
Swarm Intelligence manuscript No.

(will be inserted by the editor)

Distributed scalable multi-robot learning using particle

swarm optimization

Jim Pugh and Alcherio Martinoli

Received: date / Accepted: date

Abstract Designing effective behavioral controllers for mobile robots can be difficult

and tedious; this process can be circumvented by using online learning techniques

which allow robots to generate their own controllers online in an automated fash-

ion. In multi-robot systems, robots operating in parallel can potentially learn at a

much faster rate by sharing information amongst themselves. In this work, we use an

adapted version of the Particle Swarm Optimization algorithm in order to accomplish

distributed online robotic learning in groups of robots with access to only local infor-

mation. The effectiveness of the learning technique on a benchmark task (generating

high-performance obstacle avoidance behavior) is evaluated for robot groups of various

sizes, with the maximum group size allowing each robot to individually contain and

manage a single PSO particle. To increase the realism of the technique, different PSO

neighborhoods based on limitations of real robotic communication are tested and com-

pared in this scenario. We explore the effect of varying communication power for one of

these communication-based PSO neighborhoods. To validate the effectiveness of these

learning techniques, fully distributed online learning experiments are run using a group

of 10 real robots, generating results which support the findings from our simulations.

Keywords multi-robot systems · robotic learning · particle swarm optimization

1 Introduction

Designing even simple behaviors for mobile robots that are both efficient and robust

can be very difficult for humans; it is often not hard to implement a rudimentary

controller that accomplishes the task, but achieving near-optimal performance can

be very challenging. This is especially true for miniature mobile robots as it can be

quite difficult to conceptualize the environment from the robot’s point of view. Online

robotic learning allows for automated design of efficient, robust controllers, which saves

much design time and effort (see Section 2 for a complete definition of online robotic

Distributed Intelligent Systems and Algorithms Group
École Polytechnique Fédérale de Lausanne
1015 Lausanne, Switzerland
{jim.pugh,alcherio.martinoli}@epfl.ch

2

learning). Learning is also essential for allowing robots to adapt to situations where

the task or environment is unknown beforehand or is constantly changing.

Particle Swarm Optimization (PSO) is an optimization technique which models a

set of candidate problem solutions as a swarm of particles moving about in a virtual

search space. The method was inspired by the movement of flocking birds and their

interactions with their neighbors in the group. PSO achieves optimization using three

primary principles: evaluation, where quantitative performance can be determined for

some particle location; comparison, where the best performer out of multiple particles

can be selected; and imitation, where the qualities of better particles are mimicked by

others. By coupling it with an Artificial Neural Network (ANN), the algorithm can be

used to optimize parameters for robot controllers in order to accomplish online robotic

learning.

In the PSO algorithm, groups of virtual agents interact in order to achieve opti-

mization. In distributed robotics, groups of robots interact to accomplish their goals.

It may therefore be possible to implement these algorithms in a parallel distributed

fashion for learning in multi-robot systems. Each robot would be responsible for one or

several virtual agents, which it evaluates at each iteration of the algorithm. After each

set of evaluations, the robots would communicate to share the performance information

needed to progress to the next iteration. By running the algorithm in this fashion, we

would need no external supervisor to oversee the learning process, and the speed of

learning could be significantly improved, as many robots evaluating in parallel increase

the rate of candidate solution evaluations and therefore decrease the total learning

time.

In the local neighborhood version of PSO, each particle only needs to be aware of

the state of a small subset of particles in the population in order to update itself at

each iteration. It may therefore be possible to implement PSO in a distributed manner

where communication from any given node would only be necessary with several other

nodes, making it a very scalable, parallel approach. This could allow the speed and

quality of learning to be improved by simply introducing more robots into the group.

In this paper, we explore the effectiveness of using a modified version of PSO on

groups of robots performing distributed online learning. Our case study is the genera-

tion of high-performance obstacle avoidance behavior, a fundamental building block for

more complex behaviors and a common benchmark for online robotic learning tech-

niques. At the maximum robot team size, the number of robots is set equal to the

number of particles in the PSO population, allowing each robot in the group to man-

age a single particle. We test how the performance is affected if we adapt the standard

PSO neighborhood structure to more closely model what is possible for robots with

limited communication abilities. Simulated experiments are validated by replicating

them on a group of 10 real robots learning in parallel. Section 2 of this work provides

some background on PSO, online robotic learning, and multi-robot learning. In Sec-

tion 3, we examine how the effectiveness of distributed online learning is affected by

the number of robots in the group. Section 4 analyzes how the learning performance

is affected by different neighborhood structures based on the limitations of robotic

communication when each robot contains a single particle. Section 5 focuses on one

such neighborhood structure and tests the effect of varying the communication range

of the robots. In Section 6, we perform distributed learning experiments on a group

of 10 real Khepera III robots in order to validate the previously obtained results from

our simulations. Section 7 discusses the implications of the results and concludes the

paper.

3

2 Background

The original PSO method was developed by Kennedy and Eberhart (Eberhart &

Kennedy, 1995; Kennedy & Eberhart, 1995). Every particle in the population be-

gins with a randomized position x̄i = (xi,1, ..., xi,j , ..., xi,n) and randomized velocity

v̄i = (vi,1, ..., vi,j , ..., vi,n) in the n-dimensional search space, where i represents the

particle index and j represents the dimension in the search space. Candidate solu-

tions are optimized by flying the particles through the virtual space, with attraction to

positions in the space that yielded the best results. Each particle remembers the posi-

tion at which it achieved its highest performance (x̄∗
i). Each particle is also a member

of some neighborhood of particles, and remembers which particle achieved the best

overall position in that neighborhood (given by the index i′). This neighborhood can

either be a subset of the particles (local neighborhood), or all the particles (global

neighborhood). For local neighborhoods, the standard method is to set neighbors in

a pre-defined way (such as using as neighbors particles with the closest array indices

modulo the size of the population, henceforth known as a “ring topology”) regardless

of the particles’ positions in the search space. The equations executed by PSO at each

step of the algorithm are

vi,j = w · vi,j + pw · rand() · (x∗
i,j − xi,j)

+ nw · rand() · (x∗
i′,j − xi,j)

xi,j = xi,j + vi,j

where w is the inertia coefficient in (0, 1) that slows velocity over time, pw is the

weight given to the attraction to the previous best location of the current particle

and nw is the weight given to the attraction to the previous best location of the

particle neighborhood. rand() is a sample of a random variable uniformly-distributed in

[0, 1). The PSO algorithm can be used for the optimization of many different systems,

and there has been a growing interest in its application within the field of robotics

(for example, as a model for distributed robotic foraging (DiChio & DiChio, 2007)

or distributed odor localization (Jatmiko et al., 2006)). By coupling the algorithm

with a parameterized robotic controller (such as an ANN), PSO optimization can be

translated into robotic learning.

