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Abstract The focus of research in swarm intelligence has been largely on the al-
gorithmic side with relatively little attention being paid to the study of problems
and the behaviour of algorithms in relation to problems. When a new algorithm or
variation on an existing algorithm is proposed in the literature, there is seldom any
discussion or analysis of algorithm weaknesses and on what kinds of problems the
algorithm is expected to fail. Fitness landscape analysis is an approach that can
be used to analyse optimisation problems. By characterising problems in terms of
fitness landscape features, the link between problem types and algorithm perfor-
mance can be studied. This article investigates a number of measures for analysing
the ability of a search process to improve fitness on a particular problem (called
evolvability in literature, but referred to as searchability in this study to broaden
the scope to non-evolutionary based search techniques). A number of existing fit-
ness landscape analysis techniques originally proposed for discrete problems are
adapted to work in continuous search spaces. For a range of benchmark problems,
the proposed searchability measures are viewed alongside performance measures
for a traditional global best particle swarm optimisation (PSO) algorithm. Em-
pirical results show that no single measure can be used as a predictor of PSO
performance, but that multiple measures of different fitness landscape features
can be used together to predict PSO failure.

Keywords Fitness landscape analysis · evolvability · particle swarm optimisation

1 Introduction

PSO algorithms have become popular for solving complex real-valued optimisation
problems and have been applied successfully to a wide range of problems. Just like

K. M. Malan
Department of Computer Science, University of Pretoria, Pretoria, South Africa
Tel.: +2712-420-3618
Fax: +2712-362-5188
E-mail: kmalan@cs.up.ac.za

A. P. Engelbrecht
E-mail: engel@cs.up.ac.za



2 K. M. Malan, A. P. Engelbrecht

all other metaheuristics, however, PSO algorithms sometimes fail. The traditional
PSO algorithm can easily be understood in terms of the basic elements of a swarm
of solution vectors, velocities and global and personal guides, but due to stochas-
tic elements and the dynamic swarm interactions, the resulting behaviour is not
as easy to understand or predict. Given an unknown problem, a practitioner or
researcher having to choose an appropriate PSO algorithm has almost no guid-
ance with respect to algorithm configuration and parameter setting and the most
common approach is to use trial-and-error to find a solution that hopefully works
well.

Smith-Miles (2008) proposed applying the framework of the general algorithm
selection problem (Rice, 1976) to optimisation. The basic idea is to use machine
learning to train an algorithm performance predictor based on features of the
problem. Contrary to the work of Smith-Miles, the goal of the current study is not
to develop an algorithm selector, but to investigate whether searchability measures
can be used to predict PSO performance. Such measures could then form part of
the solution to solving the algorithm selection problem for PSO variants.

There are many problem features that have been shown to influence the diffi-
culty of a problem for search (Malan and Engelbrecht, 2013c), such as the rugged-
ness of the fitness landscape, interdependency between variables, presence of mul-
tiple funnels in a fitness landscape, etc. In particular, Langdon and Poli (2007)
showed how the features of a problem influence PSO search. Using genetic pro-
gramming (GP), they evolved two-dimensional objective functions to maximise the
difference between the performance of PSO, differential evolution and a covariance
matrix adaptation evolution strategy (CMA-ES), as well as PSO with different
parameter settings. They found, for example, that PSO struggled to maximize
a fitness landscape with a ramp and “cliff edge” at the end of the ramp. They
showed that GP was always able to find a landscape that was more suited to one
algorithm or setting than another, confirming the link betweeen problem features
and algorithm performance.

There are studies that have been successful in predicting performance or se-
lecting algorithms for continuous optimisation based on problem features. For
example, Bischl et al (2012) used low-level problem features based on exploratory
landscape analysis (proposed by Mersmann et al (2011)) of the BBOB (2013)
test suite and then successfully used one-sided support vector regression to pre-
dict which algorithms (from a portfolio of algorithms) would perform well. Muñoz
et al (2012) developed a model using a neural network to predict performance of a
CMA-ES algorithm. The inputs to the model were a number of landscape features
as well as algorithm parameters. In this way the model could be used to select
the best predicted algorithm configuration of the problem. These studies show
that problem characteristics can be used to predict or select the most appropriate
algorithm from a set of possible algorithms. However, rather than analysing indi-
vidual features a predictors, data mining is used to predict performance based on
combinations of different features.

Given an unknown problem, the aim of the current study is to approximate
problem features based on samples from the search space to form a characteri-
sation vector of the problem. In previous work (Malan and Engelbrecht, 2013a)
measures were implemented for quantifying ruggedness, funnels and gradients and
the link to PSO performance was investigated. This paper extends that work by in-
vestigating ways of measuring searchability. Empirical results show that although
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there is evidence of some correlation of the proposed searchability measures to
PSO performance, no single measure is a good predictor of hardness for PSO.
However, when the proposed searchability measures are considered with other fit-
ness landscape measures, fairly accurate failure prediction models can be deduced
for different PSO algorithms.

A further consideration regarding the related studies discussed above are that
the prediction models are black boxes that do not help in understanding the link
between problems and algorithms. A distinguishing feature of the current study is
that the aim is not only to predict PSO algorithm failure or performance, but also
to understand PSO better. By using decision tree induction, the kinds of prob-
lems that PSO struggles with are highlighted and the resulting models therefore
provide insights into the algorithms themselves. The proposed measures are based
on fitness landscape concepts, such as ruggedness and searchability (rather than
low-level statistical features), which makes it possible to reason about the problem
features in fitness landscape terms in relation to algorithm performance.

The article is organised as follows: Section 2 describes the notion of evolv-
ability, defines searchability, and describes existing techniques for quantifying or
visualising searchability. For each existing technique, modifications are proposed
to be applicable to PSO. The proposed techniques are tested on one-dimensional
benchmarks in Section 3, while Section 4 investigates the link between the pro-
posed searchability measures and actual PSO performance on higher dimensional
problems. Finally, Section 5 shows how the proposed searchability measures can
be combined with other fitness landscape measures to predict PSO failure.

2 Evolvability / Searchability

Evolvability can be loosely defined as the capacity to evolve (Turney, 1999). Al-
tenberg (1994) describes evolvability with particular reference to genetic algo-
rithms as the ability of a population to produce offspring that are fitter than their
parents. Evolvability is defined in this study as the ability of a given search process
to move to a place in the landscape of better objective function value and is re-
ferred to as searchability to broaden the scope of evolvability beyond evolutionary
based algorithms.

Some problem analysis measures were originally conceived as a way of quan-
tifying problem difficulty, but can be viewed as measures of searchability with
respect to local search. Two such examples are fitness distance correlation (Jones
and Forrest, 1995) and the information landscape hardness measure (Borenstein
and Poli, 2005b). Both these techniques require knowledge of the global optima,
and so cannot be used as predictive measures of algorithm performance on un-
known problems when used in their original form. An alternative is to base the
measure on a sample of the search space and to use the best point from the sample
in the place of the global optimum. This implies a shift in focus away from mea-
suring hardness to measuring searchability, since the aim is no longer to quantify
how well or badly the problem guides search towards the optimum, but rather to
quantify how well or badly the problem guides search towards a place in the search
space where objective function values improve.

There are also techniques that were specifically designed to visualise or quan-
tify evolvability for evolutionary algorithms. Three such techniques include fitness
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evolvability portraits (Smith et al, 2002), fitness clouds (Verel et al, 2003) and
fitness-probability clouds (Lu et al, 2011). Although visual plots are potentially
useful for human analysis, numerical output is more useful for facilitating auto-
mated analysis of problem features for performance prediction. The negative slope
coefficient (Vanneschi et al, 2004) is a numerical output measure that quantifies
the evolvability of a fitness landscape and is based on fitness clouds. Similarly, the
accumulated escape probability (Lu et al, 2011) is a numerical output measure
that quantifies evolvability based on a fitness-probability cloud, but is restricted
to problems with a discrete representation.

This section describes fitness distance correlation (Jones and Forrest, 1995),
information landscape hardness (Borenstein and Poli, 2005b), fitness clouds (Verel
et al, 2003) and the negative slope coefficient (Vanneschi et al, 2004), and proposes
ways of adapting these techniques to measure searchability of continuous problems
in the context of PSO algorithms.

2.1 Fitness distance correlation

Fitness distance correlation (FDC) (Jones and Forrest, 1995) was introduced as a
way of predicting the performance of a genetic algorithm (GA) on problems with
known global optima and measures the correlation between the objective value of
solutions and the distance to the nearest global optimum.

