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Abstract This study focuses on issues related to the evolutionary design of task-
allocation mechanisms for swarm robotics systems with agents potentially capable
of performing different tasks. Task allocation in swarm robotics refers to a process
that results in the distribution of robots to different concurrent tasks without any
central or hierarchical control. In this paper, we investigate a scenario with two
concurrent tasks (i.e., foraging and nest-patrolling) and two environments in which
the task priorities vary. We are interested in generating successful groups made of
behaviourally plastic agents (i.e., agents that are capable of carrying out different
tasks in different environmental conditions), which could adapt their task prefer-
ences to those of their group mates as well as to the environmental conditions. We
compare the results of three different evolutionary design approaches, which differ
in terms of the agents’ genetic relatedness (i.e., groups of clones and groups of un-
related individuals), and/or the selection criteria used to create new populations
(i.e., single and multi-objective evolutionary optimisation algorithms). We show
results indicating that the evolutionary approach based on the use of genetically
unrelated individuals in combination with a multi-objective evolutionary optimi-
sation algorithm has a better success rate then an evolutionary approach based
on the use of genetically related agents. Moreover, the multi-objective approach,
when compared to a single objective approach and genetically unrelated individ-
ual, significantly limits the tendency towards task specialisation by favouring the
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emergence of generalist agents without introducing extra computational costs. The
significance of this result is discussed in view of the relationship between individual
behavioural skills and swarm effectiveness.

Keywords Task-allocation · Evolutionary Swarm Robotics · Multi-objective
optimisation algorithms

1 Introduction

In natural swarms, colonies of ants and bees manage to efficiently perform vital
concurrent tasks, such as foraging, defence, nest construction and maintenance, by
balancing the resources on different tasks according to the current colony needs.
Workers are engaged in specific tasks through a task-allocation process that oper-
ates without any central control (Page and Mitchell, 1998). Age and morphological
characteristics of the workers have been initially considered the main factors that
influence the task-allocation process. However, few studies have shown that task
allocation in social insects can be guided by other emergent circumstances concern-
ing the life of the colony (Gordon, 1996; Page, 1997; Gordon, 1989). For example,
in (Seeley, 1989) it is shown that a honeybee forager’s decision on whether to col-
lect nectar or remain in the nest depends on how much nectar is already stored in
the nest.

Similar to social insects, swarm robotics systems are a multi-robot systems
that develop self-organised collective responses without central control using lo-
cal communication strategies (Dorigo and Şahin, 2004; Dorigo et al., 2014). The
interest in swarm robotic systems is often related to what these systems could
offer in terms of automating parallel processes requiring collection and transport
of materials (e.g., toxic waste), or the assembly of structures using basic building
blocks (Dorigo et al., 2004; Allwright et al., 2014). These challenging scenarios in
which, for reasons of efficiency, the robots of a swarm have to distribute them-
selves on different tasks, require task allocation, a process that results in specific
robots being engaged in specific tasks. During the task-allocation process in a
swarm robotics system, the robots select particular tasks without any central or
hierarchical control. In this study, we look at task allocation from the perspective
of Evolutionary Swarm Robotics (hereafter, ESR), where the robot behavioural
mechanisms are automatically generated using evolutionary computation tech-
niques to synthesise artificial neural network controllers (Trianni and Nolfi, 2011).
ESR helps the designer to circumvent the problem of decomposing the group re-
sponse in individual behaviours and underlying mechanisms, by generating both
through an autonomous process inspired by natural evolution (Nolfi and Floreano,
2001). ESR methods can be used to design controllers for robot swarms operating
in scenarios in which the number of individuals engaged in each task changes ac-
cording to the current swarm needs, and in which task allocation emerges from the
interactions of individuals that simply react to contingent events, such as changes
in environmental conditions, robot failure, etc. (Tuci and Trianni, 2012).

In this study, we use the term behavioural plasticity, in the context of a task-
allocation scenario for swarm robotics systems, to refer to the capability of a single
robot to carry out different tasks in different environmental conditions. A robot
lacks behavioural plasticity if it can only execute a single task regardless of the
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environmental conditions. Such a robot can also be referred to as a specialist agent.
On the other hand, a robot is considered fully behaviourally plastic if it exhibits
the ability to carry out all tasks in all environmental conditions. Such a robot
can also be referred to as generalist agent. Specialist and generalist are terms that
define the extreme points of the behavioural plasticity spectrum, which will be
operationally defined in later Sections of this study.

For a swarm of robots operating in a scenario requiring task allocation, be-
havioural plasticity is an important property of single agents. Generalist agents
can allow a swarm to successfully face different potentially disruptive phenomena
by re-distributing resources according to current swarm needs. For example, gen-
eralist agents can allow a swarm: i) to adjust to changes in the task priority; ii)
to cope with conditions in which tasks are distributed over time, and in which at
different times of the swarm life different sub-sets of tasks need to be carried out;
and iii) to cope with variations within the swarm, caused either by the replace-
ment of agents with other agents, or by changes to the cardinality of the swarm.
For instance, a swarm can increase or decrease in terms of number of agents, with
consequent variations in the number of generalist and specialist agents within the
swarm.

Designing generalist agents for a swarm of robots that can face all the sources of
variation mentioned above using evolutionary methods is a still unsolved scientific
challenge. Our goal is to move a step forward in the development of effective design
methods that could overcome some of the current limitations of the evolutionary
approach when applied to swarm robotics. In this study, we focus exclusively on
circumstances in which the behavioural plasticity is required by the agents to
cope with variations within the swarm. In other words, our objective is to design
controllers for generalist agents that, in the context of a specific task-allocation
scenario, can adjust their task preferences according to the preferences of their
group mates. The primary contribution of this study is to demonstrate that this
type of behavioural plasticity can be obtained by using a relatively efficient evolu-
tionary method that, contrary to other solutions, helps the designer to overcome
several undesired effects. This method is based on the use of swarms of genetically
unrelated agents in combination with an evolutionary multi-objective optimisation
approach in which the selective advantage of swarms with generalist agents over
swarms without generalist agents is simply determined by a fitness objective.

In the next Section, we begin with the concept of genetically related and un-
related agents. We then illustrate the principles of the design approaches used in
ESR. With this background, we continue by illustrating our motivations, goals, and
achievements, starting from a brief description of the work published in (Quinn,
2001), which effectively represents the source of inspiration for our research study.

2 Background and Motivations

Generally speaking, there are two main approaches to the evolutionary design of
controllers for a swarm of robots: the clonal approach and the aclonal approach. The
two approaches mainly differ in the way groups are formed during evolution. In the
clonal approach, the groups are homogeneous, since individual controllers of each
group of robots are formed from a single genotype within one population of geno-
types. Robots are clones. In the aclonal approach, groups are heterogeneous since
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individual controllers of each group are formed from multiple genotypes within
one population of genotypes. Robots are not clones.

In a swarm robotics scenario requiring task allocation, the robots of a successful
homogeneous group generated with a clonal approach are behaviourally plastic.
Multiple factors including the evolutionary conditions and nature of the neural
mechanisms determine whether, and for how long, individual plasticity can be re-
tained. However, at least of the beginning of a trial, all robots are the same, and
all of them can potentially perform the tasks outright. Thus, the clonal approach
appears to be the best option to generate plastic individuals for swarms capable of
(re)distributing resources to concurrent tasks according to the swarm needs. Still,
data show that the clonal approach is not as effective as the aclonal approach in
finding groups that successfully solve task-allocation scenarios (Quinn, 2001; Tuci,
2014). As originally shown in (Quinn, 2001), the advantage of the aclonal approach
over the clonal approach can be accounted for with reference to specialisation1. In
the clonal approach, the evolutionary path to the emergence of successful groups
is limited to only those trajectories in which the mechanisms for allocating the
robots to tasks, and the mechanisms for executing the tasks, originate at the same
time (Quinn, 2001; Tuci and Trianni, 2014). This is because the emergence of
either the former or the latter set of mechanisms, in the absence of the comple-
mentary part, is neither beneficial to individuals nor to groups. Thus, solutions
take generally longer to evolve (i.e., more generations) and are more difficult to
find (i.e., less evolutionary runs generate successful groups).

