative robot “Gunryu” composed of autonomous segments. Robotics and Autonomous Systems, 17, 107–118.

    Article  Google Scholar 

  • Jones, C., & Matarić, M. J. (2003). From local to global behavior in intelligent self-assembly. In Proceedings of the 2003 IEEE international conference on robotics and automation, ICRA’03 (Vol. 1, pp. 721–726). Los Alamitos: IEEE Computer Society Press.

    Google Scholar 

  • Kawauchi, Y., Inaba, M., & Fukuda, T. (1993). A principle of distributed decision making of cellular robotic system (CEBOT). In Proceedings of the 1993 IEEE international conference on robotics and automation, ICRA’93 (pp. 833–838). Piscataway: IEEE Press.

    Google Scholar 

  • Klavins, E., Ghrist, R., & Lipsky, D. (2006). A grammatical approach to self-organizing robotic systems. IEEE Transactions on Automatic Control, 51(6), 949–962.

    Article  MathSciNet  Google Scholar 

  • Lawton, J. R. T., Beard, R. W., & Young, B. J. (2003). A decentralized approach to formation maneuvers. IEEE Transactions on Robotics and Automation, 19(6), 933–941.

    Article  Google Scholar 

  • Lewis, M. A., & Tan, K. H. (1997). High precision formation control of mobile robots using virtual structures. Autonomous Robots, 4(4), 387–403.

    Article  Google Scholar 

  • Mondada, F., Pettinaro, G. C., Guignard, A., Kwee, I. V., Floreano, D., Deneubourg, J.-L., Nolfi, S., Gambardella, L. M., & Dorigo, M. (2004). SWARM-BOT: a new distributed robotic concept. Autonomous Robots, 17(2–3), 193–221.

    Article  Google Scholar 

  • Mondada, F., Gambardella, L. M., Floreano, D., Nolfi, S., Deneubourg, J.-L., & Dorigo, M. (2005). The cooperation of swarm-bots: physical interactions in collective robotics. IEEE Robotics & Automation Magazine, 12(2), 21–28.

    Article  Google Scholar 

  • Motomura, K., Kawakami, A., & Hirose, S. (2005). Development of arm equipped single wheel rover: effective arm-posture-based steering method. Autonomous Robots, 18(2), 215–229.

    Article  Google Scholar 

  • Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., & Kokaji, S. (2002). M-tran: Self-reconfigurable modular robotic system. IEEE-ASME Transactions on Mechatronics, 7(4), 431–441.

    Article  Google Scholar 

  • Nouyan, S., Groß, R., Bonani, M., Mondada, F., & Dorigo, M. (2006). Group transport along a robot chain in a self-organised robot colony. In T. Arai, R. Pfeifer, T. Balch, & H. Yokoi (Eds.), Intelligent autonomous systems (Vol. 9, pp. 433–442). Amsterdam: IOS Press.

    Google Scholar 

  • O’Grady, R., Groß, R., Mondada, F., Bonani, M., & Dorigo, M. (2005). Self-assembly on demand in a group of physical autonomous mobile robots navigating rough terrain. In Lecture notes in artificial intelligence : Vol. 3630. Advances in artificial life: 8th European conference, ECAL 2005, proceedings (pp. 272–281). Berlin: Springer.

    Google Scholar 

  • O’Grady, R., Christensen, A. L., & Dorigo, M. (2008). Automous reconfiguration in a self-assembling multi-robot system. In Lecture notes in computer science : Vol. 5217. Ant colony optimization and swarm intelligence, sixth international conference, ANTS 2008, proceedings (pp. 261–268). Berlin: Springer.

    Google Scholar 

  • Rus, D., & Vona, M. (1999). Self-reconfiguration planning with compressible unit modules. In Proceedings of the 1999 IEEE international conference on robotics and automation, ICRA’99 (Vol. 4, pp. 2513–2520). Los Alamitos: IEEE Computer Society Press.

    Google Scholar 

  • Rus, D., & Vona, M. (2001). Crystalline robots: self-reconfiguration with compressible unit modules. Autonomous Robots, 10(1), 107–124.