2.1.1 Original formulation

Given a set of n points with associated objective function values F = {f1, . . . , fn}
and distances of each point to the nearest global optimum in search space Dist =
{d1, . . . , dn}, the FDC is calculated as the covariance of F and Dist divided by
the product of the standard deviation of F and standard deviation of Dist, or:

FDC =
1
n

∑n
i=1(fi − f)(di − d)

σ(F )σ(Dist)
(1)

where f , d, σ(F ) and σ(Dist) are the means of F and Dist and the standard
deviations of F and Dist, respectively.

The FDC measure takes on values from –1 (perfect anti-correlation) to +1
(perfect correlation), where for maximisation problems, low values (≤ −0.15) are
regarded as easy, values around 0 difficult and higher values (≥ 0.15) misleading.
In the original study (Jones and Forrest, 1995), Hamming distance was used as
the measure of distance, but a number of subsequent studies have proposed al-
ternatives, such as the use of crossover to determine distance (Altenberg, 1997)
and distance metrics between trees for genetic programming problems (Vanneschi,
2004). Jones and Forrest (1995) showed empirically that the FDC measure is a
reliable indicator of GA performance on a wide range of problems.

A significant limitation of the FDC technique is that the optimal solution(s)
must be known beforehand. It has also been shown that it does not reliably predict
the difficulty of optimising the problem (Altenberg, 1997; Jansen, 2001; Naudts
and Kallel, 1998, 2000; Quick et al, 1998; Reeves, 1999).
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2.1.2 Fitness distance correlation as a searchability measure

The following adapted FDC measure is proposed for continuous problems. Given a
sample of n points, {x1, . . . ,xn}, from the search space, with associated objective
function values F = {f1, . . . , fn}, the best point in the sample is determined
and denoted x∗. The Euclidean distances of every point xi from x∗ are calculated
and denoted as Dist∗ = {d∗1, . . . , d

∗
n}. The fitness distance correlation searchability

(FDCs) measure is defined as the covariance of F andDist∗ divided by the product
of the standard deviation of F and standard deviation of Dist∗. Since these are
samples, this can be estimated and simplified to

FDCs =

∑n
i=1(fi − f)(d∗i − d∗)

√

∑n
i=1(fi − f)2

√

∑n
i=1(d

∗
i − d∗)2

(2)

where f and d∗ are the means of F and Dist∗, respectively.

2.2 Information landscape measures

Borenstein and Poli (2005a,b) introduced the concept of an information landscape:
a matrix of all possible comparisons between solutions based on objective function
values.

2.2.1 Original formulation

Given an objective function f of a minimisation problem and a set X of discrete
solutions, an information matrix M is defined as having |X| × |X| entries mi,j =
t(xi, xj), where

t(xi, xj) =







1 if f(xi) < f(xj)
0.5 if f(xi) = f(xj)
0 otherwise

(3)

Only a subset of the elements in the information matrix are necessary to define
the information landscape. Ignoring duplicated entries due to symmetry, entries
on the diagonal and the row and column of the optimal solution, the information
matrix can be reduced to a vector v = (v1, v2, . . . , vm), where |v| = m = (|X| −
1)(|X| − 2)/2. Given two problems represented by information landscape vectors
v1 and v2, the distance between v1 and v2 is defined as

D(v1,v2) =
1

m

m
∑

i=1

|v1i − v2i| (4)

Borenstein and Poli proposed a measure of GA hardness based on the distance
between the information landscape of a problem and the information landscape of
an ‘optimal’ landscape (referred to as vmax). An optimal landscape is one which
is known to be easy for a given search algorithm, or on which the algorithm will
perform maximally.
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2.2.2 Information landscape negative searchability measure

The information landscape hardness measure is based on the difference between the
information landscape vector of a problem and a reference landscape vector (called
vmax in the original study, but denoted using vr in this study). The well-known

Spherical function in D dimensions
(

f(x) =
∑D

i=1 x
2
i

)

can serve the purpose of

such a reference landscape for the following reasons:

– The Spherical function is an ‘optimal’ landscape in that it presents no negative
information for search: if any point xi has a lower objective function value than
another point xj , then xi will be closer to the optimum than xj .

– The Spherical function can be defined up to any dimension and is defined for all
values of x, so the domain can be set to match the domain of any real-encoded
problem.

– The Spherical function can be shifted so that the optimum is positioned any-
where in the search space, so that it coincides with the estimated optimum of
the problem landscape.

Given the above, it is proposed that the information landscape hardness measure
be adapted to an information landscape negative searchability measure (ILns) us-
ing the approach outlined in Algorithm 1. The measure is referred to as a negative
searchability measure because high values are indicative of bad information for
search.

Algorithm 1 Algorithm for computing the ILns (information landscape negative
searchability) measure for a minimisation problem.

1: Generate a sample of n random points x1, . . . ,xn from a uniform distribution of the search
space of problem p with dimension D.

2: Determine the position of the best solution in the sample, x∗.
3: Construct vector vp representing the information matrix of the problem using Equation 3.

4: Define reference function fr as fr(x) =
∑D

i=1(xi − x∗
i )

2.
5: Using the same sample of points x1, . . . ,xn, and based on fr, construct vector vr repre-

senting the information matrix of the reference landscape.
6: Compute ILns as the difference between vp and vr using Equation 4.

2.3 Fitness cloud

Verel et al (2003) introduced fitness clouds for visualizing the evolvability of evolu-
tionary search. The fitness cloud is a scatterplot showing the relationship between
objective function values of parents and offspring. For each solution x in the search
space (where x is a binary string in the original formulation), a neighbour of x,
called x′, is determined based on some genetic search operator. The fitness cloud
is then a scatterplot of all points (f(x), f(x′)) where f is the objective function.
The line f(x) = f(x′) in the scatterplot forms the division between points with
good evolvability and points with bad evolvability, with points falling on the line
being indicative of neutrality in a fitness landscape.
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2.3.1 Determining neighbours for fitness clouds using PSO

Constructing a fitness cloud for a given problem requires a sample of solutions
and neighbours of those solutions. In the original fitness cloud publication (Verel
et al, 2003) two solutions are regarded as neighbours if there is “a transformation

related to a local search heuristic or an operator which allows it to pass” from
one solution to another. For PSO algorithms, the search operators are in the
form of position update equations. Three update models with differing levels of
exploration/exploitation are proposed for calculating neighbours to be used as the
basis for generating fitness clouds. These are the cognitive-only model (using only
the personal best as a guide), the social-only model (using only the global best as
a guide) and the traditional model (combining the personal and global bests as
guides).

Given a problem in multi-dimensional real space, the position of each particle i
at iteration t of the algorithm can be represented as xi(t). The swarm of particles at
t = 0 are initialised with random positions and at each iteration of the algorithm,
the positions of particles are updated as follows:

xi(t+ 1) = xi(t) + vi(t+ 1) (5)

where vi(t + 1) is the velocity of particle i at time (t + 1). The three velocity
update models used for determining neighbours are as follows:

1. Cognitive-only PSO update (Kennedy, 1997):

vi(t+ 1) = w · vi(t) + c1 · r1(t)⊙ (yi(t)− xi(t)) (6)

where w is the inertia weight, c1 is the cognitive acceleration constant, r1(t) ∼
U(0, 1)D where D is the dimension of the problem, ⊙ denotes element-by-
element vector multiplication, yi(t) refers to particle i’s personal best position,
and yi(0) 6= xi(0).

2. Social-only PSO update (Kennedy, 1997):

vi(t+ 1) = w · vi(t) + c2 · r2(t)⊙ (ŷ(t)− xi(t)) (7)

where c2 is the social acceleration constant, r2(t) ∼ U(0, 1)D, and ŷ(t) refers
to the global best position at time step t, being the best solution from the
personal best positions of all particles.

3. Traditional PSO model (Eberhart and Kennedy, 1995; Kennedy and Eberhart,
1995):

vi(t+ 1) = w · vi(t) + c1 · r1(t)⊙ (yi(t)− xi(t))

+ c2 · r2(t)⊙ (ŷ(t)− xi(t)) (8)

The velocity update of the traditional PSO model (assuming a star neighbour-
hood topology) combines the cognitive and social velocity updates into one
velocity update that has the effect of pulling each particle in a direction some-
where between the global and personal best particle positions (Van Den Bergh
and Engelbrecht, 2006).