Contrary to the clonal approach, the aclonal approach can generate groups of
minimally plastic or specialist agents in which the allocation of tasks is simply
based on individual competencies. No complex task-allocation mechanisms are re-
quired to distribute robots to tasks. Thus, successful groups are generally found
quicker (i.e., in less generations) and more often (i.e., more evolutionary runs gen-
erate successful groups). However, the adaptability of these groups, with respect
to environmental variations, is significantly restricted by the limited behavioural
competencies of specialist agents. For example, heterogeneous groups generated
with the aclonal approach fail to cope with environmental conditions in which a
task requires more agents than those specialised on that task.

From an evolutionary design perspective, it would be extremely advantageous
if we could exploit the benefits of the aclonal approach, and, at the same time, find
ways to generate groups in which at least some of the individuals are behaviourally
plastic. Quinn (2001) explored this issue in an extremely simplified scenario, where
two robots are required to decide whether to take the leader or follower role in
a task requiring coordinated movement. The roles were allocated only once and
never renegotiated during evaluation. In spite of the simplicity, the study shows
that even with the aclonal approach it is possible to generate successful groups
of behaviourally plastic, instead of specialist, agents. Tuci (2014) compared the
clonal and aclonal approaches in a more challenging scenario featuring two tasks
and two operating (environmental) conditions, with swarms that have to allocate
more resources (i.e., the majority of robots) to one task or the other according to
the current environmental condition. This implies that at least some of the robots
of a group have to switch tasks to balance the resources according to the “rules

1 A more comprehensive discussion of the advantages of the aclonal over the clonal approach
can be found in (Tuci and Trianni, 2014).
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of the game”. In this type of scenario, individual behavioural plasticity can be
measured with reference to the frequency with which a robot performs each task
in each type of environmental condition. The results of this study partially confirm
what was illustrated in (Quinn, 2001), demonstrating that the aclonal approach
outperforms the clonal approach in generating successful swarms. Nevertheless, no
evidence of behavioural plasticity in aclonally generated swarms was shown.

In this study, we intend to deepen the exploration into the potentialities of
aclonal approaches for the design of robotic swarms that successfully operate in sce-
narios requiring task allocation and continuous re-distribution of robots to tasks.
Borrowing the task originally developed in (Tuci and Trianni, 2012), we run a
comparative analysis in which robots’ controller are synthesised using a clonal
approach and two different types of aclonal approaches. In order to facilitate the
emergence of behaviourally plastic agents in aclonal approaches, we developed an
evaluation function made of two parts: the first part targets the quality of the
swarm performances in solving the group task; the second part targets the indi-
vidual plasticity of the agents of a swarm. In our study, the two aclonal approaches
differ in terms of the characteristics of the evolutionary algorithm used to evolve
heterogeneous groups. In the evo-aclonal-single approach, we use a single-objective
evolutionary algorithm in which groups are scored according to an evaluation func-
tion that takes into account, in an additive way, the two fitness components above
mentioned. In the evo-aclonal-multi approach, we use a multi-objective evolutionary
algorithm in which each of the two fitness components above mentioned represents
a different objective. We chose to operate at the level of the fitness function be-
cause steering evolution toward the emergence of swarms with generalist agents
through the addition of a fitness objective is a computationally efficient approach
compared to alternative approaches. For example, selective pressures favouring
swarms of generalist agents in aclonal evolution can be implemented by evaluating
the swarms’ performance on tasks that can only be solved by swarms with general-
ist agents. Alternatively, the evaluation of agents in differently assorted groups can
also favour the emergence of the mechanisms underpinning behavioural plasticity.
Unfortunately, most of the solutions aiming at the development of behavioural
plasticity through task requirements or through variations of the evaluation cri-
teria tend to require longer evaluation times and consequently they increase the
computational costs of the design algorithm.

The results of this study clearly show that the advantage of the aclonal over
clonal approaches discussed above can be exploited without sacrificing the agents’
behavioural plasticity, if the aclonal approach is used in combination with an evolu-
tionary multi-objective optimisation algorithm. We show that the evo-aclonal-multi

approach (i.e., the aclonal evolutionary multi-objective optimisation algorithm)
is an efficient way to design controllers for successful robotic swarms operating
in a task-allocation scenario. We also show that the evo-aclonal-multi approach
allows the designer to retain into the evolving populations a larger number of
behaviourally plastic agents compared to the evo-aclonal-single approach. Post-
evaluation analyses shed light on the limits of the evo-aclonal-single approach, high-
lighting the benefits of the evo-aclonal-multi approach in generating behaviourally
plastic agents. This work contributes to the development of more effective ESR
design methods by exposing the benefits of an evolutionary approach for the de-
velopment of behaviourally plastic agents for swarms of robots engaged in task-
allocation scenarios. Further implications of the results of this study and reference



6 Elio Tuci, Alexandre Rabérin

to relevant literature are discussed in Section 8. In Section 3, 4, 5, 6 we describe
the task and the design methods. In Section 7, we illustrate the results of the
evolutionary runs and of post-evaluation tests.

3 The Task

Groups comprising five simulated e-puck robots are evaluated in a scenario re-
quiring task allocation. Hereafter, the term simulated robot, and agent are used to
refer to the simulated model of the e-puck robot, detailed in Section 4. Taking
inspiration from the behaviour of social insects, the two tasks to be performed by
the simulated robots are called nest patrolling and foraging (hereafter, we refer
to them as task P, and task F, respectively). Roughly speaking, task P requires an
agent to remain within the nest. Task F requires an agent to leave the nest for the
foraging site, to spend a certain amount of time at the foraging site, and then to
come back to the nest. A group is required to execute both tasks simultaneously.
Therefore, the agents have to go through a task-allocation phase in which they
autonomously decide who is doing what, and then execute their respective tasks2.
Moreover, the simulated robots are required to be able to switch from one task
to the other due to the fact that they experience two different types of environ-
ment, Env. A and Env. B. In Env. A, task F is more important than task P. This
means that in Env. A, a group maximises the fitness if the majority of agents (i.e.,
more than two agents) visits the foraging site and the minority (i.e., less than
three agents) remains in the nest. In Env. B, task P is more important than task F.
This means that a group maximises the fitness if the majority of agents remains
in the nest and the minority visits the foraging site. Since a group, throughout its
life-span, experiences both types of environment, not all the agents can specialise
on a single task. At least one agent has to be able to play both tasks and eventually
to switch from one task to the other based on the current environmental condition
and the tasks allocated to the other group mates.

A group is required to keep track of the environmental changes with an effective
(re)distribution of agents to tasks. As detailed below, in aclonal approaches, during
evolution the frequency with which a simulated robot performs each task in each
type of environment will be used as a measure of an agent behavioural plasticity.
With the term specialist agent we indicate a simulated robot that tends to have a
strong preference for a specific task regardless of the environment; while a generalist

agent is a simulated robot that tends to execute with roughly equal frequency all
the four task-environment combinations.

Note, this task does not necessarily require highly plastic agents for a group
to be successful. An optimal performance can be achieved by a group in which
two agents are specialised in task P, two agents are specialised on task F, and one
agent is minimally plastic to be able to perform both tasks but not necessarily
both of them in Env. A and in Env. B. The reader may wonder why would anyone
be interested in evolving behaviourally plastic agents for a task-allocation scenario
that does not require this type of competence. The answer can be found in the
computational overhead that scenarios requiring generalist agents tend to produce

2 Note that this is just a linguistic description of the task-allocation process required by
this scenario. This description should not be interpreted as an operational illustration of the
agents’ behaviour.



