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Abstract It is a characteristic of swarm robotics that modelling the overall swarm be-

haviour in terms of the low-level behaviours of individual robots is very difficult. Yet if

swarm robotics is to make the transition from the laboratory to real-world engineering

realisation such models would be critical for both overall validation of algorithm cor-

rectness and detailed parameter optimisation. We seek models with predictive power:

models that allow us to determine the effect of modifying parameters in individual

robots on the overall swarm behaviour. This paper presents results from a study to

apply the probabilistic modelling approach to a class of wireless connected swarms

operating in unbounded environments. The paper proposes a probabilistic finite state

machine (PFSM) that describes the network connectivity and overall macroscopic be-

haviour of the swarm, then develops a novel robot-centric approach to the estimation

of the state transition probabilities within the PFSM. Using measured data from sim-

ulation the paper then carefully validates the PFSM model step by step, allowing us

to assess the accuracy and hence the utility of the model.
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1 Introduction

A robotic swarm is an example of a stochastic, dynamical and often non-linear system.

Developing mathematical models that allow overall swarm properties to be predicted
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from the low-level microscopic parameters of the individual robots that comprise the

swarm is challenging. For this reason many swarm robotics algorithms are validated

with reference to simulation studies only, with no underpinning mathematical model

or proof. This approach is inherently limited since simulation can only explore small

parts of a system’s parameter space, and hence provide only weak ‘inductive’ proof of an

algorithm’s correctness. Yet if swarm robotic systems are to find real-world application,

especially in safety- or mission-critical applications (Rouff et al. 2003; Truszkowski et al.

2004; Winfield et al. 2006), we need the strong validation provided by mathematical

or formal models.

In recent years probabilistic approaches to modelling swarm robotic systems have

been developed and successfully applied. One way to classify these is based on their

representation of the swarm and its units. Microscopic models reproduce each real

robot in the targeted system separately, with dedicated — more or less detailed —

representations. Macroscopic models instead reproduce the target swarm robotic sys-

tem with a single representation, for instance summarising fractions or total numbers of

robots in the swarm engaged in specific tasks. One of the first examples of probabilistic

modelling of a swarm of robots at the microscopic level is that proposed by Martinoli

et al. (1999) to study object aggregation; robot’s interactions with other robots and the

environment are modelled as a series of stochastic events, with probabilities determined

by simple geometric considerations and systematic experiments with one or two real

robots. The very same microscopic method was applied to the analysis of collaborative

stick pulling (Ijspeert et al. 2001).

Probabilistic macroscopic approaches have often adopted a mean field approach, as

widely used in physics, chemistry, biology and the social sciences, to directly describe

the collective behaviour of the robotic swarm. The macroscopic approach relies on the

assumption that systems in which the individuals’ behaviour is stochastic may have

statistically predictable overall properties. In swarm robotics macroscopic models have

been used to study the effect of interference in a swarm of foraging robots (Lerman and

Galstyan 2002), collaborative stick-pulling (Lerman et al. 2002; Martinoli et al. 2004)

and object aggregation (Martinoli et al. 1999; Agassounon et al. 2001, 2004; Kazadi

et al. 2004). A review of macroscopic models is given in Lerman et al. (2005). Re-

cently, new contributions leveraging hybrid system theory and including probabilistic

macroscopic modeling have been proposed. These approaches are particularly promis-

ing since they allow for capturing both the continuous physical motion aspect as well

as the discrete control logic of a swarm of robots. For instance, Berman et al. (2007)

described a macroscopic approach for modelling a biologically inspired algorithm for

robot colony nest-site selection; Milutinovic and Lima (2006) presented a method for

integrating macroscopic modelling with optimal centralised control.

Not all macroscopic models are designed in the same way and for the same purpose.

For instance, typically in the natural sciences macroscopic models are designed with

the principle of parsimony, i.e. to be as simple as possible in order to address specific

questions about the collective behaviour of a target system. In engineering, models

might also be used as a tool for engineering the system. In the specific framework of

swarm robotic systems, macroscopic models should also help to engineer the individual

agents in order to obtain a desired collective behaviour; a good example is represented

by work reported in Martinoli et al. (2004). Macroscopic models have been designed

step-by-step based on incremental abstraction starting from very detailed microscopic

models (e.g., reproducing very faithfully intra-robot details such as individual sensor

and actuator characteristics), with a very precise mapping between different incre-
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mental abstraction levels. However, in general, macroscopic models belong to a suite

of models characterised by different abstraction, parameterisation, and computational

cost and they all serve as potential tools for designing and optimising the target swarm

robotic system.

Probabilistic modelling approaches typically rely on two assumptions. Firstly, that

each robots’ future state depends only on its present state and perhaps also the time it

has spent in that state (the semi-Markov model); this assumption is true when robots

use reactive control, possibly extended with simple memory capabilities, and can be

treated as finite state automata. Secondly, that robots are uniformly distributed in

their operational area. These assumptions mean that for robots operating in spatially

bounded arenas it is fairly straightforward to geometrically estimate the probability

of a robot making a transition from one state to another. The latter assumption is

challenged by the robotic system addressed in this paper since our swarm operates

in unbounded space. Since we are modelling a wireless connected swarm, we seek

a model that manifests its overall connectivity structure. For this reason we adopt,

in this paper, the macroscopic modelling approach incrementally constructed from

available microscopic information about software (e.g., control structure) and hardware

(perception and communication ranges), following and extending the method proposed

in Martinoli et al. (2004).

This paper proceeds as follows. Section 2 introduces and summarises the wireless

connected swarm algorithm that we are seeking to model. Section 3 then proposes a

macroscopic probabilistic model of this wireless connected swarm. The probabilistic

model requires us to estimate a number of state transition probabilities and section 4

develops a novel robot-centric geometrical approach. Section 5 validates the estimated

transition probabilities with reference to a simulated swarm. Section 6 brings together

the work of sections 3 and 4 to run the full model and compare its predicted swarm

connectivity structure with the structure measured from simulation. Finally, section 7

reviews the model, its utility, limitations and potential for further development.