Two different general approaches can be used to accomplish robotic learning. Of-

fline learning refers to techniques where a robot behavior is generated outside of the

actual application. This is the case for controllers created via demonstration or based

on pre-collected data. In contrast, online learning1 occurs when a robot adjusts its

behavior in real-time based on feedback it receives during operation. Online learning

is necessary for creating effective controllers in unknown or dynamic scenarios, as of-

fline learning requires a priori knowledge of the environment. There has been extensive

work in the past on both online and offline robotic learning (see Franklin et al., 1996).

Common approaches to online learning include regression-based techniques (Atkeson

et al., 1997) and evaluative techniques such as Reinforcement Learning (Mahadevan &

1 In robotic applications, online vs. offline can also refer to whether operation occurs on a
real robot vs. in a simulation of the same scenario. The terms supervised and unsupervised
learning may also be used to describe offline and online learning in robotic applications,
respectively.

4

Connell, 1991; Smart & Kaelbling, 2002), Genetic Algorithms (Floreano & Mondada,

1996), and more recently Particle Swarm Optimization (Pugh et al., 2005).

Multi-robot learning has been used and explored in various ways; surveys of work

(including learning on non-robotic multi-agent systems) can be found in (Stone &

Veloso, 2000; Panait & Luke, 2005). Matarić studied mechanisms to encourage indi-

vidual agents in a group to act in ways to help the group performance (Matarić, 1994).

Parker proposed an architecture, L-ALLIANCE, which allows for efficient adaptation

in a robot team (Parker, 1997). Multi-robot learning using several methods in a wide

variety of scenarios has been explored in (Balch, 1998; Stone, 1998). Many studies have

used Genetic Algorithms (GAs) for homogeneous learning on a team of robots (for ex-

ample, Dorigo et al., 2004). Multi-robot learning has also been used for groups of robots

engaged in adversarial tasks (Bowling & Veloso, 2003). Specialization in multi-agent

systems was studied using reinforcement learning (Murciano et al., 1997) and adap-

tive line-search (Li et al., 2004). Techniques for increasing individual learning speed

via multi-robot learning were studied by Kelly & Keating, 1998 and Matarić, 2001. A

modified version of GA has been embedded onto a 2-robot system to allow for paral-

lel learning (Nehmzow, 2002). Watson developed the technique “embodied evolution”,

which exploits the parallelism of scalable multi-robot systems for fast distributed learn-

ing (Watson et al., 2002). Pugh and Martinoli found that both GA and PSO could be

used for effective distributed parallel multi-robot learning in simulation (Pugh & Mar-

tinoli, 2006) and applied to simulated heterogeneous robot groups (Pugh & Martinoli,

2009).

While GA has been used for online robotic learning far more frequently in the past,

some recent studies (Pugh et al., 2005 and Pugh & Martinoli, 2006) have found that

PSO can actually achieve superior results. In this work, we expand on previous research

using PSO for parallel distributed multi-robot learning with simulated robots (Pugh

& Martinoli, 2006) and validate results using real-robot experiments.

3 Varying the Robotic Group Size

In previous work (Pugh et al., 2005), online learning was used to teach robots obsta-

cle avoidance behavior for both a single robot and two robots co-learning. We wish

to expand this to test online learning on larger robotic groups, where the develop-

ing candidate solutions are distributed throughout the group. While using a larger

robotic group allows for faster learning, it may also increase the noise in performance

evaluations by the robots, which could make learning more difficult.

3.1 Experimental Setup

A major challenge in mobile robotic learning is overcoming the performance noise

innate to controller evaluation. Because robots only have a partial perception of their

surroundings, random environmental factors may influence results, and sensors and

actuators are intrinsically noisy components, the perceived performance over a brief

evaluation time span may vary significantly from the robots true performance level in

different and unpredictable ways. In order to partially overcome this problem, we use

the noise-resistant PSO algorithm from Pugh et al., 2005. This technique uses a local

neighborhood in a ring topology with one neighbor on each side (lbest topology). At

5

every iteration, the previous best locations of particles are reevaluated; by averaging

the new performance value with previous ones, we can partially filter out the noise to

get a more accurate measure of the actual performance. The longer a previous best

location remains in the algorithm, the more times it will be evaluated, and the more

accurate the performance measure will become. Although this requires twice as many

performance evaluations at each iteration (normal evaluation plus re-evaluations) as

standard PSO, this technique prevents noisy performance evaluations from severely

disrupting the learning process and gives significantly better results given the same

amount of computational time. A flowchart of the modified algorithm can be seen in

Fig. 1.

Fig. 1 Optimization loop used by noise-resistant PSO

The parameters for the PSO algorithms are given in Table 1. While a swarm (or

population) size of 10 particles would be very small for other multi-agent optimization

techniques such as Genetic Algorithms, we have found that it offers good performance

6

with the PSO algorithm. Initial particle positions are randomly generated in the range

[−20, 20] but are allowed to change to any value during optimization. Velocity in PSO

is also randomly initialized in the range [−20, 20] but prevented from ever going outside

this range.