On the Design of Generalist Strategies for Swarms of Simulated Robots 7

(a) (b)

(c)

Fig. 1 Experimental scenario. Simulator snapshots taken in Env. A during: a) Phase 1; b)
Phase 2; c) Phase 3. In each figure, the dark grey filled circle is the nest; the light grey
cylindrical objects are the simulated robots; the black filled circle is the light. For visualisation
purposes, the black circumference delimits the foraging site.

in the context of ESR. Many real world applications for swarms of robots can be
undoubtedly complex and generally set in environments where the operating con-
ditions tend to change over time. Behavioural plasticity is consequently a desirable
characteristic of the agents that provides swarms the required flexibility to cope
with potentially disruptive events (e.g., robots failures, changes in task priority,
changes in the swarm composition, etc.). Nevertheless, from an evolutionary design
approach, the idea of steering evolution towards, or generating the selective pres-
sures for, the emergence of behavioural plasticity by modelling these potentially
disruptive events is computationally costly. This is because modelling the above
mentioned events tends to demand a larger evaluation time, and consequently
more time to complete the evolutionary process. Our objective is to develop alter-
native evolutionary methods which facilitate the evolution of behaviourally plastic
agents for swarms of robots required to operate in task-allocation scenarios. We
aim to achieve this without having to pay the computational costs required to
model, during the design phase, the events that make behavioural plasticity an
adaptive trait. Specifically, we intend to exploit the advantages offered by the use
of heterogeneous groups and the benefits offered by the use of an evolutionary
multi-objective optimisation approach in order to design effective swarms with
behaviourally plastic agents.

4 The Simulation Environment

In the foraging scenario studied in this paper, the environment is a boundless arena
with a nest and a foraging site. The nest is a circular area in which the colour of
the floor is in shades of grey (see Figure 1a). The radius of the nest is randomly
defined at the beginning of each trial in the interval [20 cm, 30 cm]. The colour of
the floor in the nest is dark grey in Env. A, and light grey in Env. B. The intensity
of grey colouring the floor in the nest site is the only means the agents have to
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(a) (b) (c)

Fig. 2 (a) The neural network. Continuous line arrows indicate the efferent connections of
the first neuron of each layer. Neurons on the same layer share the same type of efferent
connections. Underneath the input layer, it is shown the correspondences between sensors and
sensor neurons. (b) E-puck body-plan. The black circles refer to the position of the infra-red
(IR), the black rectangle refers to the position of the floor sensor (FS). The dotted lines indicate
the agent’s view with the the three camera’s sectors. (c) Agents starting positions within the
nest.

distinguish the two types of environment. The nest is also indicated by a green
light positioned at the centre of the nest. The foraging site is instead indicated by
a red light positioned at a distance from the centre of the nest that varies from
100 cm to 110 cm. Both green and red light are positioned 6 cm above the floor
and, when turned on, they are visible from everywhere within the arena.

The simulated robot is modelled as a circular object (of radius 3.5 cm like an e-
puck robot) with left and right motors that can be independently driven forward
or in reverse, allowing the simulated robot to turn in any direction. The agent
maximum speed is 8 cm/s. The agent position is updated using the Differential
Drive Kinematic equations described in (Dudek and Jenkin, 2000). The simulated
robot is provided with eight infra-red sensors (IRi with i = {0, .., 7}), which give
the agent a noisy and non-linear indication of the proximity of an obstacle (in
this task, an obstacle can only be another agent); a linear camera to see the
lights; and a floor sensor (FS) positioned facing downward on the underside of
the agent (see Figure 2b). The IR sensor values are extrapolated from look-up
tables provided with the Evorobot? simulator (Nolfi and Gigliotta, 2010). The
FS sensor can be conceived of as an IR sensor capable of detecting the intensity
of grey of the floor. It returns 0 if the simulated robot is on white floor, 0.5 if
it is on light grey floor, and 1 if it is on dark grey floor. The agents’ camera
has a receptive field of 30◦, divided in three equal sectors, each of which has
three binary sensors (CB

i for blue, CG
i for green, and CR

i for red, with i = {1, 2, 3}
indicating the sector). Each sensor returns a value which is 0 if no light is detected,
and 1 when a light is detected. The camera can detect coloured objects up to a
distance of 150 cm. In this study, we assume that robots of a group share the same
hardware structure. Note that supplementary materials concerning further details
of the robot model, further graphs illustrating groups’ performances, and videos
of swarms of simulated robots operating in these task-allocation scenario can be
found online at http://users.aber.ac.uk/elt7/suppPagn/SI2015/suppMat.html.
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5 Controller

The agent controller is a continuous time-recurrent neural network (CTRNN) with
11 sensor neurons, 5 inter-neurons, and 2 motor neurons (Beer and Gallagher,
1992). The structure of the network is shown in Figure 2a. The values of sensory,
internal, and motor neurons are updated using equations 1, 2, and 3:

yi = gIi; i = 1, . . . , 11; (1)

τiẏi = −yi +
16∑
j=1

ωjiσ(yj + βj); i = 12, . . . , 16; (2)

yi =
16∑

j=12

ωjiσ(yj + βj); i = 17, . . . , 18. (3)

In these equations, using terms derived from an analogy with real neurons, yi
represents the cell potential; τi the decay constant; g is a gain factor; Ii with
i = 1, . . . , 11 is the activation of the ith sensor neuron (see Figure 2a for the
correspondence between agent’s sensors and sensor neuron); ωji the strength of
the synaptic connection from neuron j to neuron i, βj the bias term; σ(yj + βj)
the firing rate (hereafter, fi), with σ(x) = (1 + e−x)−1. All sensory neurons share
the same bias (βI), and the same holds for all motor neurons (βO). τi and βi with
i = 12, . . . , 16, βI , βO, all the network connection weights ωij , and g are genetically
specified networks’ parameters. At each time step, the firing rate of neurons 17
and 18 (i.e., f17 and f18) are linearly scaled in [-1, 1] and then used to set the
speed of the left and right wheels. Neurons’ cell potentials are set to 0 when the
network is initialised or reset, and equation 2 is integrated using the forward Euler
method with an integration time step ∆T = 0.1. Each network has 103 parameters
(i.e., 90 connection weights, 5 decay constants, 7 bias terms, and 1 gain factor).

6 The Three Experimental Conditions

In this study, we investigated the problem of designing controllers for swarm of
simulated robots engaged in the task described in Section 3 using three different
experimental conditions. These conditions differ with respect to the nature of
the evolutionary algorithm used to synthesise the agents’ controller, the genetic
relatedness of the group’s members, and with respect to the evaluation function
used to score the group performances. In the following, we first describe those
aspects that are common to all the three experimental conditions and then we
illustrate the distinctive characteristics of each of them.

During evolution, each group undergoes a set of E = 4 evaluation sequences
(hereafter, t-sequence). A t-sequence is made of V = 3 trials. There are two different
types of t-sequence: in ABA-sequence the agents experience Env. A in trial 1 and in
trial 3, Env. B in trial 2; in BAB-sequence the agents experience Env. B in trial 1
and trial 3, Env. A in trial 2. Each group experiences twice each type of t-sequence.
At the beginning of trial 1 of each t-sequence, the agents’ controllers are reset, and
each agent is randomly placed within an area corresponding to a sector of the nest.
The nest is divided in 6 sectors. Each agent is randomly placed in one sector, and
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randomly oriented in a way that the light can be within an angular distance of
±36◦ from its facing direction (see Figure 2c).

Each trial differs from the others in the initialisation of the random number
generator, which influences the agents initial position and orientation, all the ran-
domly defined features of the environment, and the noise added to motors and
sensors. Within a trial, the group life-span is T=900 simulation cycles (with 1
simulation cycle lasting 0.1 s). Simulated robots are frozen (i.e., they do not move
and do not contribute to the group fitness) if they exceed the arena limits (i.e.,
a circle of 120 cm radius, centred in the middle point between the nest and the
foraging site). Trials are terminated earlier if all the agents are frozen, or the group
exceeds the maximum number of collisions (i.e., 10). In trials following the first
one of each t-sequence (trials 2, and 3), the agents are repositioned only if the
previous trial has been terminated earlier, or with one or more agents frozen.