2 A Wireless Connected Swarm

We have developed a class of algorithms which make use of local wireless connectiv-

ity information alone to achieve swarm aggregation (Nembrini et al. 2002; Nembrini

2005). These algorithms make use of situated communications (Støy 2001), in which

connectivity information is linked to robot motion so that robots within the swarm

are wirelessly ‘glued’ together. This approach has several advantages: firstly the robots

need neither absolute or relative positional information; secondly the swarm is able to

maintain aggregation even in unbounded space, and thirdly, the connectivity needed

for and generated by the algorithms means that the swarm naturally forms an ad-hoc

communication network. Such a network would be a significant advantage in many

swarm robotics applications such as distributed sensing, exploration or mapping, since

it would allow data to be communicated between any two robots and facilitate data

collection from the whole swarm via a single connection with just one robot. The al-

gorithm requires that connectivity information is transmitted via only a single hop.

Each robot broadcasts only its own ID and, since the maximum number of neighbours

a real robot can have is physically constrained and the same for a swarm of 100 or

10,000 robots, the algorithm scales linearly for increasing swarm size. The algorithm

thus meets the criteria for swarm robotics articulated by Şahin (2005) and Beni (2005).
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We have a swarm of homogeneous and relatively incapable robots with only local sens-

ing and communication capabilities which is scalable and highly robust (i.e. tolerant

to failures, Winfield and Nembrini (2006)). Furthermore, we observe flexibility to its

environment in that our wirelessly connected swarm demonstrates collective obstacle

avoidance and - when equipped with simple beacon sensors - collective taxis towards

a beacon and collective beacon encapsulation (Nembrini 2005).

The basic premise of the algorithm is that each robot has range-limited wireless

communication which, for simplicity, we model as as circle of radius Rw with the robot

at its centre. The boundary of the circle represents the threshold beyond which another

robot is out of range. Each robot also has collision avoidance sensors with a range Ra,

where Ra < Rw. The basic algorithm, which we refer to as the α-algorithm, is very

simple. The default behaviour of a robot is forward motion. While moving each robot

periodically broadcasts an ‘I am here’ message. The message will of course be received

only by those robots that are within wireless range: its neighbours. If the number of a

robot’s neighbours should fall below the threshold α then it assumes it is moving out

of the swarm and will execute a 180◦ turn. When the number of neighbours rises above

α (i.e. when the swarm is regained) the robot then executes a random turn. This is to

avoid the swarm simply collapsing on itself. We say that the swarm is coherent if any

break in its overall connectivity lasts less than a given time constant. Coherence gives

rise to both swarm aggregation and a (coherent) connected ad hoc wireless network. In

the interests of simplicity we can consider each robot as having three basic behaviours,

or states: move forward (default); coherence, triggered by the number of neighbours

falling below α, and avoidance, triggered by the robot’s collision (proximity) sensor.

The robot updates its connectivity information less frequently than its proximity

sensor data. The ratio of connectivity sampling rate to the sampling rate of proximity

sensors, which we refer to as cadence, is introduced into the basic α-algorithm to

prevent the robot from updating its connectivity state too frequently (we need to give

the robot time to complete its turn in response to a connection loss, for example,

before re-checking its connectivity). By default, the robot will move forward at a fixed

velocity. It will update its connectivity state after a certain duration, say TC (steps),

and if it finds the number of connected neighbours has dropped below the threshold

α, then it will move into the coherence state and execute the U-turn behaviour to try

to recover the lost connections; if and when the number of connected neighbours then

increases, the robot will execute a random turn. Providing the number of connected

neighbours remains at or above α, the robot can lose or gain connections but remain

in the forward state. Thus, depending upon its connectivity, a robot will either remain

in the forward state or switch between forward and coherence states unless it collides

with other robots (triggered by the proximity sensor). Such an event will cause the

robot to move into the avoidance state and execute a collision avoiding turn for time

TA (steps), after which the robot will return to its previous forward or coherence

state. Note that changes in connectivity take precedence over collision avoidance, thus

if a change of connectivity is detected while the robot is in the avoidance state (i.e.

taking avoiding action), the robot will - if required - immediately transition into the

appropriate coherence or forward behaviours.

Figure 1 shows the basic robot Finite State Machine (FSM). We reflect the fact

that the avoidance behaviours are subsumed within the two top-level states coherence

and forward by showing sub-states avoidanceC and avoidanceF . Note that although

changes in connectivity take precedence, because the proximity sensor is sampled more
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Coherence
↓↑

avoidanceC

Forward
↓↑

avoidanceF

Fig. 1 Robot Finite State Machine.

Fig. 2 Swarm with α = 5 (left) and α = 10 (right). Lines between robots indicate wireless
connections.

frequently than the connectivity (defined above as cadence) collision avoidance is still

assured.

In fact, this algorithm has the serious limitation that it is unable to prevent the

swarm splitting into smaller swarms. When, for example, two subnets joined by only

one connection form, the α-algorithm cannot prevent the possibility of the swarm

splitting into two. This limitation is completely overcome by the more sophisticated

‘Shared Neighbour Algorithm’ (Nembrini et al. 2002). However, the α-algorithm does

achieve useful swarm coherence in which a larger value of α results in a smaller densely

connected swarm and a smaller value of α in a larger, loosely connected swarm, as

shown in Figure 2. Because of its simplicity, and to test the approach presented in this

paper, we have chosen to initially model the α-algorithm.

3 A Probabilistic Model of Connectivity

Following the probabilistic modelling methodology of Martinoli et al. (2004) and Cor-

rell and Martinoli (2004), we describe the individual robot controller as a probabilistic

finite state machine (PFSM). Our starting point is the individual robot controller im-

plemented on the target system (see Figure 1). Since the transitions from one behaviour

to another are determined by interactions within a robot’s neighbourhood, we must

differentiate and update states which allow us to keep track of these changes in order

to predict the overall dynamics of the system. Notice that the state variables to be
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considered are dependent on the scenario and the metrics considered. For instance, in

Martinoli et al. (2004) robots were engaged in a distributed manipulation task and

therefore, in addition to state variables related to the control modes of robots, the

model had to keep track of states relative to objects which could be manipulated. In

Correll and Martinoli (2004), robots were involved in a distributed sensing task and

in order to properly calculate the inspection metrics, state variables related to the

coverage status of objects (not measurable by the robots themselves directly) had to

be introduced. In this paper we seek to model a wirelessly connected network thus we

seek a PFSM that explicitly models the wireless connectivity.