    Article  MATH  Google Scholar 

  • Salemi, B., Moll, M., & Shen, W.-M. (2006). SUPERBOT: a deployable, multi-functional, and modular self-reconfigurable robotic system. In Proceedings of the 2006 IEEE/RSJ international conference on intelligent robots and systems (pp. 3636–3641). Piscataway: IEEE Press.

    Chapter  Google Scholar 

  • Shen, W.-M., Will, P., Galstyan, A., & Chuong, C. M. (2004). Hormone-inspired self-organization and distributed control of robotic swarms. Autonomous Robots, 17(1), 93–105.

    Article  Google Scholar 

  • Shen, W.-M., Krivokon, M., Chiu, H., Everist, J., Rubenstein, M., & Venkatesh, J. (2006). Multimode locomotion for reconfigurable robots. Autonomous Robots, 20(2), 165–177.

    Article  Google Scholar 

  • Støy, K. (2001). Using situated communication in distributed autonomous mobile robots. In Proceedings of the 7th Scandinavian conference on artificial intelligence (pp. 44–52). Amsterdam: IOS Press.

    Google Scholar 

  • Støy, K. (2006). Using cellular automata and gradients to control self-reconfiguration. Robotics and Autonomous Systems, 54(2), 135–141.

    Article  Google Scholar 

  • Støy, K., & Nagpal, R. (2004). Self-reconfiguration using directed growth. In Proceedings of the international conference on distributed autonomous robot systems (DARS-04) (pp. 1–10). Berlin: Springer.

    Google Scholar 

  • Trianni, V., & Dorigo, M. (2006). Self-organisation and communication in groups of simulated and physical robots. Biological Cybernetics, 95, 213–231.

    Article  MATH  Google Scholar 

  • White, P., Zykov, V., Bongard, J., & Lipson, H. (2005). Three dimensional stochastic reconfiguration of modular robots. In Proceedings of robotics science and systems (pp. 161–168). Cambridge: MIT Press.

    Google Scholar 

  • Yamakita, M., Taniguchi, Y., & Shukuya, Y. (2003). Analysis of formation control of cooperative transportation of mother ship by SMC. In Proceedings of the 2003 international conference on robotics and automation, ICRA’03 (Vol. 1, pp. 951–956). Los Alamitos: IEEE Computer Society Press.

    Google Scholar 

  • Yim, M., Duff, D. G., & Roufas, K. D. (2000). PolyBot: a modular reconfigurable robot. In Proceedings of the 2000 IEEE international conference on robotics and automation, ICRA’00 (Vol. 1). Piscataway: IEEE Press.

    Google Scholar 

  • Yim, M., Roufas, K., Duff, D., Zhang, Y., Eldershaw, C., & Homans, S. B. (2003). Modular reconfigurable robots in space applications. Autonomous Robots, 14(2–3), 225–237.

    Article  MATH  Google Scholar 

  • Yim, M., Shen, W.-M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., & Chirikjian, G. S. (2007). Modular self-reconfigurable robot systems. IEEE Robotics & Automation Magazine, 14(1), 43–52.

    Article  Google Scholar 

  • Yu, C.-H., & Nagpal, R. (2008). Sensing-based shape formation on modular multi-robot systems: a theoretical study. In Proceedings of the 7th international conference on autonomous agents and multiagent systems (AAMAS 2008). New York: ACM.

    Google Scholar 

  • Yu, C.-H., Willems, F.-X., Ingber, D., & Nagpal, R. (2007). Self-organization of environmentally-adaptive shapes on a modular robot. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS 2007) (pp. 2353–2360). Piscataway: IEEE Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Lyhne Christensen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christensen, A.L., O’Grady, R. & Dorigo, M. SWARMORPH-script: a language for arbitrary morphology generation in self-assembling robots. Swarm Intell 2, 143–165 (2008). https://doi.org/10.1007/s11721-008-0012-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-008-0012-6

Keywords

Navigation