Table 1 PSO parameters for online learning

Swarm Size 10

pw 2.0

nw 2.0

w 0.8

For all experiments in this work (both in simulation and the real world), we use

the Khepera III robotic platform (see Fig. 2), produced by K-Team Corporation with

development assistance from the Distributed Intelligent Systems and Algorithms Lab-

oratory at EPFL. The robot has a diameter of 12 cm, making it appropriate for indoor

experimentation. Locomotion is accomplished via a differential drive system using two

independent motors. The Khepera III uses the Korebot platform, running a standard

embedded Linux operating system on an Intel XSCALE PXA-255 processor running at

400 MHz. A stackable expansion bus allows for the addition of custom robot modules.

Belts of both ultrasonic and infrared proximity sensors surround the robot, allowing

for detection of both close and medium range objects. The robot can be endowed with

IEEE 802.11 wireless ability by using an appropriate card with the built-in Compact-

Flash slot.

Fig. 2 Khepera III robot

For our experiments in this section of the paper, we use Webots, a realistic simu-

lator (Michel, 2004). This simulator can run experiments much faster than real-world

execution (often by a factor greater than 100), allowing many more experiments to be

performed than would otherwise be possible. Henceforth, when discussing the length

of evaluations and total learning time in simulation, we always refer to simulation

time (i.e., how long it would have taken to run the experiment in reality) rather than

real-world time (i.e., how long it took to run the simulation).

7

Fig. 3 Left: Virtual Khepera III robots in their simulated arena in Webots. Right: Depiction
of the artificial neural network used for the robot controller. Curved arrows are recurrent
connections and lateral inhibitions.

The simulated Khepera III robot operates in a 3.0 m × 3.0 m square arena (see

Fig. 3 left). The robotic controller is a single-layer discrete-time ANN of two neurons,

one for each wheel speed, with sigmoidal output functions. The inputs are the nine

infrared proximity sensors (approximately equally spaced around the robot), as well as

a recursive connection from the previous output of the neuron, lateral inhibitions and

bias values (see Fig. 3 right), giving us 24 weights in total. Each of these weights is

mapped to a separate dimension in the PSO search space, creating a 24-dimensional

space in which particles move about (in other words, wj = xi,j with 1 ≤ j ≤ 24 for

some set of ANN weights w̄ mapping to some particle position x̄i). Coupling the PSO

optimization process with robot performance evaluations allows the ANN weights to be

tuned for improved performance as optimization proceeds, which results in the robot

learning the desired behavior.

Robot proximity sensors have a maximum range of 10.0 cm, and sensor output

varies linearly from 0.0 at maximum range to 1.0 at minimum range (0.0 cm). To

increase the realism of the sensors, we add uniform noise of ± 0.05 at maximum range

which scales linearly down to ± 0.0 at minimum range; this is approximately equivalent

to the average noise observed on Khepera III proximity sensors. The maximum speed

of the robots is 25 cm/s. Slip noise of 10% is applied to wheel speeds. The time step

for neural updates is 64 ms.

The benchmark study for the learning techniques explored here is to generate high-

performing controllers for obstacle avoidance behavior in an online fashion. To achieve

this, we use the same performance function as was used by Floreano & Mondada, 1996,

given by:

F = V · (1 −
√

∆v) · (1 − i)

0 ≤ V ≤ 1

0 ≤ ∆v ≤ 1

0 ≤ i ≤ 1

where V is the average absolute wheel speed of both wheels, ∆v is the average of

the difference between the wheel speeds, and i is the average activation value of the

most active proximity sensor over the evaluation period. These factors reward robots

8

that move quickly (V), turn as little as possible (1 −
√

∆v), and spend little time

near obstacles (1− i). The terms are normalized to give a maximum performance of 1.

Between each performance test, the position and bearing of the robots are randomly

set by the simulator to ensure the randomness of the next evaluation.

For the choice of swarm size, number of PSO iterations, and performance evaluation

time span for these experiments, we opted for a swarm of 10 particles to be optimized

for 50 iterations with an evaluation time of 30 seconds per performance measurement.

These choices were guided by empirical tests that indicated that this set of parameters

results in good performance given a limited amount of learning time. After the specified

number of iterations have been run, learning is halted, regardless of the performance

of the swarm at that point.

We test for team sizes of 1, 2, 5, and 10 robots. To distribute work amongst the

robots, different robots are assigned to “manage” different particles, by which we mean

each robot is responsible for evaluating the performance of the same set of particles at

each iteration. With one robot, that robot is responsible for managing all ten particles.

With two robots, each robot manages five particles, with particles assigned arbitrarily

to each robot at the start of learning. With five robots, the number of managed particles

per robot decreases to two, and with ten robots, each robot only manages a single

particle (again assigned arbitrarily when learning starts).

Because the number of iterations is fixed, the “speed” of learning is determined by

the time required for each iteration. By running performance evaluations in parallel

on the different robots, we can decrease this time and therefore reduce the total time

required for learning. In this way, going from 1 to 10 robots has a significant effect on

the total learning time needed - 8 hours 20 minutes for 1 robot compared to 50 minutes

for 10 robots.

At the end of an optimization run, all candidate controllers are tested for five runs

of 30 seconds each, and the controller with the highest performance is selected as the

best solution. In order to fairly evaluate this best solution, it is tested both on a single

robot running by itself and on ten robots running simultaneously; this measures its

ability to successfully avoid walls and its ability to avoid both walls and other robots,

respectively. Intuition tells us that controllers generated using small robot group sizes

would be better suited for the single robot scenario, while controllers generated using

large robot group sizes would be better suited for the ten robot scenario, as controllers

adapt to best fit their learning environment. For both of these scenarios, the controller

is evaluated for 40 runs of 30 seconds each to determine its average performance.

3.2 Results

A comparison of the average performances of the best solutions over 100 runs can be

seen in Fig. 4. For all group sizes, single robot evaluation gives a higher performance

than ten robot evaluation; this is to be expected, since a robot will encounter less

obstacles if it is the only one in the arena. Also as expected, one robot learning by

itself achieves better performance for single robot evaluation than larger group sizes.

However, it also achieves better performance for ten robot evaluation. This suggests

that the added noise from having larger groups of robots increases the difficulty in

learning, resulting in worse controllers. However, the decrease in performance is not

particularly high (a 5% decrease going from one to ten robots) and may be considered

well worthwhile in order to obtain a learning speed-up factor of 10.