In the α-algorithm described in the previous section roboti has a number of con-

nected neighbours di. Clearly, the range of values for di is bounded. The maximum

value dmax is determined geometrically by the ratio of the areas covered by the wire-

less sensor range and the avoidance sensor range; the estimation of dmax is given in

Appendix A. For the robot to remain in the default forward state, the lower bound on

di is α. Now in the α-algorithm when di < α the robot moves into the coherence state

in which it turns back to try and recover the swarm and hence bring di back to a value

greater than or equal to α. However, the coherence behaviour is not always successful

and it is possible for a robot to have fewer than (α−1) connections (Figure 2:left clearly

shows a number of robots with only 2 or 3 connections). In fact, the robot will continue

to try and recover the swarm for values of 0 < di < α. Based on these observations we

can now propose a PFSM which completely models the swarm connectivity, as shown

in Figures 3 and 4.

Figure 3 is, in effect, the simple FSM of Figure 1 expanded to show every possible

number of network connections in each of the two states coherence and forward, to-

gether with every possible transition between the states and their probabilities. Each

of the discrete forward states represents a different value of di; the Fm state is the

state with the maximum number of connections dmax, the Fm−1 state is the state with

dmax − 1 connections, counting down until we reach the F 0 state with 0 connections;

there are a total of dmax + 1 forward states, including F 0. Note that F 0 is the ‘lost

robot’ state representing the failure of the algorithm to maintain the coherence of the

swarm. Consider the forward state Fα. The loss of a connection with probability Plα
will cause a transition into the coherence state Cα−1. If the action of that state is

successful then the robot will transition, after TC steps and with recovery probability

Prα−1 back into the Fα state. If, on the other hand, the coherence behaviour fails, the

robot will move into the Fα−1 state. The likelihood of this is the coherence failure

probability Pfα−1
. A loss of connection in each of the forward states F 1 . . . Fα will

trigger a transition into coherence states C0 . . . Cα−1 respectively. Note that if the

coherence behaviour were to always succeed then the recovery probability Pr = 1, the

coherence failure probability Pf = 0 and all of the states below the dashed line in

Figure 3 would disappear.

Figure 4 completes the PFSM by expanding the two states Ci and F i into their

respective sub-states, again reflecting the structure of the FSM of figure 1. Figure

4:right shows that a robot in each of the forward states Fi might collide with another

robot, with probability Pai
, triggering a transition into its corresponding avoidance

state AF
i , returning to the initial forward state after TA steps. Similarly, figure 4:left

shows that a robot in each of the coherence states might also collide with another

robot triggering its transition into corresponding avoidance states AC
i , also returning

after TA steps. Table 1 summarises each of the state transition probabilities in the full

PFSM.
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Fig. 3 PFSM of the robot controller. F i represents the forward state with i connections; Ci

represents the coherence state with i connections. N
Ci

and N
F i

indicate the average number

of robots in corresponding states and TC indicates the number of time steps spent in each
state. States below the heavy dashed line would not exist if the coherence behaviour were
always successful.

Fi
NFi

TC

AF
i

NAF
i

TA

Ci
NCi

TC

AC
i

NAC
i

TA

NF i
TC

F i

NCi
TC

Ci

Pai
Pai Fi

NFi
TC
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i

NAF
i

TA
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NCi

TC

AC
i

NAC
i

TA

Fig. 4 Left: coherence state Ci expanded to show sub-states AC
i and Ci. Right: forward

state F i expanded to show sub-states AF
i and Fi. The average number of robots in each state

is shown as N.; TA is the number of time steps spent in the avoidance states AC
i and AF

i .
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Table 1 State transition probabilities, di represents the number of connections for roboti.

probabilities comments

Padi
collision with another robot

Pldi
loss of a connection in forward state

Pgdi
gain of a connection

Prdi
recovery of a connection

Pfdi
failure to recover a connection

Pladi
loss of a connection in coherence state

3.1 Macroscopic model

We can write down a number of macroscopic difference equations (DEs) for the state

transitions from Figures 3 and 4. We adopt the notation that NXi
(k) denotes the

average number of robots in the swarm in state X at time step k with i connections.

First consider the two sub-PFSMs of Figure 4. By definition,

NF i
(k) = NAF

i

(k) + NFi
(k) (1)

where 0 < i ≤ dmax, and

NCi
(k) = NAC

i

(k) + NCi
(k) (2)

where 0 < i < α. When i = 0, NF 0
(k) = NF0

(k) and NC0
(k) = NC0

(k).

We can express the number of robots in the next time step k + 1 as functions of

the number of robots in the current time step k for the two sub-PFSMs in Figure 4.

For the avoidance state AF
i we have,

NAF

i

(k + 1) = NAF

i

(k) + Pai
NFi

(k) − Pai
NFi

(k − TA) (3)

where 0 < i ≤ dmax. Similarly, for the avoidance state AC
i ,

NAC

i

(k + 1) = NAC

i

(k) + Pai
NCi

(k) − Pai
NCi

(k − TA) (4)

where 0 < i < α.

Note that this is a time-discrete model with a sampling interval T . As is conven-

tional we omit the T , i.e. NXi
(k) is equivalent to NXi

(kT ). T is determined by the

proximity sensor sampling rate as defined in Section 5. The second entry on the right

hand side of Equation (3) represents the number of robots whose proximity sensors

have been triggered and are transferring into avoidance state AF
i , and the third entry

represents those that have completed the avoidance behaviour, returning to state Fi

after TA steps.

Now, as described previously, robots update their connectivity and proximity sensor

data at different rates, i.e. TC and 1 steps, respectively. Consider the top-level PFSM

of Figure 3. In order to model the fact that the connectivity is sampled every TC steps,

which means that robots can transition between states F i and Ci only every TCT

seconds, we now multiply k by TC . Thus we can write DEs for robots in the F i state

as follows,
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– when i = 0

NF 0
((k + 1)TC) = NF 0

(kTC) + Pf0
NC0

(kTC) − Pg0NF 0
(kTC) (5)

– when 0 < i < α

NF i
((k + 1)TC) = NF i

(kTC) + Pgi−1NF i−1
(kTC) + Pfi

NCi
(kTC)

+ Pri−1NCi−1
(kTC) − (Pgi

+ Pli)NF i
(kTC)

(6)

– when i = α

NF α
((k + 1)TC) = NF α

(kTC) + Pgα−1NF α−1
(kTC) + Plα+1

NF α+1
(kTC)

+ Prα−1NCα−1
(kTC) − (Pgα

+ Plα)NF α
(kTC)

(7)

– when α < i < dmax

NF i
((k + 1)TC) = NF i

(kTC) + Pgi−1NF i−1
(kTC) + Pli+1

NF i+1
(kTC)

− Pgi
NF i

(kTC) − PliNF i
(kTC)

(8)