Each trial is divided into three phases. During Phase 1, which lasts 12 s, the
green light is on and the red light is off. The simulated robots are required to stay
within the nest. During Phase 2, which can last from a minimum of 47,5 s to a
maximum of 52.5 s, the red light is on and the green light is off. During Phase 2, a
group is required to behave according to the rules of the task. That is, in Env. A,
the majority of agents has to visit the foraging site and the minority has to remain
for the entire length of this phase in the nest. In Env. B, the majority of agents
has to remain for the entire length of Phase 2 in the nest and the minority has to
visit the foraging site. A simulated robot is considered having visited the foraging
site if, during Phase 2, it spends more than 100 consecutive time steps at less than
45 cm from the light indicating the foraging site. During Phase 3, which starts at
the end of Phase 2 and terminates at the end of the trial, the green light is on
again and the red light is off. The agents that were foraging during Phase 2 are
required to return in the nest to rejoin their group mates. The agents can not
see each other through the camera. Thus, any agent-agent interactions, including
those that drive the task-allocation process, are based on the activations of the
infra-red sensors. This is to keep our model as similar as possible to those that
have investigated similar issues (see Quinn, 2001; Tuci and Trianni, 2012, 2014;
Tuci, 2014).

6.1 First Experimental Condition (the Evo-clonal approach)

In the first experimental condition groups are homogeneous. That is, a group is
formed using a single genotype from the evolving population of genotypes. Thus,
each genotype generates “cloned” control software for all the simulated robots. An
evolutionary algorithm using linear ranking is employed to set the parameters of
the networks (Goldberg, 1989). Hereafter, the evolutionary approach of this exper-
imental condition is called evo-clonal approach. We consider populations composed
of γ = 100 groups, each composed of η = 5 individuals. The genotypes coding for
the parameters of the agents’ controllers are vectors comprising 103 real values
chosen uniformly random from the range [0,1]. Each of the γ groups at genera-
tion 0 is formed by generating one random genotype and cloning it η − 1 times
to obtain η identical genotypes. Generations following the first one are produced
by a combination of selection with elitism, recombination, and mutation. For each
new generation, the highest scoring genotype (“the elite”) from the previous gen-
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eration is retained unchanged, and used to form a new group. Each of the other
γ − 1 new groups are generated by fitness-proportional selection from the 60 best
genotypes of the old population. Each new genotype has a 0.3 probability of being
created by combining the genetic material of two individuals of the old popula-
tion. During recombination, one crossover point is selected. Mutation entails that
a random Gaussian offset is applied to each real-valued vector component encoded
in the genotype, with a probability of 0.04. The mean of the Gaussian is 0, and
its standard deviation is 0.1. During evolution, all vector component values are
constrained to remain within the range [0,1].

In this experimental condition, each solution is evaluated by a fitness function
which rewards groups in which the agents remain within the nest during Phase 1

and Phase 3 and in which the tasks are allocated according to the rules of the game
(i.e., majority of the agents on task F in Env. A, and majority of the agents on
task P in Env. B). The average group evaluation score (M̄) is computed as follows:

M̄ =
1

EV

E,V∑
e=1;v=1

Mev; M̄ ∈ [0, 7], E = 4, V = 3; (4)

Mev =
[
2×

(∑R
r=1 S

ph1
r

R× T ph1
×
∑R

r=1 S
ph3
r

R× T ph3

)
+ Uph2

]
× P ; (5)

Uph2 =

{
5 if agents are correctly allocated in Phase 2;

2× N
R if agents are incorrectly allocated in Phase 2;

(6)

where R = 5 corresponds to the total number of agents in a swarm; Sph1
r is the

number of simulation cycles agent r spends within the nest during Phase 1; Sph3
r

is the number of simulation cycles agent r spends within the nest during Phase 3;
T ph1 and T ph3 are the length (i.e., the number of simulation cycles) of Phase 1

and Phase 3, respectively. The group collision penalty P is inversely proportional
to the number of collisions, with P = 1 with no collisions, and P = 0.4 with 10
collisions in a trial. η corresponds to either the number of agents playing task F,
during Phase 2, if the trial is in Env. A; or the number of agents playing task P,
during Phase 2, if the trial is in Env. B.

6.2 Second Experimental Condition (the Evo-aclonal-single approach)

In the second experimental condition each group is formed of multiple genotypes
(one for each group member) from the evolving population of genotypes. Each
genotype generates the control software for only one agent. It follows that aclonal
groups are heterogeneous because each group member has a controller derived
from a different genotype. As in evo-clonal approach, an evolutionary algorithm
using linear ranking is employed to set the parameters of the networks. Hereafter,
the evolutionary approach of this experimental condition is called evo-aclonal-single

approach. At generation 0, each of the γ = 100 groups is formed by generating
η × γ random genotypes, with η = 5 agents in a group. As for the evo-clonal

approach, the genotypes coding for the parameters of the agents’ controller are
vectors comprising 103 real values chosen uniformly random from the range [0,1].
For each new generation following the first one, the genotypes of the best group
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(“the elite”) are retained unchanged and copied to the new population. Each of
the genotypes of the other groups is formed by first selecting two old groups using
roulette wheel selection from the 60 best groups of the old population. Then, two
genotypes, each randomly selected among the members of the selected group are
recombined with probability 0.3 to reproduce one new genotype. The resulting
new genotype is mutated with probability 0.04. Mutation and recombination are
applied in the same way as for the evo-clonal approach. This process is repeated
to form γ − 1 new groups of η genotype each.

In this experimental condition, each solution is evaluated by a fitness function
which scores the group performance using the metric M̄ described in Section 6.1,
and the metric Lr, referred to as plasticity index. Lr is a function of the frequency
with which an agent executes each task in each environment, and it measures
the agent’s behavioural plasticity. The maximum Lr score can be achieved by an
agent that executes both tasks in both types of environment with exactly the same
frequency.

The average group evaluation score (F̄ ) is computed in the following:

F̄ = M̄ + L̄; F̄ ∈ [0, 12]; (7)

L̄ =
R∑

r=1

Lr; L̄ ∈ [0, R]; Lr =
4∏

i=1

Θi
r; Lr ∈ [0, 1]; (8)

Θi
r =


Qi

r
(0.25EV ) if Qi

r ≤ (0.25EV );

2− Qi
r

(0.25EV ) otherwise;
(9)

where Q1
r is the number of times the agent r performs task F in Env. A; Q2

r is the
number of times the agent r performs task P in Env. A; Q3

r is the number of times
the agent r performs task F in Env. B; and Q4

r is the number of times the agent r
performs task P in Env. B.

Given the nature of the scenario, there are four possible task-environment
combinations (i.e., task F in Env. A, task P in Env. A, task F in Env. B, and task P in
Env. B). Within an agent’s life-span, corresponding to EV trials, a fully generalist
agent (i.e., an agent that has no preference for any of the four task-environment
combinations) is expected to execute each combination 0.25EV times. Conversely,
an agent that can only perform a single task regardless of the environment’s type
(i.e., a fully specialist agent), executes its preferred task 0.5EV times in each type
of environment. Thus, 0.25 and 2 in equation 9 are normalisation factors that keep
the Qi

r values within the interval [0, 1].