8 K. M. Malan, A. P. Engelbrecht

The approach used for constructing the fitness cloud of a minimisation problem
using PSO updates for determining neighbours is given in Algorithm 2. The basic
idea is to perform two PSO updates on the initial swarm of solutions to determine
the neighbours. The reason for two updates is that the initial velocity of all par-
ticles is zero. This means that the inertia term (w · vi(t)) will be zero for the first
update and will only come into effect on the second iteration of the algorithm.
Note that steps 3 to 8 of Algorithm 2 ensure that the personal best particle is not
the same as the current particle in the first iteration. If this was not done, then
both the first and second terms of Equation 6 will be zero, resulting in no particles
moving. The strategy used to prevent this is to generate a new random solution
a small distance from the initial solution (by adding Gaussian noise) and to swap
these points if the new solution is not better than the initial solution.

Algorithm 2 Algorithm for constructing a fitness cloud of a minimisation problem
using PSO updates to determine neighbours of a sample.

1: Generate a sample swarm of n random solution vectors for iteration 0: x1(0), . . . ,xn(0)
from a uniform distribution of the search space of the problem.

2: Determine the objective function values of all solutions, f(x1(0)), . . . , f(xn(0)).
3: for each solution, xi(0), generate a personal best position, yi(0) as follows:
4: Generate a new position vector, z, a small distance from xi(0), but still in the domain

of the problem, by adding Gaussian noise with a standard deviation equal to 10% of
the range of the problem to each component of xi(0).

5: Determine the objective function value of the new position vector, f(z).
6: If f(z) < f(xi(0)), then set yi(0) = z.
7: Else set yi(0) = xi(0) and set xi(0) = z.
8: end for
9: Determine the global best solution of iteration 0, ŷ(0), selected from the personal best

positions yi(0).
10: Set all initial velocities vi(0) to zero.
11: For each xi(0), determine the velocity update vi(1) using the specific PSO update equation

and calculate the iteration 1 positions: x1(1), . . . ,xn(1), repairing any positions outside the
bounds of the search space on any dimension to be set on the boundary for that dimension.

12: Determine the iteration 1 personal best solutions y1(1), . . . ,yn(1) and the global best
solution ŷ(1), selected from the set of personal best positions yi(1).

13: For each xi(1), determine repaired positions xi(2) based on calculated vi(2) velocity up-
dates (as in step 11).

14: Determine the objective function values of all iteration 2 positions, f(x1(2)), . . . f(xn(2)).
15: Normalise the objective function values of all initial points, f(x1(0)), . . . , f(xn(0)), and

final neighbours, f(x1(2)), . . . f(xn(2)), to the range [0, 1], where 0 is the worst objective
function value and 1 is the best objective function value, and generate the fitness cloud
from the normalised objective function values.

Steps 9 to 13 involve the two PSO update operations. In the position update
steps, particles are constrained at the boundary of the search space to avoid the
fitness cloud containing objective function values corresponding to points outside
the domain of the problem. This is necessary for PSO, because there is a good
chance that particles will leave the search space, even in the first iteration of the
algorithm. This was proved theoretically to be the case even when initial velocities
are set to zero, particularly in the case of high-dimensional search spaces (Helwig
and Wanka, 2008) and has been supported by empirical evidence (Engelbrecht,
2012).



Characterising the searchability of continuous optimisation problems for PSO 9

In step 15, the objective function values of all initial points and neighbours are
normalised to the range [0, 1], where 0 is the worst objective function value and 1 is
the best objective function value (note that the best and worst objective function
values are as encountered during execution of the algorithm, so that the algorithm
can be run on unknown problems). Normalising the objective function values in
this way effectively converts the minimisation problem into a maximisation prob-
lem for the purposes of the fitness cloud visualisation and allows for comparisons
between fitness clouds of different problems. If the fitness cloud scatterplot is drawn
with the original objective function values of a minimisation problem, it will have
to be interpreted in the opposite way to the original fitness cloud approach. Points
below the diagonal would be regarded as having good searchability, rather than
bad searchability. This ‘upside down’ fitness cloud causes problems later with the
computation of the negative slope coefficient measure, since a negative slope would
indicate good searchability, rather than bad searchability. To avoid this confusion
and need to redefine terminology, the objective function values are converted to
behave as for a maximisation problem.

2.3.2 Proposed measures based on fitness clouds

The first proposed single-valued measure based on a fitness cloud is simply the
proportion of points in the cloud for which the objective function value improved.
This is termed the fitness cloud index (FCI) and is calculated as follows: Given a
minimisation problem with an objective function f and a sample S = {x1, . . . ,xn}
of n points with associated neighbours

{

x′
1, . . . ,x

′
n

}

, the FCI measure is defined
as:

FCI =

∑n
i=1 g(xi)

n
(9)

where

g(xi) =

{

1 if f(x′
i) < f(xi)

0 otherwise
(10)

Note that the FCI measure is based on a simple comparison of neighbouring
objective function values, and so does not require normalisation of the objective
function values or conversion to a maximisation problem (step 15 of Algorithm 2).
By definition of being a proportion, the FCI measure is normalised to the range
[0, 1], where 0 indicates the worst possible searchability and 1 indicates perfect
searchability of the problem with respect to the given search operator.

2.4 Negative slope coefficient

Vanneschi et al (2004) proposed a measure of problem difficulty called the negative
slope coefficient (NSC), based on the fitness cloud. The NSC is calculated by
partitioning the fitness cloud into discrete bins. Line segments are defined between
the centroids of adjacent bins and the NSC is calculated as the sum of all negative
slopes between segments. Vanneschi et al hypothesised that the NSC measure could
be used as a predictive difficulty measure for problems: if NSC=0 the problem is
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Algorithm 3 Algorithm for calculating the NSC measure based on a fitness cloud.

1: Partition the horizontal axis of the fitness cloud (the f(x) axis) into m segments
I1, I2, . . . , Im.

2: Partition the vertical axis of the fitness cloud (the f(x′) axis) into m segments
J1, J2, . . . , Jm so that each segment Ji contains all the f(x′) values corresponding to the
f(x) values in Ii.

3: For each partition Ii, compute the average objective function value, Mi.
4: For each partition Ji, compute the average objective function value, Ni.
5: Define segments S1, S2, . . . , Sm−1, such that Si is the segment from point (Mi, Ni) to

point (Mi+1, Ni+1).

6: For each segment Si, calculate the slope Pi using Pi =
Ni+1−Ni

Mi+1−Mi

7: Calculate the negative slope coefficient measure as: NSC =
∑m−1

i=1 ci, where ∀i ∈ [1,m) :

ci =

{

Pi if Pi < 0
0 otherwise

easy, but if NSC<0, the problem is difficult and smaller values indicate increased
difficulty. The algorithm for calculating NSC is given in Algorithm 3.

A significant aspect of computing the NSC measure involves deciding on the
bin partitioning strategy (step 1 of Algorithm 3). Possible strategies include (Van-
neschi, 2004): bins of equal size, bins containing equal numbers of points and
size-driven bisection (which takes both the size of the bins and the number of
points into account).

Given a fitness cloud based on PSO updates, Algorithm 3 can be used to com-
pute the NSC measure for PSO. The notations NSCcog, NSCsoc and NSCtrd are
used to denote the NSC measures derived using the cognitive, social and traditional
PSO update strategies, respectively.

2.5 Summary and discussion of proposed measures

Table 1 summarises the proposed measures in terms of the required parameters,
range of values produced and the computational complexity. All measures depend
on the size of the sample, n. The FCI and NSC measures have an additional
two parameters for the PSO updates, while the NSC measures also require two
parameters related to the binning of points. All measures have a bound on output
values, except for the NSC measures, which have unbounded ranges. All measures
have linear time complexity with respect to the size of the sample, but the ILns

has polynomial memory requirements with respect to the sample size.