– when i = dmax

NF m
((k + 1)TC) = NF m

(kTC) + Pgm−1NF m−1
(kTC) − PlmNF m

(kTC) (9)

Similarly, for robots in the Ci state we have,

– when i = 0

NC0
((k + 1)TC) = NC0

(kTC) + Pla1
NC1

(kTC) + Pl1NF 1
(kTC)

− (Pr0 + Pf0
)NC0

(kTC)
(10)

– when 0 < i < α − 1

NCi
((k + 1)TC) = NCi

(kTC) + Plai+1
NCi+1

(kTC) + Pli+1
NF i+1

(kTC)

− (Pri
+ Pfi

+ Plai
)NCi

(kTC)
(11)

– when i = α − 1

NCα−1
((k + 1)TC) = NCα−1

(kTC) + PlαNF α
(kTC)

− (Prα−1 + Pfα−1
+ Plaα−1

)NCα−1
(kTC)

(12)

Clearly, the total number of robots in different states remains constant. If there are

N robots in the swarm in total then we have:

N =
α−1
X

i=1

NAC

i

(k) +
m

X

i=1

NAF

i

(k) +
m

X

i=0

NFi
(k) +

α−1
X

i=0

NCi
(k) (13)

With the correct initial conditions Equations (1) to (12) may be numerically eval-

uated. Values for NF and NC will change only every TC time steps, whereas values

for sub-PFSM states NAC

i

, NCi
, NAF

i

and NFi
may change every time step. In this

way we model a controller with different sample rates for the proximity sensor and the

connectivity.
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4 Geometrical estimation of transition probabilities

In order to solve the equations in section 3.1 we must estimate each of the state

transition probabilities. We now develop a geometry-based approach to the estimation

of these probabilities in our wirelessly connected swarm. Let V denote the normal

forward speed of each robot. It follows that the relative speed between two robots

varies from 0 to 2V and the relative heading varies from 0◦ to 360◦. Consider one of

the robots in the swarm, say roboti, with di neighbours at time step k.

Figure 5 illustrates some of its neighbours, shown as robotA, robotB , robotC and

robotD. Let us assume that roboti is in either forward or coherence states, then after

one time step (of duration T ), each of its neighbours will move a distance from 0

to 2V T . It is clear that only the robots close enough will have a chance of moving

into roboti’s collision area (within radius Ra, marked C in Figure 5), and thus drive

roboti to change to state avoidance. For instance, as shown in Figure 5, robotA may

possibly trigger roboti’s avoidance sensor next time step while robotB , robotC and

roboti

Ra + Rp

Rw

Ra

2V TCT

robotB

2V T

robotA

2V TCT

robotC

2V TCT

robotD

2V T

2V TCT2V TCT
A L RC F

Fig. 5 Roboti and its neighbours. Robots are marked with filled circles. Each robot has a
communication range Rw and avoidance radius Ra, Rp denotes the physical size (radius) of
the robot. C, A, F, L and R in the figure represent the collision, avoidance, forward, connection
loss and connection recovery areas respectively; each is an annular region bounded within two
circles with the same origin.
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robotD cannot. Similarly, after TC steps, robotC located in area L will possibly move

out of roboti’s communication range resulting in roboti losing one connection, and

robotD located in area R might move into roboti’s communication range, with some

probability, in which case roboti will gain one connection at step k + TC . However,

robotB located in area F can neither trigger roboti’s avoidance sensor nor cause a

change in the number of its connected neighbours. Thus, in order to estimate state

transition probabilities, we need only consider situations where neighbouring robots

fall within the annular regions in Figure 5: A, in which a collision might occur; L, in

which a connection loss might occur; or R, in which a connection recovery might occur.

4.1 Avoidance probability Padi

Assume all the connected neighbours of roboti are dispersed uniformly within the

communication radius. As shown in Figure 5, then the probability of one robot being

within area A can be depicted as the ratio of two corresponding areas:

Pin A =
(Ra + Rp + 2V T )2 − (Ra + Rp)2

R2
w − (Ra + Rp)2

(14)

Let Pa−c denote the probability of the robot located in area A moving into roboti’s

collision area C. Then the probability of at least one robot moving into roboti’s collision

area, resulting in roboti changing its state to avoidance, is:

Padi
= 1 − (1 − Pa−cPin A)di (15)

4.2 Probabilities of connection loss or gain Pldi
, Pgdi

, Pfdi
, Prdi

and Pladi

To determine probabilities of connection loss or gain, we need to estimate the change in

the number of robots in areas L and R based on the geometrical approach above. If only

one robot moves from area L to R and no robot moves from R to L, then roboti will lose

a connection at step k + TC . Since all robots act autonomously, roboti might possibly

lose connections with several robots while gaining new connections with several others.

Clearly roboti will experience a net connection loss by the next update connection at

step k + TC only when more robots have moved out of the connection radius than have

moved in. Assume the robot distribution density in roboti’s communication range and

its vicinity are equal, then the number of robots within area R at step k, denoted with

d′i, is given by

d′i =

—

(Rw + 2V TCT )2 − R2
w

R2
w

(di + 1)

�

(16)

Table 2 shows all possible situations in which roboti will lose one connection at step

k + TC , where n = min(di, d
′

i + 1).

For each neighbour of roboti, if Pin L denotes the probability it is in area L, Pl−r

denotes the probability it will move from area L to R at step k + TC , and Pr−l denotes

the probability the robot in area R will move from area R to L, then

Pin L =
R2

w − (Rw − 2V TCT )2

R2
w − (Ra + Rp)2

(17)
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Table 2 roboti single connection loss.

situation s lost connections gained connections probabilities

1 1 0 P
(1)
ldi

2 2 1 P
(2)
ldi

. . . . . . . . . . . .

n n n-1 P
(n)
ldi

Moreover, as we will discuss in next section, the value of Pl−r and Pr−l are different

in state forward and coherence, if PFl−r
(PCl−r

) and PFr−l
(PCr−l

) represent the

corresponding probabilities for the robots in state forward (coherence), then P
(1)
ldi

in

Table 2 is

P
(1)
ldi

= C(di, 1)Pin LPFl−r
(1 − Pin LPFl−r

)di−1·C(d′i, 0)P
0
Fr−l

(1 − PFr−l
)d

′

i (18)

where

C(di, s) =
di!