9

1 2 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

e
rf

o
rm

a
n

c
e

Robotic Group Size

Single Robot Evaluation
Ten Robot Evaluation

Fig. 4 Average of final best performances over 100 runs with different robotic group sizes.
Error bars represent standard error across runs.

One concern in the learning process is overfitting, where generated controllers are

highly specific to their exact learning environment and achieve poor performance in

other scenarios. Observing Fig. 4, we can discern that generated behaviors are at least

somewhat flexible with respect to the obstacle density of the environment; controllers

generated with a single robot perform well with 10 robots present, and controllers

generated with 10 robots perform well on a lone robot. This suggests that the solutions

are not suffering from over-fitting and allow for some generalization.

4 Communication-based Neighborhoods

In multi-robot scenarios, communication range is often limited. Untethered robots have

a very limited amount of available energy at their disposal, and it is important to

conserve this by restricting transmission power. Also, if communication range is too

large, interference between signals can decrease the rate at which data can be sent. If

we distribute particles in a PSO population between robots and use the standard PSO

local neighborhood model, robots may be required to share information with other

robots that are far from their position. Therefore, to realistically model a scalable

multi-robot system, particle neighborhoods should be set in such a way that robots are

not required to communicate with other robots outside of some close proximity.

10

4.1 Experimental Setup

We propose two such models for PSO neighborhoods to emulate realistic robot com-

munication.

Model A: Each robot contains one particle. At the end of each performance evalu-

ation, the robot selects the two other robots closest to it, and uses their particles as its

neighborhood for the next iteration of the algorithm. This maintains the same number

of particles in the neighborhood, but allows for the neighbors to change over the course

of the learning process. As the physical location of the robots is independent of the

particle indices, this should be roughly equivalent to randomly choosing two neighbors

at each iteration of the algorithm, especially since obstacle avoidance behavior should

result in a uniformly random distribution of robots within the environment.

Model B: Each robot contains one particle. At the end of each performance eval-

uation, the robot selects all robots within a fixed radius r, and uses their particles

as its neighborhood for the next iteration of the algorithm; this emulates a broadcast

transmission from every robot, detectable by any other robot within range. This results

in a variable number of neighbors, as the robot may be close to very few or very many

robots. However, it is perhaps more realistic than Model A, since for very sparse robot

distributions, there may be fewer than two other robots in close proximity at times.

If no other robot is within range, the robot uses its own particle as the neighborhood

best.

We compare the performance of the original lbest neighborhood topology to the two

new models, using r = 1.2 m, for a group of 10 robots. We use the setup previously

described.

4.2 Results

A comparison of the average performances over 100 runs is shown in Fig. 5. The new

neighborhood models do not show any decrease in performance, and in fact achieve

higher performance than the standard lbest topology, though not significantly so (a

Mann-Whitney U-test between Model A and lbest yields a p-value of 0.583, and a U-

test between Model B and lbest yields a p-value of 0.110). This does, however, show

that random neighborhood selection at each iteration does not result in a performance

decrease as compared to the static lbest topology. The good performance of Model B

indicates that the effectiveness of learning is not tied to keeping strictly two neighbors

at each iteration. The success of these models shows that we can accomplish distributed

online learning in a realistic multi-robot system.

5 Varying the Communication Range

We now explore the effects of varying the communication range used in Model B. This

could be accomplished in a real robotic system by varying the output power of the

transmission. It is useful to know the trade-off between output power and learning

performance.

11

 lbest Model A Model B
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7
P

e
rf

o
rm

a
n
c
e

Fig. 5 Average of final best performances over 100 runs for different neighborhood models.
Error bars represent standard error across runs.

5.1 Experimental Setup

We use communication ranges of 0.3 m, 0.8 m, 1.0 m, 1.2 m, 3.3 m, and 5.0 m. Table 2

gives the expected number of robots within communication range, assuming a uniformly

random distribution of robots within the arena. We therefore go from little interparticle

communication to full interparticle communication.

Table 2 Expected number of neighboring robots

r (m) Expected Number of Neighbors

0.3 0.3

0.8 1.8

1.0 2.3

1.2 3.1

3.3 8.9

5.0 9.0

These results were obtained by decomposing the arena space into a two-dimensional

grid, calculating the likelihood that some robot A is within range of some robot B for

all grid positions of both A and B, and scaling this value by the total number of other

robots present (in this case nine, for a team of 10 robots). The resolution of the grid

was made sufficiently small so that the results are accurate to the level of significance

presented. However, the assumption of uniform distribution may not hold for robots

12

learning obstacle avoidance behavior, which could cause the true expected number of

neighbors to be either higher or lower or to vary during the learning process.

5.2 Results

The average performances of the best particles over 100 runs for different communi-

cation ranges can be seen in Fig. 6. The best results are obtained for intermediate

ranges. The progress of the average swarm performance throughout the learning pro-

cess for 0.3 m, 1.2 m, and 3.3 m can be seen in Fig. 7. The low communication range

again performs poorly here, but instead of observing a low performance for the high

communication range, both the intermediate and high range appear to perform well.

The discrepancy between our best particle performances in Fig. 6 and average

swarm performances in Fig. 7 may be caused by variations in swarm diversity. A lower

communication range would mean less information sharing among robots, which could

result in greater differences among the robot controllers; a higher communication range

would mean more information sharing and possibly more similar controllers. We would

expect a swarm with greater diversity to have a larger gap between the performance of

the best solution and the average performance of the swarm, while a swarm with less

diversity would have a smaller gap. This could explain why the high communication

range appears to perform relatively better when using average swarm performance

rather than best particle performance as the evaluation metric.

0.3 0.8 1.0 1.2 3.3 5.0
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

P
e
rf

o
rm

a
n
c
e

Communication Range (m)

Fig. 6 Average of final best performances over 100 runs for different communication ranges
in Model B. Error bars represent standard error across runs.