The dependence of all the measures on the sample size is a significance factor
that warrants further investigation. The effect of the size of the sample, sampling
strategy and the level of uncertainty, due to the stochastic nature of the measures,
are factors that can influence the robustness of the measures. The aim of this study
is to investigate proposed measures in terms of correlation with PSO performance.
Based on results from this study, further work should include a full sensitivity
analysis of the measures that show promise as predictors of PSO performance.
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Table 1 Proposed measures of searchability

Proposed Measure Parameters Result: range and
interpretation

Computational
Complexity

FDCs Fitness distance
correlation
searchability
measure

size of sample, n [−1, 1]: For a
minimisation problem,
1 indicates the highest
measure of
searchability (perfect
correlation between
objective function
values and distance to
the best solution)

Time: O(n)
Space: O(n)

ILns Information
landscape
negative
searchability
measure

size of sample, n [0, 1]: A value of 0
indicates maximum
searchability (no
difference from the
reference landscape
vector vr)

Time: O(n)
Space: O(n2)

FCIcog
FCIsoc
FCItrd

Fitness cloud
index based on
cognitive, social
or traditional
PSO updates

(1) size of
sample, n, (2)
inertia weight, w,
(3) acceleration
constants, c1 and
c2)

[0, 1]: indicating the
proportion of solutions
for which the objective
function value
improved after two
PSO updates

Time: O(n)
Space: O(n)

NSCcog

NSCsoc

NSCtrd

Negative slope
coefficient with
neighbourhood
defined using
cognitive, social
or traditional
PSO updates

(1) size of
sample, n, (2)
inertia weight, w,
(3) acceleration
constants, c1 and
c2, (4) minimum
number of points
in a bin, (5)
minimum size of
a bin

(−∞, 0]: A value of 0
indicates maximum
searchability (no
negative slopes
between centroids of
bins in the fitness
cloud); smaller values
indicate decreased
searchability

Time: O(n)
Space: O(n)

3 Experimentation on one-dimensional problems

This section performs experiments on the proposed measures of searchability. Sim-
ple one-dimensional benchmarks are used to see if the proposed measures give
expected results, based on a visual inspection of functions. Section 4 experiments
with higher dimensional problems.

3.1 Benchmark functions

Five simple benchmark functions were selected with expected decreasing searcha-
bility. These functions are defined in Table 2 and are illustrated in Figure 1. The
expected results of each of the proposed measures on the benchmark functions are
discussed in this section.

The FDCs metric quantifies the correlation between objective function val-
ues and distance to the best solution of the sample. For both the Straight and
Absolute Value benchmarks, this value should be at the maximum (+1) because
the functions are linear. For the Spherical function, the value should be close to
1, because there is a positive correlation, but not a perfect linear correlation be-
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Table 2 One-dimensional benchmark function definitions.

Straight f(x) = x, x ∈ [0, 100]
Absolute Value f(x) = |x|, x ∈ [−100, 100]
Spherical f(x) = x2, x ∈ [−100, 100]
Rastrigin f(x) = x2 − 10 cos(2πx) + 10, x ∈ [−5.12, 5.12]
Hole-in-Mountain f(x) = x+ 1, for x ∈ [0, 5)

= 0, for x ∈ [5, 6]
= −x+ 12, for x ∈ (6, 11]
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Fig. 1 Plots of one-dimensional benchmark functions as defined in Table 2 with different
searchability characteristics.

tween objective function value and distance. Rastrigin should give a lower FDCs

value than Spherical, but still an overall positive correlation due to the underlying
spherical shape of Rastrigin. It is expected that Hole-in-Mountain give a negative
value for FDCs due to the deceptive structure of the function.

The ILns measure quantifies the difference in the information landscape be-
tween the benchmark and the shifted Spherical function. For the Straight, Absolute
Value and Spherical benchmarks, the ILns measure should be close to 0, as the
information is identical to the shifted Spherical function. Since the optimum of
the Spherical function is shifted to the position of the best solution from a sample
(and not necessarily the optimum of the benchmark function), there may be slight
differences in the information landscapes, but these should be small. The ILns

measure should increase for Rastrigin and be closer to 1 for Hole-In-Mountain.

The FCI measures simply quantify the proportion of elements in the fitness
cloud that have improved objective function values. All FCI measures should yield
values of 1 for the Straight function, since if any particle is pulled in the direction
of a better particle, regardless of whether it is a global or personal best guide,
the objective function value can only improve. The Absolute Value and Spherical
functions should give good FCI values (close to 1). Some points may be below
the diagonal in the fitness cloud, since the objective function value of a particle
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can deteriorate if it moves in the direction of a better particle, but overshoots the
global minimum and moves to a position higher than the original position. In the
case of the Rastrigin function, due to the ruggedness, there are many opportunities
for the objective function value of a particle to deteriorate if pulled in the direction
of a better particle, regardless of whether it is a global or personal best guide, so
lower FCI values are expected. The Hole-in-Mountain function should result in low
searchability for the social-only and traditional PSO models (lower FCI values) and
relatively high searchability for the cognitive-only PSO model. For the social-only
and traditional models, assuming one of the initial random points was positioned
in the ‘hole’ (the global minimum plateau), particles will be pulled towards the
centre, resulting in an increase (deterioration) of objective function value for many
particles. Although this is the desired behaviour for a search algorithm (moving
towards the global optimum), the measure predicts searchability, not optimality. In
the case of the cognitive-only model, the simple linear slopes that define most of the
Hole-in-Mountain function should give a similar, but slightly worse, searchability
profile to the Absolute Value benchmark.

For the same reasons as described above, all NSC measures should result in 0 for
the Straight function (perfect searchability), values close to 0 (small negative) for
Absolute Value and Spherical, and smaller values (larger negative) for Rastrigin.
The Hole-in-Mountain should have a smaller (larger negative) NSCsoc and NSCtrd

value than the other functions, but a reasonably good NSCsoc value.

3.2 Experimental setup

For each benchmark problem, 30 independent runs of the algorithms for comput-
ing each measure were performed. The calculations of all measures were based on
sample sizes of 500 points (randomly sampled from a uniform distribution). For the
PSO updates, the inertia weight (w), cognitive acceleration (c1) and social accel-
eration (c2) were set to the popular values of 0.7298, 1.496, and 1.496, respectively
(Eberhart and Shi, 2000), a parameter choice that guarantees convergence to an
equilibrium state (Trelea, 2003; Van Den Bergh and Engelbrecht, 2006; Cleghorn
and Engelbrecht, 2014). For the NSC measures, size-driven bisection was used for
partitioning the fitness clouds with the minimum number of points in a bin set to
30 and the minimum size of a bin set to 5% of the range of the problem.

3.3 Results and discussion

Table 3 lists the mean measures over 30 runs for each benchmark function with
standard deviations shown below the means in parentheses. Note that the un-
derlying searchability measure values were tested and found to be approximately
normally distributed. A study of the values reveals the following:

– The values for the FDCs and ILns measures are in line with the expected
values as discussed in Section 3.1. Relatively low standard deviations for these
first two measures also indicate that the measures are fairly reliable.

– The values for the FCIcog are in line with the expected values. Slightly lower
FCIsoc and FCItrd values for the Absolute Value and Spherical functions in-
dicate that more particles overshot the minimum to higher objective function
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Table 3 Values of the FDCs, ILns, FCI and NSC measures for the one-dimensional problems
shown in Table 2. Values are averages over 30 runs, each with 500 random initial points.
Standard deviations are given below each value in parentheses.

Function FDCs ILns FCIcog FCIsoc FCItrd NSCcog NSCsoc NSCtrd

Straight 1 0 1 1 1 -3.058 -8.076 -6.837
(±0) (±0) (±0) (±0) (±0) (±1.838) (±2.423) (±1.799)

Absolute 1 0.002 0.964 0.876 0.788 -7.652 -12.900 -14.858
Value (±0) (±0.002) (±0.009) (±0.012) (±0.019) (±3.428) (±4.913) (±5.811)
Spherical 0.968 0.002 0.964 0.871 0.791 -12.640 -21.788 -22.149

(±0.002) (±0.001) (±0.011) (±0.016) (±0.021) (±4.838) (±5.869) (±6.079)
Rastrigin 0.709 0.254 0.781 0.800 0.780 -11.774 -21.860 -13.858

(±0.018) (±0.011) (±0.017) (±0.019) (±0.017) (±8.684) (±9.810) (±7.906)
Hole-in- -0.401 0.795 0.928 0.430 0.387 -3.828 -8.587 -5.508
Mountain (±0.052) (±0.031) (±0.012) (±0.048) (±0.024) (±5.122) (±11.039) (±9.776)

values than for the cognitive-only model, most probably due to the higher ve-
locities. As predicted, the Hole-in-Mountain function has high searchability for
the cognitive-only PSO model (0.928) and low searchability for the social-only
(0.430) and traditional (0.387) PSO models. To see this difference visually, the
fitness clouds of sample runs on the Hole-in-Mountain function are plotted in
Figure 2. It is clear from the plots that the cognitive PSO updates result in
high levels of searchability, while the social PSO updates result in low levels of
improvement in objective function value.