(di − s)!s!
(19)

Let

P1 = Pin LPFl−r

P2 = PFr−l

(20)

then

P
(1)
ldi

= C(di, 1)P1(1 − P1)di−1·C(d′i, 0)(1 − P2)
d′

i (21)

Similarly, for situation s (s = 1, 2, . . . , n) in Table 2,

P
(s)
ldi

= C(di, s)P
s
1 (1 − P1)

di−s·C(d′i, s − 1)P s−1
2 (1 − P2)d

′

i
−s+1 (22)

Clearly the probability that roboti experiences a net loss of one connection after

TC time steps is the sum of probabilities for all situations in Table 2, thus

Pldi
=

n
X

s=1

P
(s)
ldi

(23)

Using the same method we can calculate the remaining transition probabilities for

the PFSM model as follows:

– probability of connection gain Pgdi

Pgdi
=

n
X

s=0

P
(s)
gdi

P
(s)
gdi

= C(di, s)P
s
1 (1 − P1)di−s·C(d′i, s + 1)P s+1

2 (1 − P2)
d′

i
−s−1

n = min(di, d
′

i − 1)

(24)

and if roboti is in the coherence state then:
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– probability of connection recovery Prdi

Prdi
=

n
X

s=0

P
(s)
rdi

P
(s)
rdi

= C(di, s)P
′

1
s
(1 − P ′

1)di−s·C(d′i, s + 1)P ′

2
s+1

(1 − P ′

2)d
′

i
−s−1

n = min(di, d
′

i − 1)

(25)

– probability of connection loss while trying to recover Pladi

Pladi
=

n
X

s=1

P
(s)
ladi

P
(s)
ladi

= C(di, s)P
′

1
s
(1 − P ′

1)di−s·C(d′i, s − 1)P ′

2
s−1

(1 − P ′

2)
d′

i
−s+1

n = min(di, d
′

i + 1)

(26)

– probability of failure to recover a lost connection Pfdi

Pfdi
=

n
X

s=0

P
(s)
fdi

P
(s)
fdi

= C(di, s)P
′

1
s
(1 − P ′

1)
di−s·C(d′i, s)P

′

2
s
(1 − P ′

2)
d′

i
−s

n = min(di, d
′

i)

(27)

Where

P ′

1 = Pin LPCl−r

P ′

2 = PCr−l

(28)

4.3 Calculation of Pa−c, PFl−r
(PCl−r

) and PFr−l
(PCr−l

)

To complete the estimation of state transition probabilities we need to determine Pa−c,

the probability of one robot moving from area A to area C (for Equation 15), and the

probabilities PFl−r
(PCl−r

) and PFr−l
(PCr−l

) that one robot will move from area L

to R, and from area R to L respectively (for Equations (20)(28)).

Consider the possible motion between roboti and robotB in Figure 5. If we establish

Cartesian coordinates with origin located at the centre of robotB , as shown in Figure

6, the x-axis is the extension of a ray from the centre of roboti to the centre of robotB
and the y-axis is across robotB from South to North. The relative speed of robotB , with

reference to roboti, will vary from 0 to 2V , and the relative heading will differ from

0◦ to 360◦. Clearly the distance between the two robots will decrease if the relative

heading varies from 90◦ to 270◦ (moving towards), otherwise the distance will increase

(moving away). The motion moving towards, could possibly trigger roboti’s avoidance

sensor at step k + 1, if the two robots are already close enough at step k, or possibly

increase the number of neighbours for roboti at step k + TC , if robotB is in area R

at step k. Conversely, the motion moving away will possibly decrease the number of

connected neighbours for roboti at step k + TC .

The probabilities of moving towards and moving away should be different for the

robots in different states and with different connectivities. For instance, a robot in the
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y

x

robotB

roboti

2V T

towards away

Fig. 6 The relative heading between two robots. The grey area represents the moving towards

heading range.

coherence state will make a U-turn in order to recover the lost connection, thus its

neighbours are more likely to be moving towards than moving away. However, in a

crowded situation the robot has a large number of neighbours within communication

range, and the robots are more likely to be moving away instead of moving towards be-

cause of the avoidance behaviours. In fact, it is the difference between the probabilities

of moving forwards and moving away that drives the swarm toward aggregation. Since

the robot updates its avoidance sensors much more frequently than its connectivity in-

formation (due to cadence) its neighbours, statistically, will have the same probabilities

of moving towards as moving away in the short intervals between avoidance sensors

updates. To estimate Pa−c, let PA(x) denote the probability of moving towards for

the neighbours of roboti during the avoidance sensors update time interval, where x

represents the number of neighbours of roboti, then

PA(x) = 0.5 (0 < x ≤ dmax) (29)

If roboti lost connections during the last TC steps, it will enter state coherence and

make a U-turn. Consider the situation when roboti is in the coherence state without

any neighbours, i.e. in state C0. There should be at least one robot in area R (robotD
in Figure 5) since roboti lost one connection (that’s why it is in state C0 now). In

this situation the distance between roboti and robotD is initially increasing before

roboti makes the U-turn, but then after the U-turn robotD must be moving towards

roboti, i.e. with probability 100%. But then if the number of connected neighbours is

increasing, the probability of moving towards will drop, and when di = α − 1 we can

suppose the probability will be closer to 50% due to the random-turn on connection

recovery behaviour among its neighbours. For simplicity, let us assume the probabilities

of moving towards for roboti’s neighbours, denoted by PC(x), will decrease linearly

between these two points, with the number of neighbours increasing, when roboti is in

the coherence state,

PC(x) = 1 − 0.5x/α (0 ≤ x < α) (30)

If roboti is in the forward state with di < α neighbours, then it has moved from the

coherence state with di − 1 or di connections. There was a U-turn behaviour executed

at step k − TC which must still have some effect on increasing the probabilities of

moving towards for its neighbours. Meanwhile, the avoidance behaviour the neighbours

themselves execute will also increase the probability of moving away. However, for the

situation where di ≥ α, only the avoidance behaviour will increase the probability of
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moving away. Assume the U-turn behaviour has the same effect on the probability of

moving towards as the avoidance behaviour (but negative instead of positive), then the

probability of moving towards for roboti’s neighbours in this situation, say PF (x), is

given by:

PF (x) =

8

>

>

<

>

>

:

PC(x) + 0.5 − Pax

2
0 < x < α

1 − Pax

2
α ≤ x ≤ dmax

(31)

Where Pax
can be obtained following Equation (15)
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Fig. 7 Probabilities PA(x), PC(x) and PF (x) of moving towards in avoidance, coherence and
forward states, for α = 15. Left: probabilities obtained from Equations (29)-(31). Right:

mean probabilities measured from simulation, error bars indicate the standard deviation of 10
runs, each run lasts 10000 seconds with a swarm of 40 robots.