Decreased performance for low communication range is due to not enough informa-

tion being exchanged between particles; particles end up mostly relying on their own

13

0 10 20 30 40 50
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65
A

ve
ra

ge
S

w
a

rm
P

e
rf

o
rm

a
n

c
e

r = 0.3 m
r = 1.2 m
r = 3.3 m

Iteration

Fig. 7 Average swarm performance over 100 runs for 0.3 m, 1.2 m, and 3.3 m communication
range in Model B.

personal best position for learning, which causes slow convergence. In the case of very

high communication range, the initial convergence of the population was faster than

with the shorter communication ranges, but it would sometimes prematurely converge

on a solution which did not have particularly high performance. This indicates that a

global neighborhood can actually be detrimental to finding very good solutions, and we

therefore gain no benefit whatsoever by expanding our communication range beyond

a certain point.

Referring back to Fig. 6, we observe that there is an unexpected drop in the per-

formance for a communication range of 1.0 m as compared to the performances for 0.8

m and 1.2 m. We have not been able to ascertain a specific cause of this variation. One

possible explanation is that it may simply be due to noise in the results, although the

size of the error bars suggests that this is quite unlikely. The same holds true with the

relatively large gap in performance between the 3.3 meter and 5.0 meter ranges, de-

spite the fairly minor difference in expected communication connectivity (8.9 expected

robots in range vs. 9.0). An alternative explanation for this discrepancy is that the true

expected number of neighbors differs from the results of our numerical calculations,

making the gap in effective connectivity much larger than previously expected.

We can further explore the variations in performance for different communication

ranges by observing the diversity of the PSO swarm throughout the optimization pro-

cess. For our diversity metric, we choose simple Euclidean distance in the virtual search

space. The pairwise diversity between two particles i and k is therefore given by:

d(x̄i, x̄k) =

√

∑

j

(xi,j − yk,j)2

14

The diversity of the entire swarm is given by the average pairwise diversity of all pairs

of particles, or:

D(x̄1, ..., x̄n) =
1

n(n − 1)

∑

x̄i





∑

x̄k 6=x̄i

d(x̄i, x̄k)





where n is the total size of the swarm.

Using this metric, we calculate the diversity of the particle swarms throughout the

learning process averaged over 100 runs for communication ranges of 0.3 m, 1.2 m, and

3.3 m (see Fig. 8). As predicted, a lower communication range results in higher swarm

diversity, while a higher communication range results in a lower swarm diversity. We

observe that for the low range of 0.3 m, diversity increases throughout optimization

and reaches more than twice its initial value by the end; this suggests that very little

convergence is taking place, which prevents the algorithm from finding a good solution

in the virtual search space. For the high communication range of 3.3 m, diversity

immediately decreases at the start of optimization and remains below its initial value

throughout; this indicates rapid convergence, which could prematurely select a robot

behavior which gives only mediocre performance. For the intermediate communication

range of 1.2 m, diversity increases in the early stages of optimization and then levels

off; this may offer a good balance between exploration and exploitation of successful

robot behaviors, ultimately achieving the best performance.

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

Iteration

D
iv

er
si

ty

r = 0.3 m
r = 1.2 m
r = 3.3 m

Fig. 8 Average population diversity over 100 runs for 0.3 m, 1.2 m, and 3.3 m communication
range in Model B, normalized to a starting value of 1.0.

While the intermediate communication range had the best performances in Model

B, all ranges achieved fairly high performance. The success of all these suggests that the

15

effectiveness of the algorithm is not highly dependent on choosing an exact neighbor-

hood size, making the choice of algorithm parameters quite robust. This is an important

feature, as the communication range with real robots can vary due to obstruction and

environmental effects.

6 Distributed Learning with Real Robots

While realistic simulation may give us valuable insight into the effectiveness of different

robotic controllers and learning strategies, it is important to validate these approaches

using actual robots in order to ensure that our virtual scenario is well-aligned with the

real world. We therefore run parallel robotic learning experiments using real robots.

In the past, it has been quite rare for online robotic learning to be run completely

on real robots. This was due to the excessive time required for full online learning

experiments, which were often infeasible on robots with very limited battery life. A

major exception to this was the work of Floreano & Mondada, 1996, where a tethered

robot learned obstacle avoidance behavior after more than 60 hours of optimization.

More often, hybrid learning is used, where most of the learning is done in realistic

simulation, and then transferred onto real robots for the final portion (for example,

see Miglino et al., 1995). This can offer a very good compromise between controller

quality and learning time, but requires an accurate model of the environment to ex-

ist. Some offline learning techniques (such as apprenticeship learning or learning by

imitation studied by Abbeel et al., 2008 and Billard & Matarić, 2001) can offer fast

performance as well, but also require some sort of teacher and may not be appropri-

ate for unknown/dynamic environments. By exploiting the speed-up from parallelism

of a multi-robot system, however, full online robotic learning becomes feasible. This

was accomplished in previous work using embodied evolution with 8 robots learning in

parallel (Watson et al., 2002). We now use distributed PSO to do full robotic learning

using 10 real Khepera III robots.

6.1 Experimental Setup

For our real robot experiments, we use the same environmental setup as was used in

simulation; ten Khepera III robots operate in a 3.0 m × 3.0 m square arena (see Fig. 9).

Robots are able to measure the performance of their own obstacle avoidance behavior

on board by recording their wheel speeds and proximity sensor detections throughout

an evaluation and plugging those values into the performance equation. Because robots

are regularly bumping into walls and each other throughout the learning process, a foam

bumper ring was attached around the periphery of each one (at a position where it did

not interfere with the infrared proximity sensors) to dampen the impact from collisions

and prevent permanent damage.

In our virtual simulations, after every evaluation, robots would be moved to ran-

dom locations within the arena. This is clearly impossible with real-world robots. To

approximate this effect, between each evaluation, a random speed is applied to each

wheel of each robot for a duration of three seconds. While this is a poor approximation

of a completely random new position, it should help somewhat to prevent bias on the

next robot evaluation.

16

Fig. 9 Real Khepera III robots with relative positioning boards and bumper rings in their
arena.