– All of the NSC values are negative, which is not in line with the expected values.
For example, the Straight function should have perfect PSO searchability and
yet the mean NSC values are negative, which is supposed to indicate areas of
negative searchability. It is also unexpected that the Spherical function have
relatively low NSC measures in relation to the other problems.

The experiments on simple one-dimensional problems show that the NSC values
did not give results as predicted. For an investigation into possible reasons why
the NSC values based on PSO updates are unpredictable, see (Malan, 2014). Since
the NSC measure does not give meaningful values on one-dimensional problems,
the measure is not used further in this study.

4 Linking to PSO performance on higher dimensional problems

Results in the previous section show that the FDCs, ILns and FCI measures
are meaningful indicators of different aspects of searchability for the simple one-
dimensional functions studied. This section evaluates the measures on higher
dimensional benchmark problems. The performance of a traditional global best
(gbest) PSO algorithm (Kennedy and Eberhart, 1995) on the same benchmarks is
evaluated and the link between the searchability measures and actual algorithm
performance is investigated.
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Fig. 2 Fitness clouds from sample runs on Hole-in-mountain function using (a) Cognitive
PSO and (b) Social PSO update strategies.

4.1 Benchmark problems and expected results

The benchmark functions used to test the proposed measures in different dimen-
sions are defined in Table 4 and one-dimensional versions of some of these functions
are plotted in Figure 3. The functions were used for dimensions 1 (not applica-
ble for Rana and Rosenbrock), 2, 5, 15 and 30. These functions cover a range
of characteristics. All are multimodal, except for Spherical, Quadric, and Rosen-
brock for dimensions 1 to 3. (Note that although the Rosenbrock function is widely
stated as unimodal, it has been shown to be multimodal for dimensions of 4 and
higher (Shang and Qiu, 2006).) Although Quadric (also known as Schwefel 1.2)
is unimodal and is equivalent to Spherical in 1 dimension, it has been shown to
have a weak fitness distance correlation (to the known optimum) in higher dimen-
sions (Müller and Sbalzarini, 2011). Functions Griewank and Step are rugged, but
the underlying shapes match the Spherical function, so the fitness distance val-
ues should be similar to Spherical in higher dimensions. Likewise, the underlying
shape of Salomon is the same as the Absolute Value function, so should also give
relatively high fitness distance values. Rana and Schwefel 2.26 are multi-funnelled
and so should give lower fitness distance values in higher dimensions. The ILns

measure quantifies the difference between the information landscape of the prob-
lem and the information landscape of Spherical. Any problem that shares the same
basic underlying shape as Spherical should therefore have a low ILns measure. All
functions that have high (or low) FDCs values, should therefore have low (or high)
ILns values. For the FCI values, it is difficult to predict the effect of just two PSO
updates on objective function values, particularly in higher dimensions.

4.2 Experimental setup

For the FDCs calculations, uniform random samples of 500×D (dimension) were
used. This involves 500×D objective function evaluations and 500×D Euclidean
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Table 4 Benchmark Functions, where D is the dimension of the problem and f∗ denotes the
global optimum of f .

Function Definition, domain and global optimum (f∗)

Ackley f1(x) = −20 exp

(

−0.2
√

1
D

∑D
i=1 x

2
i

)

− exp

(∑
D

i=1 cos(2πxi)

D

)

+ 20 + e

xi ∈ [−32, 32], f∗
1 = f1(0, . . . , 0) = 0

Griewank f2(x) =
1

4000

∑D
i=1 x

2
i −

∏D
i=1 cos

(

xi√
i

)

+ 1

xi ∈ [−600, 600], f∗
2 = f2(0, . . . , 0) = 0

Quadric f3(x) =
∑D

i=1

(

∑i
j=1 xj

)2

xi ∈ [−100, 100], f∗
3 = f3(0, . . . , 0) = 0

Rana f4(x) =
∑D

i=1 xi sin(α) cos(β) +
(

x(i+1)modD + 1
)

cos(α) sin(β),

D > 1, α =
√

|xi+1 + 1− xi|, β =
√

|xi + xi+1 + 1|

xi ∈ [−512, 512], f∗
4 = f4(−512, . . . ,−512)

Rastrigin f5(x) =
∑D

i=1

(

x2
i − 10 cos(2πxi) + 10

)

xi ∈ [−5.12, 5.12], f∗
5 = f5(0, . . . , 0) = 0

Rosenbrock f6(x) =
∑D−1

i=1

(

100(xi+1 − x2
i )

2 + (xi − 1)2
)

, D > 1

xi ∈ [−2.048, 2.048], f∗
6 = f6(1, . . . , 1) = 0

Salomon f7(x) = − cos

(

2π
√

∑D
i=1 x

2
i

)

+ 0.1
√

∑D
i=1 x

2
i + 1

xi ∈ [−100, 100], f∗
7 = f7(0, . . . , 0) = 0

Schwefel 2.26 f8(x) = −
∑D

i=1

(

xi sin(
√

|xi|)
)

xi ∈ [−500, 500], f∗
8 = f8(420.9687, . . . , 420.9687)

Spherical f9(x) =
∑D

i=1 x
2
i

xi ∈ [−100, 100], f∗
9 = f9(0, . . . , 0) = 0

Step f10(x) =
∑D

i=1 (⌊xi + 0.5⌋)2

xi ∈ [−20, 20], f∗
10 = f10(0, . . . , 0) = 0

distance calculations. The ILns calculations were based on samples of 5000 points
in all dimensions. The size of the sample was chosen to be constant due to the
polynomially increasing memory requirements and was set as the same sample size
as FDCs in 10 dimensions. For the FCI measures, samples of size 500 were used.
For the PSO updates, the inertia weight (w), cognitive acceleration (c1) and social
acceleration (c2) were set to the values of 0.7298, 1.496, and 1.496, respectively.

Each of the problem instances (function and dimension combinations) was
solved using a traditional gbest PSO algorithm with 50 particles and the same
parameter settings as the PSO updates of the FCI measures. The algorithm was
run 30 times on each problem instance and performance was quantified using the
SRate, SSpeed and QMetric performance measures, described in the following
section.
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Fig. 3 Plot of one-dimensional versions of benchmark functions defined in Table 4. Spherical
and Rastrigin are plotted in Figure 1 and Quadric is not plotted as it is equivalent to Spherical
in one dimension. Rana and Rosenbrock are not defined for one dimension.

.

4.3 Performance measures

This section defines what is meant by a successful run in the context of this study
and describes the performance measures used, originally proposed in (Malan and
Engelbrecht, 2014a).

4.3.1 Successful run and fixed accuracy level

A run of an algorithm on a problem is a single execution of the algorithm with a
given maximum number of objective function evaluations (MaxFES) as the stop-
ping condition. For all runs in this study, the MaxFES was set to 10000 × D
(dimension), equivalent to 200 × D iterations using a swarm of 50 particles. A
successful run of an algorithm on a problem is a run that finds a solution with an
objective function value that is within a set fixed accuracy level from the objective
function value of the global optimum. Suganthan et al (2005) define fixed accuracy
levels for each benchmark function, such as 10−6 for F1 (Shifted Sphere Function)
and 10−2 for F6 (Shifted Rosenbrock’s Function). The approach used in this study
was to determine a fixed accuracy level for each function/dimension combination
based on the estimated range of objective function values. For each problem, the
fixed accuracy level was set to the estimated range of objective function values
rounded down to the nearest 10n (where n is an integer) multiplied by 10−8, up
to a maximum fixed accuracy level of 10−3. For example, the Ackley benchmark
function in one dimension with domain [−32, 32] has a rounded down range of
objective function values of 101, resulting in a fixed accuracy of 10−7.
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4.3.2 Success rate

The success rate (SRate) is defined as the number of successful runs divided by
the total number of runs (Suganthan et al, 2005). SRate is a value in the range
[0, 1] where 1 indicates the highest possible rate of success.