Figure 7 (left) plots the probabilities of moving towards obtained from Equation

(29)-(31), where α = 15 and the geometrical parameters are given in Table 3. Figure

7 (right) then demonstrates the corresponding probabilities measured from simulation

with the same parameters. It shows clearly that there is good agreement for PA(x),

which is one of the most fundamental assumptions, and less satisfactory agreement

for PC(x) and PF (x). The gaps between estimated and measured values are caused

mainly by the fact that robots do need time to make a turning action, which is absent

in the model. However, the relationship between PA(x), PC(x) and PF (x) is correct,

i.e. PC(x) > PF (x) > PA(x) when x ≤ α and PA(x) > PF (x) when x > α, which is the

essential condition to gain the crossover between Pgdi
and Pldi

(to be discussed in the

next section). If we additionally assume that relative speeds are uniformly distributed

between 0 and 2V , we can estimate Pa−c, PFl−r
(PCl−r

) and PFr−l
(PCl−r

) using the

Monte-Carlo method. Pseudo-code for this estimation is shown in appendix B.

5 Validation of transition probabilities

We use the sensor-based simulation toolset Player/Stage (Gerkey et al. 2003) to validate

the probabilities estimation and the PFSM model. Figure 8 shows a screenshot of the

simulation and the robot model used for simulation. The robots used in the simulation

are models of the wirelessly networked Linuxbots in the Bristol Robotics Laboratory

(Winfield and Holland 2000). 40 robots are simulated with α = 5, α = 10 and α = 15.
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20cm

40cmLeft Right

Rear

Fig. 8 Left: a screenshot of simulation, the darker robots are in the coherence state, the
lighter ones are in the forward state. Right: the robot model used in simulation. A video
presentation showing basic behaviours together with simulation runs for different values of α
is provided on-line as supplementary material in file swarm-alpha-algorithm.wmv.

Each robot is sized 0.2 m × 0.2 m and equipped with three avoidance sensors, two

at the front and one at the rear; each can detect obstacles within range Ra = 0.4 m

and output a binary signal. Initially, robots are randomly dispersed within a 2 m circle

area with random headings. Each robot will poll its avoidance sensor at frequency 5 Hz

(1/T ), whenever one or more sensors are triggered the robot will execute an avoidance

behaviour, i.e. turn away from the colliding robot or obstacle. The avoidance turn

speed depends on which sensors are triggered and the robot will keep turning for 1 s

(TAT ). The communication range is 2 m for each robot and the robot will check its

connectivity information every 3 s (TCT ). For each α, simulations are run 10 times

with the same initial conditions and each lasts for 10000 seconds; probabilities are

measured by counting each type of state transition and the total number of cycles the

robot remains in each state. Figure 9 (left) plots transition probabilities against the

connectivity, error bars show the standard deviation of 10 simulation runs. Probabilities

estimated using the geometrical approach in Section 4 are plotted in Figure 9 (right).

The fixed parameters for both simulation and probabilities estimation are given in

Table 3.

Figure 9 shows that measured and estimated transition probabilities are in good

agreement, particularly for avoid probability Pa. There are some gaps between esti-

mated and measured values for probabilities Pl, Pg, Pr, Pf and Pla but the relative

positions of each probability curve match quite well. The very large error bars shown

on the right-hand sides of Figure 9 (left), from simulation, reflect the fact that there

are very few occurrences of the high connectivities, especially when α = 5 or α = 10.

This is not a concern because the important range for the transition probabilities is

observed from simulation to be from 0 to about 2α. Note that we clearly see a crossover
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Table 3 Robot parameters for model validation. Note that the time step duration is given by
the avoidance sensor update rate 5 Hz.

parameter value description

T 0.2 s Time step duration
TC 15 Coherence duration in time steps
TA 5 Avoidance duration in time steps
V 0.15 m/s Robot forward velocity
Ra 0.4 m Avoidance sensor range
Rp 0.1 m Robot body radius
Rw 2.0 m Wireless range

between the curves of probabilities Pl and Pg at connectivities close to α − 1 in both

measured and estimated curves in Figure 9. This is particularly important since if the

probability of connection loss Pl were higher than the probability of connection gain Pg

over the whole connectivity range, the swarm would simply disperse. Conversely, if Pg

were greater than Pl over the whole connection range the swarm would clump tightly

together. The action of the coherence behaviour for robots with connectivities less than

α creates the crossover in Pl and Pg and allows the swarm to maintain coherence and

achieve a dynamic equilibrium between expansion and contraction.

Given the simplifying assumptions that we have made in the geometrical estimation

of transition probabilities it is perhaps surprising that we achieve the reasonable match

between measured and estimated probabilities over the connectivity ranges of interest

we see in Figure 9. This gives confidence in the validity of the approach.

6 Running the macroscopic model

We can now run the macroscopic model by plugging both measured and estimated

probability values into the difference equations developed in Section 3.1.

6.1 Stability and convergence of the model

To test the stability and convergence of our macroscopic model, we run the model with

different initial conditions, as shown in Table 4, for α = 15.

Table 4 Initial condition sets for macroscopic model, F0(0) = 40 means there are 40 robots
in state forward, each with 0 neighbours at time step 0.

case initial condition

1 F0(0) = 40
2 F15(0) = 40
3 F22(0) = 40
4 F29(0) = 20, C14(0) = 20
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Fig. 9 State transition probabilities plotted against connectivity. From top to bottom, α =
5, 10 and 15 respectively. Left: measured probabilities from the Player/Stage simulation (with
a swarm of 40 robots). Right: estimated probabilities using the geometry-based approach.

The relative iteration error is defined as follows, as a measure of the speed of

convergence of the numerical solution to the DEs in Section 3.1.

e =

"

α−1
X

i=1

(NAC

i

(k) − NAC

i

(k − 1))2 +
m

X

i=1

(NAF

i

(k) − NAF

i

(k − 1))2

+
m

X

i=0

(NFi
(k) − NFi

(k − 1))2 +
α−1
X

i=0

(NCi
(k) − NCi

(k − 1))2
#1/2

(32)

Figure 10 plots the relative iteration error against iteration steps for the model

with different initial conditions. Note that for clarity, Figure 10 only shows e for time
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steps from 500 to 10000. The model clearly converges under different initial conditions

and the relative iteration error falls to less than 1e−6 after 10000 iterations each time;

case 2 shows the fastest convergence. Moreover, regardless of the different initial con-

ditions and speeds of convergence, all cases eventually reach the same point suggesting

the existence of stable steady states. The same occurs with α = 5 and 10. Thus our

PFSM model is robust to different initial conditions and can reach a solution for the

connectivity structure of the swarm.