For communication-based PSO neighborhoods, particle neighbors are determined

by distances between robots. In order to measure this, we utilize an on-board relative

positioning system (see Pugh et al., 2009). This is a board which is connected atop

the robot and regularly emits modulated infrared packets (at approximately 15 Hz).

These packets can be detected by the relative positioning systems of other robots

on several different receivers, and the Received Signal Strength Indication (RSSI) of

each can be used to calculate both the range and bearing of the transmitting robot

relative to the receiving robot’s location. This allows robots to estimate the distance

between themselves, with an error level of approximately 10% of the actual range.

However, because infrared is used for positioning, this method is sensitive to occlusion.

Therefore, robots will not detect each other if some other robot is in the way (this

differs from our simulation, where communication could not be occluded).

For simulated robotic learning, robots in the group were considered to always be

completely synchronized. In real-world multi-robot systems, this may not be a valid

assumption, since robots may not begin running simultaneously or may not have a

precise internal timer. Synchronicity is necessary in distributed PSO robotic learn-

ing, since robots must exchange particle information between evaluations. In order to

achieve this, we exploit the three second random movement between evaluations as a

period to share particle information with other robots via wireless communication (and

range information via relative positioning). Using this approach, it is still necessary for

robots to be loosely synchronized (to within one or two seconds of each other), but this

is relatively easy to achieve with the speed of wireless communication.

On a Khepera III robot using a relative positioning board, the battery lifetime is

approximately 50 minutes. While this is theoretically enough time to complete a full

learning run, it is not enough to select the best solution and evaluate its performance.

Additionally, variation in battery quality results in some batteries lasting for less time

than others. For these reasons, it was necessary to design the distributed PSO robotic

learning algorithm so that the swarm state (particle parameters and performance) was

periodically saved on all robots. If a robot prematurely ran out of energy (or crashed

17

for some other reason), the batteries could be replaced and the robots reset to resume

optimization from that saved state.

6.2 Communication-Based Neighborhoods with Real Robots

We test the effectiveness of the standard neighborhood and communication-based

neighborhoods described in Section 4 using real robots. Five trials are run using the

lbest topology, Model A, and Model B with a communication radius of 1.0 m; the per-

formances averaged over 5 runs are shown in Fig. 10. We see that all three approaches

are able to achieve very good performance; in every single run, an effective obstacle

avoidance approach is discovered. In most experiments, the generated behavior would

be for the robot to move forward at full speed until it detected an obstacle with its

front sensors, at which point it would consistently turn either right or left. This ap-

proach worked very well most of the time, but would occasionally cause two robots

to become stuck together if they happened to collide at a certain angle. A second less

common approach used the recursive nature of the ANN to achieve state switching;

the robot would move forward at full speed until it detected an obstacle with its front

sensors, at which point it would reverse its movement direction and go backwards at

full speed, possibly turning slightly during the switch. This approach actually yielded

higher performance, since by using both the front and back sensors for avoidance, the

most active sensor has lower activation than if the robot always moves in the same di-

rection. Additionally, reversing direction prevented robots from becoming stuck against

each other nearly as often.

 lbest Model A Model B
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
e
rf

o
rm

a
n
c
e

Fig. 10 Average of final best performances over 5 runs for different neighborhood models on
real robots. Error bars represent standard error across runs.

18

When comparing the results of the different neighborhood topologies, we see that

while Model B still outperforms the standard topology, Model A performs more poorly.

One possible explanation for this is the difference in how robots are randomly moved

between evaluations; in simulation, the random re-positioning allowed information to

be spread more quickly throughout the swarm, while the small shift resulting from

three seconds of movement with the real robots is not sufficient for robot neighbors to

change. Model B still performs well because the communication radius is large enough

that information is spread even with the small position shift. However, it is difficult to

make definitive comparisons among the real results, as the number of runs is too low

for small differences in performance to be significant.

6.3 Varying Communication Range with Real Robots

We also explore how different communication ranges affect the learning performance

on real robots. We run experiments using the Model B particle neighborhood with

communication ranges of 0.3 m, 1.0 m, and 3.3 m. The results of 5 runs can be seen in

Fig. 11. Although we cannot state with confidence that the performance for any range

is higher than any other, we do see the same trend observed in simulation (Fig. 6):

performance is higher for an intermediate communication range than either a very low

or very high one. The average performance remains high for all communication ranges.

0.3 1.0 3.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
e

rf
o

rm
a

n
c
e

Communication Range (m)

Fig. 11 Average of final best performances over 5 runs for different communication ranges in
Model B with real robots. Error bars represent standard error across runs.

19

7 Conclusions

We have presented a distributed implementation of PSO for fast parallel learning in

multi-robot systems. The technique allows the speed of online learning to be increased

by using larger groups of robots, with only a marginal drop in learning performance.

Using a particle neighborhood based on the limitations of robot communication, we

achieve performance as good as (and possibly better than) that achieved with the

standard approach. The communication-based neighborhood provides maximum per-

formance when the communication range is limited, allowing robots to potentially save

power. The efficacy of the distributed PSO robotic learning technique is clearly shown

through multiple experiments using 10 real robots operating in parallel; these experi-

ments show similar trends to those observed in simulation.

Perhaps the biggest difference between our simulated and real-world experiments

was the random repositioning of robots after each evaluation. To get the most fair test

of a controller, starting conditions should not be biased by previous actions, which

is why robots were positioned completely randomly in simulation. With real robots,

completely random positioning is not possible, and therefore the random motor speeds

were applied as a limited approximation. Comparing the results of simulations with

real experiments, we see that there was no penalty to the performance of the generated

controllers for using this approximation (with the possible exception of the Model

A neighborhood results). This suggests the learning process does not require strictly

unbiased evaluations to achieve good results; it is possible that the technique would

continue to be effective even if no random motion was executed between evaluation

runs, something which might be a necessary constraint for certain applications. It

would also be informative to recreate the random motor speed movement in simulation

and systematically compare the results of the two approaches to quantitatively evaluate

the impact of the change.