4.3.3 Success speed

The number of objective function evaluations taken to reach the global optimum
(within the fixed accuracy level) for a given run r is known as FESr. The success
speed of a run r (SSpeedr) is defined as:

SSpeedr =

{

0 if run not successful
MaxFES−(FESr−1)

MaxFES otherwise.
(11)

The metric SSpeedr is a value in the range [0, 1]. The highest value for SSpeedr can
only be obtained if the global optimum is reached in the first objective function
evaluation (if FESr is 1) and this would indicate the highest possible performance
in terms of speed. The success speed (SSpeed) over ns successful runs, is defined
as:

SSpeed =

{ ∑
ns

r=1
SSpeed

r

ns
if ns > 0

0 if ns = 0 .
(12)

4.3.4 Quality metric

Given a run of an optimisation algorithm on benchmark function f with resulting
best objective function value found fmin, the difference in objective function value
between the best found solution and the optimal solution, f∗, is quantified as
fmin−f∗. This difference is an absolute measure of error, where 0 is the minimum
error and corresponds with the highest possible solution quality. To convert the
error into a positive measure of quality in the range [0, 1], the found solution,
fmin, is subtracted from the estimated maximum objective function value, f̂ , and
scaled by the estimated range of objective function values:

q =
f̂ − fmin

f̂ − f∗
. (13)

To better distinguish between q values closer to 1, the value of q is scaled expo-
nentially to produce the QMetric measure as follows:

QMetric = 2q
104

− 1 . (14)

For example, given a problem with an objective function value range of [0, 1] (with
associated fixed accuracy level of 10−8) and global optimum of 0, a best found
solution of 10−8 would be regarded as a successful run. The resulting QMetric
value would be 1.000 (rounded to 3 decimal places), indicating the highest rounded
solution quality. On the other hand, a solution of 10−5 would result in a q value
of 0.99999 and an associated QMetric value of 0.872, indicating a lower solution
quality. Any solution with a q value of 0.001 and larger will result in a QMetric
value of 0 (rounded to 3 decimal places).
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4.4 Searchability measures results

The results are summarised in Table 5. For each problem / dimension combination,
the five searchability measures, FDCs, ILns, FCIcog, FCIsoc, and FCItrd are re-
ported as mean values based on 30 runs of the algorithm with standard deviations
(given the approximately normal distribution of the underlying data).

The values of FDCs range from values close to 1 for Spherical (f9) in low
dimensions, to as low as 0.01 for Rana (f4) in higher dimensions. For most functions
the value of FDCs decreases as the dimension increases. For example, Spherical
(f9) reduces from 0.97 in 1D to 0.57 in 30D. The fitness distance correlation
coefficient of the Spherical function based on the true optimum should stay close
to 1 for any dimension (Müller and Sbalzarini, 2011). Estimating the optimum can,
however, lead to lower FDCs values, if the estimated optimum is not close to the
true optimum. As a simplified example, consider the Spherical function in 1D with
an inadequate sample of three points: x0 = −2, x1 = 1, x2 = 2, with associated
objective function values f9(x0) = 4, f9(x1) = 1, f9(x2) = 4. The estimated
minimum of this sample is therefore at x1 and the associated distance values to
x1 are d0 = 3, d1 = 0, and d2 = 1. The resulting FDCs value is approximately
0.76, which is not a reflection of the perfect bowl shape of the Spherical function.
In a similar way, a sample of 500 × 30 points in 30 dimensions is an inadequate
sample and results in FDCs values that are lower than the true FDC values. The
question then is whether the FDCs measure provides meaningful information if
the value is far from the true FDC value. Investigating the values in Table 5, it
would seem that the relative FDCs values within each dimension are consistent.
For example, the 1D functions with high FDCs values (> 0.9) are Griewank (f2),
Quadric (f3), Salomon (f7), Spherical (f9) and Step (f10). In 30D, the group of
functions with the highest FDCs values (> 0.5) are Griewank (f2), Salomon (f7),
Spherical (f9) and Step (f10). The only function that is in the first group and
not in the second group is Quadric, which is equivalent to Spherical in 1D, but
has been shown to have a weak FDC in higher dimensions (Müller and Sbalzarini,
2011). The functions with the lowest FDCs values in 30D are Schwefel 2.26 (f8)
(0.06) and Rana (f4) (0.01), which are both multi-funnelled landscapes, so are
expected to have the lowest values. It would seem, therefore, that there is value in
the relative FDCs values in the different dimension groups.

In lieu of discussing the ILns values in Table 5, Figure 4(a) shows a scatter-
plot of the FDCs values against the ILns values. It is clear that there is a very
strong negative correlation between the FDCs and ILns values (Spearman’s cor-
relation coefficient of -0.990). This shows that although the two measures use very
different approaches, they are capturing essentially the same information on the
fitness landscape: high fitness distance correlation seems to imply an information
landscape that is similar to the Spherical landscape. Alternatively, an information
landscape that is very different from the Spherical landscape seems to imply low
fitness distance correlation.

Figure 4(b) shows that there is also a strong correlation between the FCIsoc
and FCItrd measures (Spearman’s coefficient of 0.925). This shows that there is a
strong link between the proportion of improved solutions resulting from two steps
of the social PSO update and the proportion of improved solutions resulting from
two steps of the traditional PSO update. In contrast, there is a weak correlation
between the FCIcog and FCItrd measures (Spearman’s coefficient of 0.372) and
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between the FCIcog and FCIsoc measures (Spearman’s coefficient of 0.454). A
possible reason for the high correlation between FCIsoc and FCItrd is the relatively
large influence of the final social term in Equation 8. Although the constants c1
and c2 are equal, the distance of particles to the gobal best particle is usually larger
than the distance to the personal best particle, resulting in a dominant third term
in most cases.

Other than the strong correlations between measures illustrated in Figure 4,
there is also a fairly strong correlation between the FDCs and FCIsoc measures
(Spearman’s coefficient of 0.799). This means that there is a link between these
measures: when the objective function values and distance are highly correlated,
PSO social updates will probably result in an improvement in objective function
value. The correlation between FDCs and FCIcog is only moderate (Spearman’s
coefficient of 0.546), reflecting that there is some limited overlap in the information
captured by these measures, but that each measure captures something different.
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Fig. 4 Scatter diagrams showing the correlation between searchability measures that show
strong correlation. Spearman’s correlation coefficient values are given in parentheses in the
sub-captions.

4.5 PSO performance and searchability measures

The last three columns of Table 5 give the performance metrics, based on 30 runs
of the PSO algorithm. For a feature metric to be useful it should show some cor-
relation (or negative correlation) to performance. Figures 5(a) to 5(d) show the
scatter plots of four of the searchability measures against the QMetric performance
measure. The scatter plot of the FCItrd measure is not shown, due to the high sim-
ilarity to the FCIsoc diagram in Figure 5(d). All measures (except for the FCItrd
with a Spearman’s coefficient of 0.322) show a moderate correlation or negative
correlation to QMetric. The measure that provides the strongest correlation is the
FCIcog measure (Spearman’s correlation coefficient of 0.662). These results show
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Table 5 Searchability landscape measures alongside PSO performance metrics for benchmark
functions f defined in Table 4 in different dimensions (D). All searchability measures are means
over 30 independent runs and standard deviations are given next to each mean. Performance
metrics are QMetric, SRate and SSpeed.