0

0.01

0.02

e
rr

o
rs

500 2500 4500 6500 8500 10000
steps

F0 = 40
F15 = 40
F22 = 40
F29 = 20, C14 = 20

Fig. 10 Iteration error for different initial conditions, obtained using estimated transition
probabilities.

6.2 Validating the macroscopic model structure

In order to validate the macroscopic model structure in isolation from the geometrically

estimated transition probabilities we now compare connectivity results from simulation

with connectivity results predicted by the model, using the measured transition prob-

abilities from simulation in the model. By using measured probabilities we focus only

on the macroscopic model from Section 3.

Figure 11 shows the average number of robots in states forward, coherence and

avoidance after reaching the steady state, in which we merge states AC and AF from

the sub-PFSMs in Figure 4, plotted against connectivity. The left-hand plots show the

results collected from the Player/Stage simulation while the right-hand side plots show

the results from the macroscopic model run with the measured probabilities, also from

the Player/Stage simulation. The total average number of robots, summing all states

for each connectivity value, is also plotted in Figure 11 as the topmost curve; the area

below this curve is constant and represents all 40 robots involved in the experiment. The

curves on both sides, except perhaps for state coherence, show reasonable agreement in

both values and curve shape. For the total number of robots, we see that the average

number of robots describes a bell shaped curve reaching a peak just below the threshold

value α, as we would expect.

Since this comparison is made primarily to provide validation of the structure of

the macroscopic model we will defer detailed discussion until we see results from the

full model using probabilities estimated from geometrical considerations. However, we

should note that the two sets of curves do not match precisely. Results for α = 5 show

the strongest correlation, but α = 10 and α = 15 less so. In particular, our macroscopic

model appears to underestimate the number of robots in the coherence state with a
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Fig. 11 Number of robots in state coherence, forward and avoidance plotted against number
of neighbours (connectivity). From top to bottom, α = 5, 10 and 15. Left: simulation average
of 10 runs, each simulation lasts for 10000 seconds. Right: macroscopic model using measured
probabilities from simulation.

balancing overestimate of the number of robots in the forward state. The model does,

with reasonable accuracy, predict the number of robots in the avoidance state. Since

we are using measured transition probabilities then any differences must be due to

structural inaccuracies in the macroscopic model of Figure 3. The underestimate in the

number of robots in the coherence state, particularly at connectivity values approaching

α, is almost certainly due to the simplifying assumption, in the PFSM, that robots

lose only a single connection at a time. In practice a robot could, for example, lose

2 connections within time TC and transition directly from state Fα to state Cα−2.

Such simplifying assumptions are necessary in a model, and we argue that the results

of Figure 11 provide acceptable validation of the structure of the macroscopic model.
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6.3 Running the macroscopic model with geometrically estimated probabilities

We now run the macroscopic model with state transition probabilities estimated using

the geometrical approach in Section 4. Figure 12 shows the average number of robots

in states forward, coherence and avoidance, in which we again merge states AC and

AF from the sub-PFSMs in Figure 4, plotted against connectivity. The left-hand plots

show the same results collected from the Player/Stage simulation as shown in Figure 11

(left), while the right-hand side plots now show the results from the PFSM model run

with the estimated state transition probabilities. The total average number of robots,

summing all states, is also plotted as the topmost curve in each graph.
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Fig. 12 Number of robots in state coherence, forward and avoidance plotted against num-
ber of neighbours (connectivity). From top to bottom, α = 5, 10 and 15. Left: simulation
average of 10 runs, each simulation lasts for 10000 seconds. Right: macroscopic model using
geometrically estimated probabilities.
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First we note that the PFSM model generates the same “bell” shaped curves as

the simulation, and for all three values of α the peak occurs at or very close to the

same connectivity value. The PFSM model for α = 5 somewhat underestimates the

number of robots in all three states and also shows a longer “tail” of robots with

high connectivity values than is measured from simulation; however, the model shows

reasonable agreement at very low connectivity values, especially in predicting “lost”

robots (with connectivity of zero). At α = 10 the macroscopic model again shows a

longer tail of high connectivity robots than the simulation; also evident is the same

overestimate in the number of robots in the forward state at connectivity values below

α observed in Figure 11. The overestimate in forward robots is even more pronounced

at α = 15. We also see that the “lost” and very low connectivity robots are not seen in

the model for α = 10 and α = 15. In all three pairs of results the greatest discrepancy

between the macroscopic model and the simulation is in robots in the forward state.

In contrast, the macroscopic model shows much stronger agreement with simulation

for the number of robots in coherence and avoidance states.

Accounting precisely for the differences between the macroscopic model and sim-

ulation is clearly difficult, given that the model incorporates a number of simplifying

assumptions, both in the PFSM structure (as discussed in the previous section), and in

the development of the geometrical estimation of state transition probabilities. Further-

more, it is possible that some assumptions have counterbalancing effects. Let us now

review the main simplifying assumptions, and their possible impact on the accuracy of

the macroscopic model:

1. The structure of the PFSM in Figure 3 assumes that connections are lost or gained

strictly one at a time whereas, in practice, in the TC steps between connectivity

updates a robot could lose or gain more than one connection. This is likely to be

particularly true at higher connectivity values, and almost certainly accounts for

the underestimate in the number of robots in the coherence state, and a balancing

overestimate in robots in the forward state in Figure 11.

2. In estimating transition probabilities we have assumed that robots are distributed

uniformly. Without such an assumption we could not estimate the likelihood of

robots falling within the key regions in which robot collision, connection loss, or

connection recovery are possible (labelled A, L and R in Figure 5).

3. The third key assumption is that made in estimating probabilities of moving towards

and moving away in section 4.3, in particular the assumption of linear functions

for PA(x), PC(x) and PF (x) and the underlying assumption that robots turn in

zero time.

Clearly, the second and third assumptions above must, together, account for the

inaccuracies seen in Figure 12 (right) that are not present in Figure 11 (right), in

particular the larger “tail” of robots with very high connectivities in cases α = 5

and α = 10, and at very low connectivities 0, 1, 2 in cases α = 10 and α = 15. It is

difficult to disaggregate the effect of each assumption in explaining these model errors.