By increasing the robot group size from one to ten robots, we were able to decrease

the behavior learning time with our distributed PSO algorithm by a factor of ten.

However, using a particle population size of ten, there is no easy way to further decrease

the time while maintaining only local interactions. It may be possible to use twenty

robots to simultaneously evaluate the ten new particles and reevaluate the ten previous

best particles, but this would require a global supervisor to manage the assignments of

candidate solutions to different robots, as each robot is no longer fully in charge of a

particle. Therefore, further increasing the number of robots using only local interactions

would only allow us to increase the size of the population. It has yet to be explored how

increasing the swarm size could affect the learning rate, and what type of neighborhood

type would be most appropriate as the population continues to grow.

In this work, our robotic learning technique was run for a specific number of itera-

tions to ultimately generate an effective controller; after the learning process, the best

performing controller was selected and used indefinitely by all robots. This approach

is only valid if the robots’ environment is static. If the environment changes over time,

any generated controller will likely become obsolete, as it will not make the necessary

adjustments needed to maintain good performance. An alternate learning approach is

to keep the learning technique running indefinitely and never select a single controller

to be used by all robots. This would allow robots to optimize their behavior to the

environment and automatically re-optimize whenever that environment changes. Pre-

liminary results suggest that this may be an effective technique to achieve adaptive,

high-performance behavior (Pugh & Martinoli, 2008), and further study is warranted.

20

While generating obstacle avoidance behavior is often used as a benchmark for

robotic learning techniques (e.g., Floreano & Mondada, 1996; Kaelbling, 1993; Michels

et al., 2005; Nordin & Bahnzaf, 1997; Ye et al., 2003), it is a single, relatively simple

task; good performance in obstacle avoidance does not guarantee that the technique

will allow robots to effectively learn other behaviors, particularly more complex ones.

Previous work has shown that the technique is also effective for learning aggregation

(Pugh & Martinoli, 2006) and target localization (Pugh & Martinoli, 2008) behavior.

However, both of these behaviors are also quite simple, and it is likely that were the

technique applied to more complex task (e.g., one requiring a much larger ANN), it

would have difficulty finding the best solutions, simply because the high parameter

dimensionality would result in a search space that is too large to explore effectively.

This is a known limitation for many learning algorithms, and it would be useful to

evaluate how well the distributed PSO technique is able to handle the challenge and

whether traditional work-arounds (such as behavior decomposition) would be effective.

For obstacle avoidance behavior, using a communication-based particle neighbor-

hood yielded good performance with the distributed PSO learning technique. It is not

evident whether this result can be generalized to other behaviors; the geographical

distribution of robots is highly dependent upon how they respond to their environ-

ment. A previous study (Pugh & Martinoli, 2006) showed that communication-based

neighborhoods also yield high-performance results in aggregation behavior, indicating

flexibility in the application of the approach. However, full generality should not be

assumed until further studies have shown similar success on a variety of scenarios.

Our distributed online robotic learning technique achieves homogeneous learning

in a robot team, with all robots collaborating to create a single, high-performing con-

troller. Depending upon the scenario, heterogeneous behavior may be desirable, where

different robots behave differently to achieve some beneficial synergy. While it does not

result directly from our approach, the optimization of heterogeneous controllers could

be accomplished with only minor adjustments to the approach. One possibility would

be to divide the robot team into smaller sub-teams and run the learning algorithm on

each sub-team separately. The disadvantage of this approach is that the heterogeneity

of the system would need to be pre-established, which could limit its flexibility. An al-

ternative would be for all robots to simultaneously optimize multiple controllers, with

some (possibly adaptive) probability of selecting each of the behaviors at the start of

operation (for example, robots could learn the weights of two different ANNs; at the

start of each evaluation, they would select the first ANN with probability p and the

second with probability 1 − p and use that ANN for the entire evaluation). However,

it is not immediately evident whether the same information sharing approach would

be as effective in this case. Both of these approaches would require the optimization of

a much greater number of parameters, resulting in slower learning (which might offset

the benefit of a heterogeneous team), and their viability should be explored through

future experimentation.

8 Acknowledgements

The authors would like to thank the referees for all their helpful feedback. This work

has been supported by a Swiss National Science Foundation grant (contract Nr. PP002-

116913).

21

References

Abbeel, P., Dolgov, D., Ng, A., & Thrun, S. (2008). Apprenticeship Learning for Motion
Planning with Application to Parking Lot Navigation. In Proc. of the IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (pp. 1083-1090). Piscataway, NJ: IEEE Press.

Atkeson, C. G., Moore, A. W., & Schaal, S. (1997). Locally Weighted Learning for Control.
Artificial Intelligence Review, 11, 75-113.

Balch, T. (1998). Behavioral diversity in learning robot teams. PhD Thesis, College of Com-
puting, Georgia Institute of Technology, Atlanta, GA.

Billard, A. & Matarić, M. J. (2001). Learning human arm movements by imitation: Evaluation
of a biologically-inspired connectionist architecture. Robotics and Autonomous Systems,
37, 145-160.

Bowling, M. & Veloso, M. (2003). Simultaneous adversarial multi-robot learning. In Proc.
of the Int. Joint Conf. on Artificial Intelligence (pp. 699-704). Mahwah, NJ: Lawrence
Erlbaum.

Di Chio, C. & Di Chio, P. (2007). EcoPS - a Model of Group-Foraging with Particle Swarm
Systems. In Proc. of the Euro. Conf. on Artificial Life, LNCS 4648 (pp. 685-695). Berlin:
Springer.

Dorigo, M., Trianni, V., Şahin, E.,Groβ, R., Labella, T. H., Baldassarre, G., Nolfi, S.,
Deneubourg, J.-L., Mondada, F., Floreano, D., & Gambardella, L. M. (2004). Evolving
Self-Organizing Behaviors for a Swarm-Bot. Autonomous Robots, 17, 223-245.

Eberhart, R. & Kennedy, J. (1995). A new optimizer using particle swarm theory. In Proc. of
the Int. Symp. on Micro Machine and Human Science (pp. 39-43). Piscataway, NJ: IEEE
Press.