6.3 Third Experimental Condition (the Evo-aclonal-multi approach)

The third experimental condition is characterised by the use of the evolutionary
multi-objective optimisation algorithm NSGA-II (see Deb et al., 2002, for a de-
tailed description of the algorithm). Hereafter, the evolutionary approach of this
experimental condition is called evo-aclonal-multi approach. As in evo-aclonal-single

approach, groups are heterogeneous. That is, each group is formed from multiple
genotypes (one for each group member) from the evolving population of genotypes.
Each genotype generates the control software for only one agent. At generation
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zero, a random population of γ = 60 heterogeneous groups is created. Each group
is made of η = 5 different genotypes coding for the parameters of the agents’
controller as explained in Section 6.1. During evaluation, each group is scored
against two objectives: M̄ (see Equation 4) and L̄ (see Equation 8). After eval-
uation, each group is ranked according to a criteria that compares groups with
respect to their scores in both objectives (see Deb et al., 2002, for details). Follow-
ing generations are created using the algorithm illustrated in (Deb et al., 2002),
using binary tournament selection, probability of mutation 0.04, and probability
of recombination 0.3. Mutation and recombination are applied in the same way
as for the evo-clonal approach. Minor modifications are introduced with respect to
the algorithm described in (Deb et al., 2002) in order to introduce group selec-
tion. In our implementation of NSGA-II, genotypes belonging to the same group
have equal fitness. Thus, when we create a new population of size γ × η geno-
types, we first select the group based on its rank, and within a group we randomly
choose one genotype, as for the evo-aclonal-single approach. During the groups’
selection process, groups with equal rank are selected using the crowding distance

(i.e., the Euclidean distance between groups in the two-dimensional fitness space).
The higher the average crowding distance of a group, the higher its probability to
be selected.

7 Results

We ran 20 differently seeded evolutionary simulations for each experimental con-
dition. Each run lasted 2500 generations. The objective of this study is to verify,
first, that the two evolutionary approaches that work with heterogeneous groups
(i.e., the evo-clonal approach and the evo-aclonal-multi approach) outperform the
evolutionary approach working with homogeneous groups (i.e., the evo-clonal ap-
proach). Second, we intend to investigate whether the evo-aclonal-multi approach
and the evo-aclonal-single approach can generate behaviourally plastic agents, and
eventually if any of these two aclonal approaches can be preferred to the clonal one
to design controllers for a swarm of simulated robots engaged in task-allocation
scenarios.

To verify our hypothesis we ran several post-evaluation tests3. The first test
aims to estimate, in a broader range of initial conditions, the effectiveness of group
strategies generated by artificial evolution. At the end of the evolutionary phase,
we selected for post-evaluation the most promising groups for each experimental
condition. For the evo-clonal approach and the evo-aclonal-single approach we re-
evaluated the best 5 groups of each of the last 1000 generations. For the evo-

aclonal-multi approach we re-evaluated, for each of the last 1000 generations, all
the Pareto-optimal (i.e., non-dominated) groups. In these tests, the metric M̄ is
used to quantify the extent to which a group complies with the rules of the game
(see Equation 4 for details).

3 In all post-evaluation tests described in this Section, each single group undergoes a set
of E=80 differently seeded t-sequences (40 ABA-sequence, and 40 BAB-sequence), each made
of V=3 trials, for a total of 240 trials, 120 trials in Env. A and 120 trials in Env. B. Each
t-sequence differs from the others in the initialisation of the random number generator, which
influences the agents initial position and orientation at trial 1 and during repositioning, all the
randomly defined features of the environment, and the noise added to motors and sensors.
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Fig. 3 Graph showing the performance (M̄) of the best evolved group of each evolutionary run
of each experimental condition. White bars refer to the evo-clonal approach, grey bars refer to
the evo-aclonal-single approach, and black bars refer to the evo-aclonal-multi approach. Each
bar shows the number of runs per condition whose best performing group falls into the interval
indicated on the x-axis. Values on the x-axis represent percentages of the optimal evaluation
score M̄ = 7.

The graph in Figure 3 illustrates the average post-evaluation performance of
the best group for each evolutionary run and experimental condition. The bars re-
fer to the number of runs per condition whose best performing group falls into the
interval indicated on the x-axis. Values on the x-axis represent percentages of the
optimal evaluation score M̄ = 7. The results of this test clearly indicate that the
evolutionary approaches that work with heterogeneous groups (see Figure 3 grey
and black bars) outperform the evo-clonal approach working with homogeneous
groups (see Figure 3 white bars). Table 1 shows mean, standard deviation, and
median of the performance M̄ computed on the 20 best groups of each experimen-
tal condition. Each measure in the Table shows that both the evo-aclonal-single

approach and the evo-aclonal-multi approach outperform the evo-clonal approach.
Moreover, the difference between evo-aclonal-single approach and evo-clonal ap-
proach as well as the differences between evo-aclonal-multi approach and evo-clonal

approach are statistically significant (Wilcoxon rank sum test, test comparing
evo-clonal approach and evo-aclonal-single approach p < 0.001; test comparing evo-

clonal approach and evo-aclonal-multi approach p < 0.01). From a statistical point
of view, there is enough evidence to prefer the experimental conditions working
with heterogeneous groups over the condition working with homogeneous groups.

Table 1 Table showing median, mean and standard deviation of performance (M̄) of the best
evolved groups for each run of each experimental condition.

median mean s.d.
evo-clonal approach 5.26 5.02 1.21

evo-aclonal-single approach 6.81 6.58 0.50
evo-aclonal-multi approach 6.45 6.12 0.72
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7.1 On the Behavioural Plasticity of Agents of Heterogeneous Groups

The results of the first post-evaluations have confirmed that, as in (Quinn, 2001;
Tuci and Trianni, 2014; Tuci, 2014), the aclonal approaches outperform the clonal
approach. We have shown that evolving homogeneous groups is a less efficient way
to generate solutions for swarms of agents engaged in this task-allocation scenario
than evolving heterogeneous groups. However, as stated in Section 2, our primary
objective is to investigate whether the aclonal approaches can generate successful
groups made of behaviourally plastic agents.

As mentioned in Section 1, in this study the agents’ behavioural plasticity is
evaluated in circumstances in which the agents are required to adjust their task
preferences in response to the behaviour of their group mates. During evolution,
we have measured behavioural plasticity with the metric L̄, corresponding to the
frequency with which an agent performs each task in each environmental condition
(see Section 6.2 and equation 8). We are aware that the metric L̄ has some limi-
tations, as it can not detect “false negative” (i.e., agents which are behaviourally
plastic but that do not act as behaviourally plastic agents due to group con-
straints). In a heterogeneous group, it could be that, due to the characteristics of
the group members, a potentially plastic and generalist agent may not exhibit its
plasticity because, for the benefit of the group, it ends up repeatedly performing
those tasks that specialist group mates are not capable of doing. During the design
phase, we could not interfere with the group assemblage process, which is entirely
delegated to the evolutionary machinery. Moreover, adding further evaluations to
detect false negatives would have increased the computational time required to
generate successful solutions. Thus, during evolution, L̄ seemed a reasonable com-
promise between the possibility to fail to adequately reward heterogeneous groups
with potentially plastic agents, and the necessity to limit the computational time
required to run an evolutionary process.

During post-evaluation, we take advantage of the possibility to interfere with
the group assemblage process in order to develop metrics of an agent’s behavioural
plasticity that are not subject to the effect of false negative. In particular, we re-
quire an agent to operate in a homogeneous group, where its behavioural plasticity
can be reliably estimated using the group performance M̄ . Recall that, if under
the conditions of this task, a homogeneous group is successful, then its agents are
behaviourally plastic. This follows from the fact that, in spite of being clones, the
agents efficiently employ task-allocation mechanisms to distribute the resources to
task P and task F according to the rules of the task explained in Section 3. Thus,
for this set of post-evaluations, we chose to measure the behavioural plasticity
of agents generated aclonally through observing the performance of the homoge-
neous groups generated by cloning each of them. Specifically, we post-evaluated in
a homogeneous group (i.e., in a group of clones) each agent originally part of het-
erogeneous groups selected from all runs of both evo-aclonal-single approach and
evo-aclonal-multi approach that at the first post-evaluation test showed a group
performance M̄ > 75%. The performance of homogeneous groups (measured using
the metric M̄) is considered a quantitative estimate of the behavioural plasticity
of the agent generating the group. The higher the M̄ score, the more behaviourally
plastic the agent which generated the group.