However, the assumption of uniformly distributed robots is clearly weakest at the edges

of the swarm which is typically where robots with the lowest connectivity are to be

found. Assumption 2 is therefore most likely to account for model errors at very low

connectivities. Note also that assumptions 2 and/or 3 do appear to counterbalance

the effect of assumption 1, noting the apparently improved accuracy in predicting the

number of robots in the coherence state from Figure 11 (right) to Figure 12 (right).

Given the simplifying assumptions in the model developed in this paper it is perhaps
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surprising that the macroscopic model does generate such plausible results for the

swarm connectivity structure.

7 Conclusions

This paper has proposed a macroscopic probabilistic model for an ad-hoc wirelessly

connected swarm of mobile robots. We have described the development of the model

in two stages: first, the probabilistic finite state machine (PFSM) and its description

as a set of difference equations and, second, a novel robot-centric geometrical approach

to the estimation of the state transition probabilities of the PFSM. We have, as one

would expect in any model, made a number of simplifying assumptions. However, the

full macroscopic model is developed entirely from first principles and requires neither

measured or heuristic probability data from real or simulated robot swarms, nor a

posteriori fitting. The paper has carefully validated each stage of the model against

measured data from simulation. Finally, the full macroscopic model has been shown

to predict the steady-state connectivity structure of the robot swarm to a reasonable

degree of approximation.

We can draw a number of general conclusions, as follows:

– We have demonstrated that the probabilistic modelling approach can usefully be

extended to the class of robotic swarms operating in unbounded space; in particular

the robot-centric approach we have developed for estimation of transition proba-

bilities requires us to make no limiting assumptions at all about the environment

in which the swarm operates. This approach could, we believe, have merit in mod-

elling other swarm robotic systems operating in unbounded 2D or 3D space and

thus help to support the validation that would be a necessary part of the real-world

application of such systems.

– The actual swarm we have modelled in this paper makes use of limited-range wire-

less network connectivity in order to maintain swarm aggregation and thus, as an

emergent property, forms an ad-hoc network of mobile agents. We would argue

therefore, that the modelling approach developed in this paper could find applica-

tion in the analysis of mobile ad-hoc networks (MANETs). As far as we are aware

this paper is the first to present a state-machine approach to the analysis of a

MANET.

Specific conclusions about the macroscopic model for the wireless connected swarm

are as follows:

– Notwithstanding the model errors resulting from the simplifying assumptions, the

macroscopic model does have utility. In particular, the model has value in allowing

us to rapidly assess the qualitative and quantitative effect on the swarm connectiv-

ity structure of varying the key parameters of the swarm. This paper has demon-

strated that the model does, with reasonable accuracy, predict the effect of varying

the α threshold value. Although not studied here, the model also readily allows

us to study the effect of varying other parameters such as Ra, Rw or TC . We can

model swarms of arbitrary size characterised by the same numerical computation

time, in contrast with simulation which quickly becomes impractical because of

processing time for swarms much larger than 40, as used in this paper.
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– The development of the macroscopic model for the wireless connected swarm has

beneficially deepened our understanding of the α-algorithm and provided new in-

sights which could, for instance, result in improved variants of the algorithm. The

model has, for instance, provided valuable new qualitative insights into the α-

algorithm, in particular the crossover of probabilities Pl and Pg necessary to achieve

the spatial dynamic equilibrium of the steady-state swarm (Section 5).

Further work This paper has presented a work in progress. We have proposed a macro-

scopic probabilistic model for a wirelessly connected swarm of mobile robots and pro-

vided initial confirmation of the approach by validating the model against a sensor-

based simulation. However, the model needs further development in order for its full

potential to be realised. Thus further work will seek to:

– Undertake a steady-state analysis of the DEs in Section 3.1 in order to further

validate the model and provide further insights into the α-algorithm.

– Incorporate a more realistic wireless propagation model into the Player/Stage sim-

ulation, in order to test the model (and the algorithm) for potential application in

real-world scenarios.

– Extend the model to incorporate additional swarm behaviours, including collective

swarm movement towards a beacon (i.e. swarm photo-taxis, Nembrini (2005)), and

hence develop the model to the point where it can be used to gain quantitative

insights including parameter optimisation.
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Appendix A: Estimation of maximum number of neighbours dmax

Rw

Ra + Rp 60◦

roboti

Ra
Rp

Line 0

Line 1

Line 2

Line 3

Line 4

Fig. 13 roboti and its maximal neighbours

The maximum number of neighbours for the robot dmax is constrained by the

physical size of robot Rp, the radius of the avoidance sensor Ra and the radius of the

communication range Rw. Consider the extreme case where the avoidance sensors of

each robot are ready to be triggered, then the distribution of robots within radius Rw

could be shown as Figure 13. The intersections between lines represents the possible

position of robots. It is obvious that we can calculate dmax by counting the number

of intersections shown in Figure 13. In order to count the intersections, we name the

lines Line0, Line1 . . . Linekmax
as shown in Figure 13. Where

kmax <

—

2Rw√
3(Ra + Rp)

�

(33)

For Linek, k = (0, 1, . . . , kmax), the number of intersections is given by:

Nk =

$

p

4R2
w − 3(Ra + Rp)2k2

Ra + Rp

%

+ 1 (34)

Therefore, the maximum number of neighbours for roboti is:

dmax = N0 + 2

kmax
X

k=1

Nk − 1 (35)

However, the maximum number of neighbours should be smaller due to the dynamic

nature of the swarm thus, in practice, we can choose m = 0.8 ∼ 0.9 dmax.
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Appendix B: Estimation of probabilities Pa−c, PFl−r
(PCl−r

) and PFr−l

(PCr−l
)

Note that the listing below only shows the process of calculating Pa−c. To calculate

PFl−r
(PCl−r

) and PFr−l
(PCr−l

), we need to change the area A in line 7 to L or R,

and the area C in line 15, to R or L, respectively.

1 Initialise the parameters

2 count = 0, hit = 0

3

4 while ( count < MAXLOOP ){

5 count ++

6

7 Generate a random point P within area $A$

8 dir = random heading obeying the assumption of

9 probability moving-towards

10 vel = random velocity between (0,2V)

11

12 new_P.x = P.x + vel * step * sin(dir)

13 new_P.y = P.y + vel * step * cos(dir)

14

15 if new_P located within area $C$

16 hit ++

17 }

18

19 return hit / count;