Floreano, D. & Mondada, F. (1996). Evolution of Homing Navigation in a Real Mobile Robot.
IEEE Trans. on Systems, Man and Cybernetics, Part B, 26, 396-407.

Franklin, J. A., Mitchell, T. M., & Thrun, S. (1996). Recent Advances in Robot Learning.
Boston, MA: Kluwer Academic Publishers.

Jatmiko, W., Sekiyama, K., & Fukuda, T. (2006). A PSO-based Mobile Sensor Network for
Odor Source Localization in Dynamic Environment: Theory, Simulation and Measure-
ment. In Proc. of the IEEE Congress on Evolutionary Computation (pp. 1036-1043). Los
Alamitos, CA: IEEE Computer Society.

Kaelbling, L. P. (1993). Learning in embedded systems. Cambridge, MA: The MIT Press.
Kelly, I. D. & Keating, D. A. (1998). Faster learning of control parameters through sharing

experiences of autonomous mobile robots. Int. Journal of System Science, 29, 783-793.
Kennedy, J. & Eberhart, R. (1995). Particle swarm optimization. In Proc. of the IEEE Int.

Conf. on Neural Networks (pp. 1942-1948). Piscataway, NJ: IEEE Press.
Li, L., Martinoli, A., & Abu-Mostafa, Y. (2004). Learning and Measuring Specialization in

Collaborative Swarm Systems. Adaptive Behavior, Special issue on Mathematics and Al-
gorithms of Social Interactions, 12, 199-212.

Mahadevan, S. & Connell, J. (1991). Automatic Programming of Behavior-based Robots using
Reinforcement Learning. In Proc. of the Natl. Conf. on Artificial Intelligence (pp. 768-
773). San Francisco, CA: Morgan Kaufmann.

Matarić, M. J. (1994). Learning to Behave Socially. In Proc. of the Int. Conf. on the Simulation
of Adaptive Behavior (pp. 453-462). Cambridge, MA: MIT Press.

Matarić, M. J. (2001). Learning in behavior-based multi-robot systems: Policies, models, and
other agents. Cognitive Systems Research, Special Issue on Multi-Disciplinary Studies of
Multi-Agent Learning, 2, 81-93.

Michel, O. (2004). Webots: Professional Mobile Robot Simulation. Int. Journal of Advanced
Robotic Systems, 1, 39-42.

Michels, J., Saxena, A., & Ng, A. Y. (2005). High speed obstacle avoidance using monocular
vision and reinforcement learning. In Proc. of the Int. Conf. on Machine Learning (pp.
593-600). New York, NY: ACM.

Miglino, O., Lund, H. H., & Nolfi, S. (1995). Evolving Mobile Robots in Simulated and Real
Environments. Artificial Life, 2, 417-434.

Murciano, A., Millán, J. R., & Zamora, J. (1997). Specialization in multi-agent systems
through learning. Behavioral Cybernetics, 76, 375-382.

Nehmzow, U. (2002). Learning in multi-robot scenarios through physically embedded genetic
algorithms. In Proc. of the Int. Conf. on the Simulation of Adaptive Behavior (pp. 391-
392). Cambridge, MA: MIT Press.

22

Nordin, P. & Bahnzaf, W. (1997). An On-Line Method to Evolve Behavior and to Control a
Miniature Robot in Real Time with Genetic Programming. Adaptive Behavior, 5, 107-140.

Panait, L. & Luke, S. (2005). Cooperative Multi-Agent Learning: The State of the Art. Au-
tonomous Agents and Multi-Agent Systems, 11, 387-434.

Parker, L. E. (1997). L-ALLIANCE: Task-Oriented Multi-Robot Learning in Behavior-Based
Systems. Advanced Robotics, 11, 305-322.

Pugh, J., Zhang, Y., & Martinoli, A. (2005). Particle swarm optimization for unsupervised
robotic learning. In Proc. of the IEEE Swarm Intelligence Symposium (pp. 92-99). Pis-
cataway, NJ: IEEE Press.

Pugh, J. & Martinoli, A. (2006). Multi-Robot Learning with Particle Swarm Optimization.
In Proc. of the Int. Conf. on Autonomous Agents and Multiagent Systems (pp. 441-448).
New York, NY: ACM.

Pugh, J. & Martinoli, A. (2008). Distributed Adaptation in Multi-Robot Search using Particle
Swarm Optimization. In Proc. of the Int. Conf. on the Simulation of Adaptive Behavior,
LNCS 5040 (pp. 393-402). Berlin: Springer.

Pugh, J. & Martinoli, A. (2009). An Exploration of Online Parallel Learning in Heterogeneous
Multi-Robot Swarms. Design and Control of Intelligent Robotic Systems, SCI 177 Chapter
7. (pp. 145-165). Berlin: Springer.

Pugh, J., Raemy, X., Favre, C., Falconi, R., & Martinoli, A. (2009). A Fast On-Board Relative
Positioning Module for Multi-Robot Systems. IEEE/ASME Transactions on Mechatron-
ics, Focused Section on Mechatronics in Multi Robot Systems, to appear.

Smart, W. D. & Kaelbling, L. P. (2002). Effective reinforcement learning for mobile robots. In
Proc. of the IEEE Int. Conf. on Robotics and Automation (pp. 3404-3410). Piscataway,
NJ: IEEE Press.

Stone, P. (1998). Layered Learning in Multi-Agent Systems. PhD Thesis, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA.

Stone, P. & Veloso, M. (2000). Multiagent Systems: A Survey from a Machine Learning Per-
spective. Autonomous Robots, 8, 345-383.

Watson, R. A., Ficici, S. G., & Pollack, J. B. (2002). Embodied Evolution: Distributing an
Evolutionary Algorithm in a Population of Robots. Robotics and Autonomous Systems,
39, 1-18.

Ye, C., Yung, N. H. C., & Wang, D. (2003). A fuzzy controller with supervised learning assisted
reinforcement learning algorithm for obstacle avoidance. IEEE Trans. on Systems, Man,
and Cybernetics, Part B, 33, 17-27.