f D Searchability measures Performance
FDCs ILns FCIcog FCIsoc FCItrd metrics

f1 1 0.79 ±0.01 0.15 ±0.00 0.80 ±0.02 0.88 ±0.01 0.82 ±0.02 1.00 1.00 0.47
f1 2 0.77 ±0.01 0.19 ±0.00 0.77 ±0.01 0.91 ±0.02 0.86 ±0.02 1.00 1.00 0.63
f1 5 0.70 ±0.03 0.24 ±0.01 0.74 ±0.02 0.93 ±0.01 0.90 ±0.02 1.00 1.00 0.78
f1 15 0.51 ±0.03 0.34 ±0.01 0.73 ±0.02 0.90 ±0.03 0.88 ±0.02 0.93 0.93 0.86
f1 30 0.43 ±0.02 0.37 ±0.01 0.72 ±0.02 0.85 ±0.04 0.83 ±0.03 0.30 0.30 0.86
f2 1 0.97 ±0.00 0.02 ±0.00 0.93 ±0.01 0.86 ±0.01 0.79 ±0.02 1.00 1.00 0.72
f2 2 0.97 ±0.01 0.04 ±0.02 0.90 ±0.01 0.91 ±0.01 0.82 ±0.02 0.92 0.77 0.67
f2 5 0.90 ±0.03 0.12 ±0.02 0.84 ±0.01 0.94 ±0.02 0.87 ±0.02 0.56 0.07 0.21
f2 15 0.65 ±0.02 0.28 ±0.02 0.77 ±0.02 0.84 ±0.06 0.78 ±0.05 0.69 0.10 0.91
f2 30 0.57 ±0.03 0.31 ±0.01 0.70 ±0.02 0.71 ±0.11 0.60 ±0.07 0.90 0.37 0.92
f3 1 0.97 ±0.00 0.00 ±0.00 0.96 ±0.01 0.88 ±0.02 0.79 ±0.02 1.00 1.00 0.94
f3 2 0.65 ±0.01 0.23 ±0.00 0.91 ±0.01 0.86 ±0.01 0.80 ±0.01 1.00 1.00 0.89
f3 5 0.34 ±0.03 0.38 ±0.01 0.88 ±0.01 0.83 ±0.02 0.79 ±0.02 1.00 1.00 0.91
f3 15 0.12 ±0.01 0.46 ±0.01 0.86 ±0.02 0.81 ±0.03 0.78 ±0.03 1.00 1.00 0.87
f3 30 0.07 ±0.01 0.48 ±0.00 0.86 ±0.02 0.80 ±0.02 0.78 ±0.03 1.00 1.00 0.71
f4 2 0.02 ±0.06 0.48 ±0.02 0.73 ±0.02 0.61 ±0.28 0.58 ±0.18 0.19 0.00 0.00
f4 5 0.01 ±0.04 0.50 ±0.01 0.70 ±0.02 0.66 ±0.16 0.66 ±0.10 0.00 0.00 0.00
f4 15 0.01 ±0.02 0.50 ±0.01 0.70 ±0.02 0.64 ±0.10 0.63 ±0.09 0.00 0.00 0.00
f4 30 0.01 ±0.01 0.50 ±0.01 0.70 ±0.02 0.65 ±0.12 0.63 ±0.08 0.00 0.00 0.00
f5 1 0.71 ±0.01 0.25 ±0.00 0.78 ±0.01 0.80 ±0.02 0.78 ±0.02 1.00 1.00 0.81
f5 2 0.64 ±0.06 0.26 ±0.02 0.74 ±0.02 0.83 ±0.02 0.82 ±0.02 1.00 1.00 0.79
f5 5 0.50 ±0.08 0.32 ±0.02 0.73 ±0.02 0.81 ±0.06 0.82 ±0.03 0.53 0.53 0.73
f5 15 0.39 ±0.04 0.37 ±0.01 0.71 ±0.02 0.77 ±0.07 0.78 ±0.06 0.00 0.00 0.00
f5 30 0.36 ±0.02 0.38 ±0.01 0.71 ±0.02 0.68 ±0.11 0.72 ±0.07 0.00 0.00 0.00
f6 2 0.55 ±0.02 0.29 ±0.00 0.89 ±0.01 0.67 ±0.03 0.71 ±0.02 1.00 1.00 0.84
f6 5 0.69 ±0.06 0.25 ±0.02 0.85 ±0.02 0.81 ±0.05 0.79 ±0.03 0.93 0.07 0.32
f6 15 0.55 ±0.08 0.30 ±0.03 0.76 ±0.02 0.76 ±0.06 0.74 ±0.04 0.89 0.00 0.00
f6 30 0.48 ±0.07 0.34 ±0.02 0.67 ±0.02 0.62 ±0.10 0.58 ±0.08 0.48 0.00 0.00
f7 1 0.97 ±0.00 0.08 ±0.00 0.82 ±0.02 0.87 ±0.01 0.81 ±0.02 1.00 1.00 0.57
f7 2 0.96 ±0.01 0.08 ±0.00 0.80 ±0.02 0.90 ±0.01 0.83 ±0.02 1.00 1.00 0.59
f7 5 0.87 ±0.05 0.16 ±0.02 0.77 ±0.02 0.93 ±0.02 0.87 ±0.02 0.00 0.00 0.00
f7 15 0.63 ±0.04 0.28 ±0.02 0.71 ±0.02 0.84 ±0.06 0.79 ±0.06 0.00 0.00 0.00
f7 30 0.53 ±0.02 0.32 ±0.01 0.66 ±0.02 0.67 ±0.08 0.59 ±0.07 0.00 0.00 0.00
f8 1 0.32 ±0.03 0.40 ±0.01 0.82 ±0.01 0.52 ±0.02 0.56 ±0.03 1.00 1.00 0.82
f8 2 0.30 ±0.06 0.41 ±0.01 0.78 ±0.02 0.52 ±0.04 0.56 ±0.02 0.97 0.97 0.82
f8 5 0.17 ±0.11 0.45 ±0.02 0.77 ±0.02 0.63 ±0.08 0.61 ±0.04 0.40 0.40 0.83
f8 15 0.08 ±0.08 0.48 ±0.02 0.77 ±0.02 0.64 ±0.06 0.63 ±0.04 0.00 0.00 0.00
f8 30 0.06 ±0.04 0.49 ±0.02 0.77 ±0.02 0.64 ±0.07 0.63 ±0.05 0.00 0.00 0.00
f9 1 0.97 ±0.00 0.00 ±0.00 0.96 ±0.01 0.87 ±0.01 0.79 ±0.02 1.00 1.00 0.85
f9 2 0.97 ±0.00 0.01 ±0.01 0.91 ±0.01 0.91 ±0.01 0.82 ±0.02 1.00 1.00 0.89
f9 5 0.90 ±0.03 0.12 ±0.02 0.85 ±0.02 0.94 ±0.03 0.87 ±0.02 1.00 1.00 0.92
f9 15 0.67 ±0.02 0.28 ±0.01 0.77 ±0.02 0.84 ±0.05 0.78 ±0.05 1.00 1.00 0.94
f9 30 0.57 ±0.02 0.32 ±0.01 0.71 ±0.02 0.71 ±0.07 0.60 ±0.08 1.00 1.00 0.94
f10 1 0.97 ±0.00 0.03 ±0.00 0.85 ±0.01 0.83 ±0.02 0.75 ±0.02 1.00 1.00 0.99
f10 2 0.97 ±0.01 0.02 ±0.01 0.88 ±0.01 0.90 ±0.02 0.82 ±0.02 1.00 1.00 0.99
f10 5 0.89 ±0.04 0.13 ±0.02 0.84 ±0.02 0.93 ±0.02 0.87 ±0.02 1.00 1.00 0.98
f10 15 0.66 ±0.05 0.28 ±0.01 0.77 ±0.02 0.86 ±0.06 0.78 ±0.05 1.00 1.00 0.97
f10 30 0.56 ±0.01 0.31 ±0.01 0.70 ±0.02 0.69 ±0.09 0.62 ±0.08 0.92 0.90 0.86



22 K. M. Malan, A. P. Engelbrecht

that no single searchability measure is a good predictor of hardness of a problem
for PSO.

The scatterplots in Figure 5 have a large proportion of values at the top and
at the bottom with a few points scattered in between. This is indicative of dis-
tinct groups of problems based on success or failure of the algorithm in solving
the problem. QMetric on its own only captures part of the picture of performance,
not considering, for example, how quickly a solution is found. An alternative ap-
proach to visualising the results is to allocate each problem instance solved by the
algorithm into a performance class using a combination of QMetric, SRate and
SSpeed values as follows:

– Always solved and fast: problems with an SRate of 1, indicating that the solu-
tion was found for all 30 runs of the algorithm, and an SSpeed > 0.5, indicating
that the algorithm was able to find the solution in less than half of the allowable
time (maximum number of objective function evaluations) on average.

– Always solved: problems with an SRate of 1 and an SSpeed ≤ 0.5, indicating
that the solution was found for all 30 runs of the PSO algorithm, but that more
than half of the allowable objective function evaluations were used to find the
solution on average.

– Sometimes solved: problems with an SRate less than 1, but greater than 0,
indicating that the solution was found for some of the runs.

– Almost solved: problems with an SRate of 0, but a QMetric value greater than
0, indicating that although none of the runs found the solution to within the
required fixed accuracy level, a solution was sometimes found that was very
close to the optimum.

– Not solved: problems with all performance metric values equal to 0.

Figure 6 plots these classes against the searchability measures with each in-
stance grouped according to dimension. In Figure 6, if a given searchability mea-
sure is a good predictor of PSO performance, then the order of symbols in a
dimension column should match the order of symbols in the legend. Note that for
the ILns measure in Figure 6(b), the symbols in the legend are displayed in reverse
order, because the measure is a negative searchability measure.