The graph in Figure 4 shows the performance of the best 2000 homogeneous
groups generated by cloning agents originally forming: i) heterogeneous groups
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Fig. 4 Graph showing the performances (M̄) of the best 2000 homogeneous groups generated
by cloning agents originally forming: i) heterogeneous groups generated by the evo-aclonal-
single approach (white bars); ii) heterogeneous groups generated by the evo-aclonal-multi
approach (grey bars). Each bar shows the number of homogeneous groups whose performance
falls into the intervals indicated on the x-axis. Values on the x-axis represent percentage of the
optimal evaluation score M̄ = 7.

generated by the evo-aclonal-single approach (white bars); ii) heterogeneous groups
generated by the evo-aclonal-multi approach (grey bars). Each bar refers to the
number of homogeneous groups whose performance falls into the intervals indi-
cated on the x-axis. The graph clearly shows that, when re-evaluated in homo-
geneous groups, the agents generated by the evo-aclonal-multi approach perform
better than the agents generated by the evo-aclonal-single approach. Since all the
2000 selected agents generated by the evo-aclonal-multi approach managed to form
homogeneous groups with a performance higher than 70% of the optimal M̄ score,
we conclude that these 2000 agents demonstrated to be sufficiently plastic to be
able to adjust their behaviour in response to the preference of their group-mates.
In this particular test, these agents showed that their behavioural plasticity can
overcome the initial symmetry due to the agents being clones in order to trigger
an effective task allocation that complies with the rule of this scenario.

Figure 4 shows that agents generated by the evo-aclonal-single approach per-
form very poorly when re-evaluated in homogeneous groups (see Figure 4, white
bars). Only 193 agents out of 2000 managed to get a score higher than 50% of
the optimum score, and only 20 agents generated homogeneous groups that scored
more than 70% of the optimal M̄ value. We also notice that these 20 agents, which
demonstrated to be behaviourally plastic by generating sufficiently well performing
homogeneous groups, all come from a single evolutionary run.

Given the results of this test, we conclude that the evo-aclonal-multi approach
is more effective than the evo-aclonal-single approach in generating heterogeneous
groups that are effective in this task-allocation scenario, and in generating agents
that proved to be highly behaviourally plastic. In the nest Section, we will try to
account for the differences between the evo-aclonal-single approach and the evo-

aclonal-multi approach in generating behaviourally plastic agents, by exploring the
effects of the metric L̄ on the evolutionary processes of both aclonal conditions.
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Fig. 5 Graphs showing the group performance M̄ (continuous lines) and the group behavioural
plasticity L̄ (dashed lines) for each best group from generation 0 to generation 2500. Graph in
a) refers to the best groups of one of the most successful evolutionary run of the evo-aclonal-
single approach. Graphs b) and c) refer to one of the most successful evolutionary run of
the evo-aclonal-multi approach from which we selected for re-evaluation the non-dominated
groups with the highest performance at metric L̄ (graph b) and non-dominated groups with
the highest performance at metric M̄ (graph c).

7.2 Initial Qualitative Analysis of the Evolutionary Dynamics of the
Evo-aclonal-single approach and the Evo-aclonal-multi approach

In this section, we take a first step towards the exploration of the evolutionary
dynamics of the aclonal approaches. We acknowledge that it is relatively difficult
to analyse, compare, and interpret the evolutionary dynamics of an ESR experi-
ment. For example, the complex and dynamic nature of neural network controllers
makes it hard to trace behavioural traits back to their genes. Moreover, the use of
the cross-over operator makes it difficult to reconstruct the evolutionary history of
specific genes. Due to the complexity of this investigation, in this study, we limit
our observations to simple qualitative data that nevertheless point to interesting
phenomena. In particular, we provide further evidence indicating that the metric
L̄, used both in the evo-aclonal-single approach and evo-aclonal-multi approach to
generate selective pressures to favour swarms of behaviourally plastic over swarms
of specialist agents, only in the evo-aclonal-multi approach manages to steer evo-
lution towards the desired outcomes. This evidence comes from the results of a
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series of tests in which we re-evaluated all the best groups of each generation of
those evolutionary runs of the evo-aclonal-single approach and of the evo-aclonal-

multi approach that have been successful in generating heterogeneous groups with
a group performance higher than 75% of the optimum score, and in generating be-
haviourally plastic agents whose homogeneous group performance score is higher
than 50% of the optimum score.

During these tests, we have measured the group performance using the metric
M̄ and the metric L̄. The graph in Figure 5a shows the evolutionary trajectory
of one particular successful run of the evo-aclonal-single approach. We can notice
that the group plasticity drops to zero from about generation 900 till the end
of the evolution (see Figure 5a dashed line). In other words, the highest fitness
groups of the most successful runs of the evo-aclonal-single approach are made of
agents that act as specialists. At this point, we can not exclude the presence of
false negatives (i.e., agents that are plastic but that repress their plasticity for the
benefit of the group). However, even if the dashed-line curve shown in Figure 5a
would hide groups with agents that repress their plasticity, the emergence of this
repressed plasticity can not be accounted for by the fitness component L̄, since
as mentioned above, this fitness component can not select for a characteristic
that does not express itself through the agents’ behaviour. We conclude that the
evolutionary trend shown in Figure 5a, and repeatedly observed in almost all runs
of the evo-aclonal-single approach, is a clear sign of the very limited influence that
the fitness component L̄ exerts on the dynamics of evo-aclonal-single approach
evolutionary processes. As a result of this, the fitness component L̄ generally fails
to steer evolution toward the emergence of groups with plastic agents.

Contrary to the evo-aclonal-single approach, in evo-aclonal-multi approach the
multi-objective approach generates different evolutionary dynamics that do not pe-
nalise behaviourally plastic agents. Graphs in Figure 5b and 5c show the evolution-
ary trajectories of a successful evolutionary run of the evo-aclonal-multi approach.
Figure 5b refers to the evolutionary trajectories generated by selecting the non-
dominated group with the highest performance at metric L̄. Figure 5c refers to the
evolutionary trajectories generated by selecting the non-dominated group with the
highest performance at metric M̄ . Both graphs shows that a certain amount of be-
havioural plasticity is represented in both best groups that, at each generation, are
found at the opposite ends of the Pareto front (see Figure 5b and 5c dashed lines).
Other successful runs show similar evolutionary trends. This indicates that, in the
evo-aclonal-multi approach, the multi-objective approach generates evolutionary
dynamics in which the genes of those agents, acting as behaviourally plastic, are
kept into the gene pool of the evolving populations.

In conclusion, the results of the tests illustrated in this Section indicate that
when the metric L̄ operates as a distinctive objective in an evolutionary multi-
objective optimisation approach rather then as an additive component of a sin-
gle objective evolutionary approach, it clearly affects the evolutionary dynamics
by steering evolution toward the emergence of groups with behaviourally plastic
agents.
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Fig. 6 Graphs showing the results of the replacement test for a) a group generated by the
evo-aclonal-single approach; b) a group generated by the evo-aclonal-multi approach. In both
graphs, white boxes refer to the performances in Env. A, while grey boxes refer to the perfor-
mances in Env. B. On the x-axis, labels refer to the number of agents replaced by the most
plastic individual of the group. Each point in the boxes refers to the group fitness in a sin-
gle trial. The group fitness is measured through the percentage of maximum score Mev = 7
achievable by a group in a single trial. Boxes represent the inter-quartile range of the data,
while dashed horizontal bars inside the boxes mark the median values. The whiskers extend to
the most extreme data points within 1.5 times the inter-quartile range from the box. Empty
circles mark the outliers.

7.3 Further evidence of the behavioural plasticity of agents generated by the
evo-aclonal-multi approach

We conclude the results section with a series of post-evaluation tests, which provide
further quantitative evaluation of the behavioural plasticity of agents generated
with the aclonal approaches. The aim of these tests is to illustrate that plastic
agents generated aclonally are, to some extent, capable of operating in a variety
of conditions, which differ in term of characteristics of group-mates as well as for
the cardinality of the group.

We chose, for each experimental condition, a very successful group (M̄ > 80%
when operating in its heterogeneous state) with at least one very plastic individual.
Then, we ran two different types of test: the replacement test, in which the most
behaviourally plastic agent of the group is required to progressively replace all
group mates; and the scalability test, in which the most behaviourally plastic
agent of the group is used to generate new clones that increase the cardinality of
the group, up to a group of eleven agents.