Figure 6 shows that in the one-dimensional case, all problems were solved in
all cases and all except one were solved fast. The problem that took longer than
the others to solve on average is the Ackley function. This could be because of
the high level of ruggedness of that function. For the two-dimensional case there
is one function that was almost solved (Rana) and two functions that were some-
times solved (Griewank and Schwefel 2.26). The measures that provide the best
predictive value for the 2D case are the FDCs and ILns measures. The order of all
symbols in the plot, except for one cross (Griewank), match the legend. For the
5D problems, there are two problems that are not solved (Rana and Salomon),
indicated by the two circles. For the Rana function, all the searchability mea-
sures are mostly in line with this failure (the highest circle in Figure 6(b) and the
lowest circle in 6(a) and 6(c)). However, for the Salomon function, the searcha-
bility measures are not indicative of the failure. The steepness of the gradients
for the Salomon function could be an alternative indicator of the failure in this
case (Malan and Engelbrecht, 2013b). For the higher dimensional problems (15
and 30D), all searchability measures provide some value as predictors of algorithm
failure, although none predict all cases correctly. These examples illustrate that
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(a) FDCs measure (0.545).
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(b) ILns measure (-0.561).
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(c) FCIcog measure (0.662).
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(d) FCIsoc measure (0.466).

Fig. 5 Scatter diagrams showing the correlation between the performance of a traditional
PSO algorithm (as quantified by QMetric) and different searchability measures. Spearman’s
correlation coefficient values are given in parentheses in the sub-captions.

the four searchability measures provide some insight into the difficulty of problems
for PSO algorithms, but that they do not provide the full picture of what makes
a problem hard for a PSO.

4.6 Discussion

The proposed FDCs and ILns measures can be used to quantify the searchability
with respect to local search of an unknown optimisation problem. Results on a
set of benchmark problems show that there is a very strong negative correlation
between these measures, which indicates that the two measures capture similar
information. Both measures are based on initial random samples, require a single
parameter (the size of the sample) and have linear time complexity with respect to
the size of the sample. The memory requirement of the ILns measure, however, is
polynomial with respect to the sample size, so it may not be a suitable measure for
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Fig. 6 Performance of a traditional PSO algorithm on benchmark problems plotted against
searchability measures (a) FDCs, (b) ILns, (c) FCIcog , and (d) FCIsoc. Each problem instance
from Table 5 is plotted using a symbol based on the actual performance of the PSO algorithm
on the problem. Symbols are grouped according to dimension. If the order of the symbols
in a dimension column matches the order of symbols in the legend, this indicates that the
searchability measure is a good predictor of PSO performance for that dimension.
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higher dimensional problems that require large sample sizes. For the benchmark
problems considered, the FDCs and ILns values were moderately correlated and
negatively correlated with performance of a traditional gbest PSO algorithm (as
measured by QMetric).

The FCIcog, FCIsoc and FCItrd measures quantify the searchability of a prob-
lem with respect to cognitive, social and combined updates in the initial stages
of PSO search. For the benchmark problems considered, both cognitive and social
FCI measures were moderately correlated with performance of a traditional gbest
PSO algorithm (as measured by QMetric), with FCIcog showing a stronger corre-
lation than FCIsoc. The traditional FCI measure, FCItrd, was weakly correlated
with performance.

It is a premise of this study that no single problem feature on its own can
serve as a predictor of problem difficulty. Instead, a range of different features
need to be considered together to attempt to predict algorithm performance on an
unseen problem. In this scenario, the searchability measures proposed above show
potential value as part-predictors of PSO performance if used with other measures
for features such as ruggedness, presence of funnels and gradients.

5 Predicting PSO failure with multiple fitness landscape measures

The objective of this section is to see whether classifiers can be constructed to
predict failure for variations of PSO based on fitness landscape characteristics.
Decision trees are used to build the classifiers, allowing for easy identification
of the most relevant features in predicting failure. Furthermore, with the aim
of better understanding the algorithms, it is shown how rules can be extracted
from the decision trees to describe why PSO failed with reference to landscape
characteristics.

The full details of the study are described in (Malan and Engelbrecht, 2014b).
24 benchmark functions covering a range of different characteristics were used at
dimensions D = 1, 2, 5, 10, 15, 30. Ten fitness landscape measures were calculated,
namely four of the searchability measures proposed in this paper (FDCs, ILns,
FCIcog, FCIsoc) and six other measures of micro ruggedness, macro ruggedness,
funnels, average gradient, gradient deviation and fitness cloud index mean standard
deviation (called FEM0.01, FEM0.1, DM, Gavg, Gdev and FCIσ, respectively). To
determine the actual difficulty of the problems, each problem instance was solved
using seven PSO variations. Each problem instance was classified as F (if the
problem was not solved) or S* (indicating one of the other performance classes
as described in Section 4.5). The full dataset was then divided into a training set
(2/3 of the patterns) and a testing set (1/3 of the patterns). Using the training
set, the C4.5 decision tree induction algorithm (Quinlan, 1993) was used to derive
classification models for the different PSO variants. Three of the resulting failure
prediction models are illustrated in Figure 7: traditional gbest PSO, local best PSO
(Eberhart and Kennedy, 1995) and modified barebones PSO (Kennedy, 2003). In
each case, the training set was used to generate the tree after which the model was
tested for accuracy using the testing set. The training and testing accuracies are
reported in the captions of the figures. The details of the training data classification
are shown on the trees, with the total number of instances that reached each
leaf node indicated in parentheses below the node. The number of instances that
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(a) Traditional gbest PSO. Training accu-
racy: 93.5%, testing accuracy: 92.3%.

(b) Modified barebones PSO. Training ac-
curacy: 96.1%, testing accuracy: 94.9%.

(c) Local best PSO. Training accuracy: 96.1%,
testing accuracy: 92.3%.

Fig. 7 Failure prediction models for three PSO variants.

Table 6 Confusion matrices with respect to the training data for the three PSO failure pre-
diction models illustrated in Figure 7.

Traditional gbest
Predicted class
S* F
32 1 S*
2 4 F

Modified barebones
Predicted class
S* F
32 0 S*
3 4 F

Local best
Predicted class
S* F
34 1 S*
1 3 F

were incorrectly classified by the node, if any, are indicated after a slash in the
parentheses. The confusion matrices with regard to the testing data are given in
Table 6.

The training and testing accuracies achieved by the models show that it was
possible to predict PSO failure based on fitness landscape features with a fairly
high degree of accuracy for the benchmark problems considered. The resulting
prediction models show that different fitness landscape metrics feature in the tree
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models of the different algorithms. This supports the idea that a single feature
cannot be used to predict problem difficulty. For traditional gbest PSO, the di-
mension with the gradient deviation metric were the most signficant features for
classifying failure or success. For modified barebones PSO, the FCIcog metric with
micro-ruggedness were the most significant, while for local best PSO, the gradient
deviation metric with dimension and FCIcog were the most significant features.

To illustrate how decision tree models can lead to further understanding, con-
sider the modified barebones classifier in Figure 7(c). The following rule can be de-
duced from the tree: modified barebones PSO is predicted to fail if FCIcog ≤ 0.711
and FEM0.01 > 0.537. In fuzzy terms, this can be re-expressed as: modified bare-
bones PSO is predicted to fail if many cognitive updates result in a deterioration
in objective value and micro ruggedness is fairly high. Both the FCIcog and micro
ruggedness can be seen as measures more focussed on the measurement of lo-
cal neighbourhood. Therefore, modified barebones PSO is not suited to problems
where local neighbourbood information is misleading.

6 Conclusion

This article investigated a number of measures of searchability for continuous op-
timisation problems. Two general measures of searchability were formulated as
adaptations of previously proposed measures of difficulty (fitness distance corre-
lation and information landscape hardness measure). In addition, six measures
were derived from fitness clouds based on PSO updates. All measures were evalu-
ated on simple one dimensional functions to see if results were consistent with a
visual inspection of the functions. Results of the negative slope coefficient based
on PSO updates were not consistent with expected results and this measure was
abandoned. The remaining searchability measures were tested on higher dimen-
sional problems and all measures showed some correlation to the performance of
a traditional gbest PSO algorithm.

Solving the algorithm selection problem requires the existence of multiple fea-
tures for suitably characterising problems. The techniques proposed in this article
contribute a number of practical measures that can be applied to continuous op-
timisation problems. These can be combined with other techniques for extracting
problem features such as ruggedness, presence of funnels and gradients to form
a multi-featured problem characteriser. Such a characteriser can be used to gain
insight into new optimisation problems to be solved and in future guide the choice
of the most appropriate algorithm to solve a given problem.
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