The replacement test
In the replacement test, we progressively select one, two, and three agents to be
replaced by the most plastic individual of the group (hereafter, target agent). We
systematically considered all the possible combinations of the four agents selected
for substitution one/two/three at a time without repetition. The performance of
the “hybrid” group (i.e., a group in which some agents are clones and others are
not) is recorded using the metric (M̄).

The results of the replacement test are shown in Figure 6. Note that, boxes in
correspondence of x-tick 0 refer to the condition in which the group operates in
its normal heterogeneous set-up. Boxes in correspondence of x-tick 4 refer to the
condition in which the group operates in an homogeneous set-up (i.e., all agents
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are clones of the most plastic agent of the group). Figure 6a refers to a group gen-
erated by the evo-aclonal-single approach; Figure 6b refers to a group generated by
the evo-aclonal-multi approach. The graphs in Figure 6 clearly indicate that, first,
for the majority of the test conditions, the performance of both groups tend to
be relatively good. Second, the group generated by the evo-aclonal-multi approach
performs better than the group generated by the evo-aclonal-single approach. For
example, for the group generated by the evo-aclonal-multi approach the perfor-
mance drop is more pronounced only in correspondence of the fully homogeneous
state when the group operates in Env. B (see Figure 6b, grey boxes, for x-tick 4).
For the group generated by the evo-aclonal-single approach, the Env. B proved to
be particularly challenging for the last two conditions (see Figure 6a, grey boxes,
for x-tick 3 and 4). Third, for both groups the performance tends to moderately
decrease moving from the fully heterogeneous state (boxes in correspondence of
the x-tick 0) to the fully homogeneous state (boxes in correspondence of the x-
tick 4). Fourth, both groups tend to perform better in one environment than the
other. These four elements represent general characteristics that, with minor varia-
tions, have been observed in various other aclonally generated groups with similar
characteristics in terms of performance and of agents plasticity. Thus, they are
representative of what most successful heterogeneous groups, with plastic agents,
can do when facing similar circumstances as those considered by the replacement
test.

The scalability test
In the scalability test, we progressively added one extra agent to the group by
cloning the most plastic agent of the group. The performance of each group is
recorded using the metric (M̄). We considered groups of up to 11 agents. We de-
cided not to proceed further as this would require a significant restructuring of the
scenario, including changes to the diameter of the nest and foraging site to fit all
the agents, an increase of the maximum time for completion of each phase of the
task, and changes to other elements of the original set-up. Variations applied to
the spatio-temporal relationship of the task scenario, like those mentioned above,
tend to have a disruptive effect on group performance, as agents operate accord-
ing to temporal dynamics evolved to cope with the events detailed in Section 4
and Section 6. The results shown in Figure 7 are nevertheless informative of the
capability of plastic agents to operate in larger groups.

The graph in Figure 7a refers to the performance of the most successful group
generated by the evo-clonal approach. In Figure 7a, all boxes refer to the per-
formance of homogeneous groups. The performance of this group can be used as
a comparison to evaluate the effectiveness of plastic agents generated by aclonal
conditions in order to cope with scalability issues. Figure 7b, and Figure 7c re-
fer to the performance of a successful group generated by the evo-aclonal-single

approach and evo-aclonal-multi approach, respectively. For the evo-aclonal-single

approach and evo-aclonal-multi approach, the groups tested were also used for the
replacement test. In Figure 7b and Figure 7c, the boxes in correspondence of x-tick
5 refer to the condition in which the group operates in its normal heterogeneous
state with 5 agents. The boxes in correspondence of x-tick bigger than 5 refer
to the performances of hybrid groups (i.e., some agents are clones, others are not
clones), in which the extra agents are clones of the most plastic agent of the group.
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Fig. 7 Graphs showing the results of the scalability test for a) a group generated by the evo-
clonal approach; b) a group generated by the evo-aclonal-single approach; c) a group generated
by the evo-aclonal-multi approach. In all graphs, white boxes refer to the performances in
Env. A, while grey boxes refer to the performances in Env. B. Label on the x-axis refer to
the number of agents in the groups. Each point in the boxes refers to the group fitness in a
single trial. The group fitness is measured through the percentage of maximum score Mev = 7
achievable by a group in a single trial. Boxes represent the inter-quartile range of the data,
while dashed horizontal bars inside the boxes mark the median values. The whiskers extend to
the most extreme data points within 1.5 times the inter-quartile range from the box. Empty
circles mark the outliers.

The graphs in Figure 7 clearly indicate that, first, for the majority of the test
conditions, the performance tend to be relatively good. Second, both aclonally
generated groups seem to handle scalability in a rather similar way to the groups
generated by the evo-clonal approach. For all three groups, performances at the
scalability test do not progressively decrease with the increment of the group size.
There are instead specific conditions, different for each group, in which the groups
find more difficult to successfully complete the task. For both aclonally generated
groups, these conditions are limited to a single environment (e.g., Figure 7b, grey
box, 7-agent and 11-agent groups, and Figure 7c, grey box, 8-agent and 9-agent
groups). Visual inspection of the behaviour of these groups showed that, in those
conditions where the performance drop, the groups seem to be highly sensitive
to the agents’ initial relative positions, which very often prevent the group from
developing those virtuous dynamics underpinning the task-allocation process.

As for the replacement test, the patterns observed in Figure 7 relative to the
scalability test represent general characteristics that, with minor variations, have
been observed in various other groups with similar characteristics in terms of
performance and agents’ plasticity. Thus, they are representative of what most
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successful homogeneous and heterogeneous groups with plastic agents can do when
facing similar circumstances of those considered by the scalability test.

8 Conclusions

In 2001, a short conference paper (Quinn, 2001) proposed a rather counter-intuitive
hypothesis suggesting that, in an ESR task-allocation scenario, it is more effective
to obtain successful homogeneous swarms by evolving heterogeneous swarms (i.e.,
by using an aclonal approach) rather than through the evolution of homogeneous
swarms (i.e., by using a clonal approach). Since in homogeneous swarms, the allo-
cation of tasks is purely based on a dynamic negotiation between generalist agents,
this hypothesis can be interpreted as claiming that the evolution of heterogeneous
swarms represents a better approach to the evolutionary design of swarms in which
the agents are generalists and capable of adapting their task preferences to the
preferences of their group mates. This hypothesis, based on the beneficial effects of
specialisation, was originally tested in a very simple two-agent coordination task,
and the validation of its underlying principles was left to further investigations.

A recent study turned its attention toward this hypothesis with data that con-
firmed the advantages of aclonal over clonal approaches for the evolutionary design
of successful robotic swarms engaged in task-allocation scenarios, but casting se-
rious doubts on the potentialities of aclonal approaches in generating generalist
agents (Tuci, 2014). Building upon the evidence in (Tuci, 2014), we showed that,
by using an evolutionary multi-objective rather than a single objective optimisa-
tion algorithm, aclonal approaches facilitate the design of controllers for a swarm
of simulated robots operating in a relatively complex task-allocation scenario and,
at the same time, allow the designer to generate behaviourally plastic agents that
can perform different tasks according to the swarm needs. We showed that the
evo-aclonal-multi approach should be preferred to the evo-aclonal-single approach
as with the former approach we can more easily generate behaviourally plastic
agents (see Section 7.1). As suggested in (Quinn, 2001), we also found that spe-
cialisation in aclonal approaches represents a strong catalyst that accelerates the
emergence of successful swarms. However, only in combination with an evolution-
ary multi-objective optimisation algorithm the aclonal approach seems to be able
to systematically retain behaviourally plastic agents into the evolving populations,
generating swarms in which specialist and generalist agents successfully cooper-
ate to solve the group task (see Section 7.2 for details). We also showed that
behaviourally plastic agents generated by the evo-aclonal-multi approach can suc-
cessfully operate in hybrid groups in which their clones progressively replace all the
original group mates, as well as in groups in which their clones are used to increase
the group size up to more than twice the original group size (see Section 7.3).

The parameters of this model (e.g., the number of hidden nodes of the arti-
ficial neural network, or the mutation rate for the evolutionary algorithm, etc.)
have been set to arbitrary values that, to the best of our knowledge, make the
system potentially capable of generating the desired solutions without creating
undesirable overheads (e.g., an increment of the computational time required to
run an evolutionary process). During early stages of this research work, we have
experimentally explored a relatively small set of the potentially infinite parameters
space, observing no relevant differences on the results of the comparative analysis
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discussed in this study. We believe that the conclusions we drew from the results
of our research work can be generalised to a broader set of parameters, as they
mainly pertain to the modus operandi of the clonal and aclonal approaches rather
than to their specific implementation. The rationale behind the choice of using
five-robot groups is the following: a five-robot group is the smallest, and the com-
putationally less expensive, group in which the “minority” can be represented by
more than one robot (i.e., by a two-robot group). By providing evolution with the
means to represent the concept of “minority” by relaying on a two-robot group,
we intended to facilitate the evolution of mechanisms that could potentially work
for representation of the concept of “minority” with more than two robots, in case
of larger groups. This is an issue that bears upon the variability and scalability of
successful groups’ strategies.

We believe the main contribution of this study is in showing that, within
this task-allocation scenario, the aclonal approach in combination with a multi-
objective optimisation algorithm generates a sufficiently large number of be-
haviourally plastic agents without having to introduce elements that may nega-
tively impact on the computational time required to generate successful solutions.
There are a variety of possible options to be considered in order to steer the evo-
lutionary trajectories of single-objective aclonal runs towards the emergence of
successful robotics swarms made of generalist agents. Many of them seem to come
with undesirable additional computational overhead. For example, selective pres-
sures in favour of generalist agents could be introduced by evaluating each single
solution in multiple different groups. However, this option requires an increase in
the number of evaluation trials with a consequent increase of the computational
time required to evaluate single solutions. Alternatively, the group task could be
designed in such a way that optimal performances can be achieved only by swarms
with at least some generalist agents. This can be obtained either by introducing
a larger set of operating conditions or by contemplating circumstances like fault
agents whose role needs to be replaced by other agents. Both options, to be effec-
tive, tend to introduces extra computational time. The reader may have noticed
that our aclonal multi-objective approach avoided these computational overheads
by evaluating each solution in a single group, and by contemplating a scenario that
does not require the presence of fully behaviourally plastic agents for a swarm to
reach the optimal performance. This means that a swarm can be successful even
if it is made of specialist agents with at least one agent that can perform multiple
tasks but not in all environmental conditions (see Section 3 for more details). In
spite of this, we demonstrated that generalist agents (i.e., agents that can do both
tasks in both types of environment) emerged thanks to the evolutionary dynamics
generated by the multi-objective optimisation algorithm.

In this study, the agents behavioural plasticity has been tested only in circum-
stances where the re-distribution of resources was dictated by variability within
the composition of the swarm. We hope the results illustrated in this study will
represent a valuable contribution to the research community interested in ESR.
We indicated an alternative way that can be potentially helpful in designing, using
evolutionary techniques, swarm robotics systems and behaviourally plastic agents
capable of operating in more challenging environmental conditions in which the re-
distribution of resources through a task-allocation process are dictated by multiple
sources of environmental variability.
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In recent years, the literature on task-allocation in swarm robotics has sig-
nificantly grown. Some research works focus on scenarios in which a task can be
either completely executed by generalist robots or partitioned in a such a way that
different robots execute different parts of the task (Labella et al., 2006; Pini et al.,
2011, 2013b,a; Ferrante et al., 2015). These studies primarily investigate the envi-
ronmental conditions under which task partition is beneficial to the swarm in spite
of the costs related to the coordination of specialist agents (see Pini et al., 2013b).
The contribution of these studies is in illustrating the effectiveness of distributed
mechanisms in generating complex group level responses, such as the division of
a task into sub-tasks that can be tackled separately. Moreover, in some studies
individual mechanisms allow single agents to act either as generalist or as spe-
cialist in response to the environmental conditions in which the group is required
to operate (e.g., see Ferrante et al., 2015). Other studies investigate scenarios in
which task allocation is assumed to be beneficial, either because the experimen-
tal scenario features concurrent tasks (see Ducatelle et al., 2009; Brutschy et al.,
2012), as in this study, or because a group task is organised in sub-tasks that have
to be executed in a predefined order (see Brutschy et al., 2014). In these studies,
the focus is generally on how the competencies and characteristics of the single
agents bear upon the group performance. For example, Brutschy et al. (2012) look
at how the spatial and temporal distribution of tasks bears upon the agents’ ca-
pabilities to improve their behavioural skills in executing specific tasks. The above
mentioned body of literature is based on the use of finite state machine type of
controllers in which stochastic processes regulate individual task preferences ac-
cording to the agent history of interaction with the environment. In spite of sharing
a common interest on the issue of task allocation for swarm robotics systems, the
use of different design methods makes this literature only marginally relevant to
this study. Thus, in the remaining of this section, we mainly review relevant works
that employ evolutionary computation techniques and artificial neural networks
as design methods.

In the ESR literature, only a few research works target task-allocation scenar-
ios, and the majority of them look at tasks in which robots have to differentiate in
leaders and followers. Some of these studies are interested in the means to achieve
a more efficient allocation of roles rather than in the effects of the genetic compo-
sition of the teams (Gigliotta et al., 2014). Other research works, focused on the
relationship between the genetic composition of the team and the task require-
ments, indicate in which operating conditions heterogeneous swarms appear to be
more efficient than homogeneous swarms and vice versa (see, e.g., Ijspeert et al.,
2001; Waibel et al., 2009). This interesting body of literature is nevertheless only
partially relevant to this work. Therefore, we refer the reader to (Nitschke et al.,
2007) for an extensive review of these studies. More relevant for this study is an-
other series of research works, which do not explicitly target swarm robotics and
task allocation. Instead, these works focus on the development of methods that
facilitate the emergence of behavioural diversity into the population of evolving
agents through the use of fitness functions that score agents for the novelty of
their behaviour rather than for how effective they are in accomplishing specific
goals (Stanley and Miikkulainen, 2004). Behavioural diversity is demonstrated
to reduce the undesired effects of premature convergence in evolutionary com-
putation and represents an alternative for the design of open-ended evolutionary
processes (Lehman and Stanley, 2008). This literature, which is extensively and
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nicely reviewed in (Doncieux and Mouret, 2014), shared an interest with this study
in improving existing design methods and generating new alternative solutions to
facilitate the task of engineering self-organising systems. Particularly relevant to
us is the study described in (Mouret, 2011) which, like this study, emphasises
the advantages of using multi-objective optimisation algorithms to exploit the
benefits of rewarding agents both for their behavioural diversity and for specific
task-dependent objectives. The results shown in (Mouret, 2011) suggest possible
extensions of our work. The concept of behavioural diversity could be exploited
to integrate task-independent as well as task-dependent objectives in order to im-
prove the efficiency of aclonal multi-objective optimisation algorithms to generate
successful swarms and behaviourally plastic agents for complex task-allocation
scenarios.

We began this study by acknowledging that scenarios requiring complex spatio-
temporal organisation and task allocation in swarm robotics systems need to be
addressed by generating both effective mechanisms for the distribution of robots
to tasks and behaviourally plastic agents that can perform different tasks for the
benefit of the swarm. Recent studies have emphasised the need to engineer self-
organisation through investigations focused on the effects of design choices offered
by the evolutionary approach on the quality of the solutions (Dancieux et al., 2015;
Trianni, 2014). In line with this perspective, this study contributes to the devel-
opment of a principled methodological approach to the design of effective swarm
robotics systems operating in a task-allocation scenario. We showed that successful
group strategies and individually plastic agents can be generated using an aclonal
evolutionary multi-objective optimisation algorithm. We believe that the evidence
in this study will facilitate the engineering of more efficient swarm robotics systems
capable of operating in complex scenarios requiring task allocation.
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