Skip to main content
Log in

Modeling multi-robot task allocation with limited information as global game

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

Continuous response threshold functions to coordinate collaborative tasks in multi-agent systems are commonly employed models in a number of fields including ethology, economics, and swarm robotics. Although empirical evidence exists for the response threshold model in predicting and matching swarm behavior for social insects, there has been no formal argument as to why natural swarms use this approach and why it should be used for engineering artificial ones. In this paper, we show, by formulating task allocation as a global game, that continuous response threshold functions used for communication-free task assignment result in system level Bayesian Nash equilibria. Building up on these results, we show that individual agents not only do not need to communicate with each other, but also do not need to model each other’s behavior, which makes this coordination mechanism accessible to very simple agents, suggesting a reason for their prevalence in nature and motivating their use in an engineering context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amstutz, P., Correll, N., & Martinoli, A. (2008). Distributed boundary coverage with a team of networked miniature robots using a robust market-based algorithm. Annals of Mathematics and Artificial Intelligence, 52(2–4), 307–333.

    Article  MathSciNet  MATH  Google Scholar 

  • Arslan, G., Marden, J. R., & Shamma, J. S. (2007). Autonomous vehicle-target assignment: A game-theoretical formulation. Journal of Dynamic Systems, Measurement, and Control, 129(5), 584–596.

    Article  Google Scholar 

  • Berman, S., Halász, Á., Hsieh, M. A., & Kumar, V. (2009). Optimized stochastic policies for task allocation in swarms of robots. IEEE Transactions on Robotics, 25(4), 927–937.

    Article  Google Scholar 

  • Bonabeau, E., Sobkowski, A., Theraulaz, G., & Deneubourg, J.-L. (1997). Adaptive task allocation inspired by a model of division of labor in social insects. In Biocomputing and emergent computation: Proceedings of BCEC97 (pp. 36–45). World Scientific Press.

  • Bonabeau, E., Theraulaz, G., & Deneubourg, J.-L. (1996). Quantitative study of the fixed threshold model for the regulation of division of labour in insect societies. Proceedings of the Royal Society of London Series B: Biological Sciences, 263(1376), 1565–1569.

    Article  Google Scholar 

  • Bonabeau, E., Theraulaz, G., & Deneubourg, J.-L. (1998). Fixed response thresholds and the regulation of division of labor in insect societies. Bulletin of Mathematical Biology, 60(4), 753–807.

    Article  MATH  Google Scholar 

  • Border, K. C. (1990). Fixed point theorems with applications to economics and game theory. Cambridge: Cambridge Books.

    MATH  Google Scholar 

  • Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41.

    Article  Google Scholar 

  • Camilli, G. (1994). Teachers corner: Origin of the scaling constant d = 1.7 in item response theory. Journal of Educational and Behavioral Statistics, 19(3), 293–295.

    MathSciNet  Google Scholar 

  • Carlsson, H., & Van Damme, E. (1993). Global games and equilibrium selection. Econometrica: Journal of the Econometric Society, 61(5), 989–1018.

    Article  MathSciNet  MATH  Google Scholar 

  • Castello, E., Yamamoto, T., Dalla Libera, F., Liu, W., Winfield, A. F., Nakamura, Y., et al. (2016). Adaptive foraging for simulated and real robotic swarms: The dynamical response threshold approach. Swarm Intelligence, 10(1), 1–31.

    Article  Google Scholar 

  • Chen, J., & Sun, D. (2011). Resource constrained multirobot task allocation based on leader–follower coalition methodology. The International Journal of Robotics Research, 30(12), 1423–1434.

    Article  Google Scholar 

  • Choi, H.-L., Brunet, L., & How, J. P. (2009). Consensus-based decentralized auctions for robust task allocation. IEEE Transactions on Robotics, 25(4), 912–926.

    Article  Google Scholar 

  • Conradt, L., & Roper, T. J. (2003). Group decision-making in animals. Nature, 421(6919), 155–158.

    Article  Google Scholar 

  • Conradt, L., & Roper, T. J. (2005). Consensus decision making in animals. Trends in Ecology and Evolution, 20(8), 449–456.

    Article  Google Scholar 

  • Correll, N. (2007). Coordination schemes for distributed boundary coverage with a swarm of miniature robots: Synthesis, analysis and experimental validation. PhD thesis, Ecole Polytechnique Fédérale, Lausanne, CH.

  • Correll, N. (2008). Parameter estimation and optimal control of swarm-robotic systems: A case study in distributed task allocation. In IEEE international conference on robotics and automation (ICRA) (pp. 3302–3307). IEEE.

  • Dantu, K., Berman, S., Kate, B., & Nagpal, R. (2012). A comparison of deterministic and stochastic approaches for allocating spatially dependent tasks in micro-aerial vehicle collectives. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 793–800). IEEE.

  • Durrett, R. (2010). Probability: Theory and examples (4th ed.). Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Fudenberg, D. (1998). The theory of learning in games (Vol. 2). Cambridge, MA: MIT Press.

    MATH  Google Scholar 

  • Gerkey, B. P. (2004). A formal analysis and taxonomy of task allocation in multi-robot systems. The International Journal of Robotics Research, 23(9), 939–954.

    Article  Google Scholar 

  • Gerkey, B. P., & Mataric, M. J. (2003). Multi-robot task allocation: Analyzing the complexity and optimality of key architectures. In IEEE international conference on robotics and automation (Vol. 3, pp. 3862–3868). IEEE.

  • Gordon, D. M. (1996). The organization of work in social insect colonies. Nature, 380(6570), 121–124.

    Article  Google Scholar 

  • Grenager, T., Powers, R., & Shoham, Y. (2002). Dispersion games: General definitions and some specific learning results. In AAAI innovative applications of artificial intelligence conference (IAAI) (pp. 398–403). AAAI.

  • Harsanyi, J. C. (2004). Games with incomplete information played by Bayesian players, I-III Part I. The basic model. Management Science, 50(12–supplement), 1804–1817.

    Article  MathSciNet  Google Scholar 

  • Kalra, N., & Martinoli, A. (2006). Comparative study of market-based and threshold-based task allocation. In Distributed autonomous robotic systems 7 (pp. 91–101). Springer.

  • Kanakia, A., & Correll, N. (2016). A response threshold sigmoid function model for swarm robot collaboration. Distributed and autonomous robotic systems (DARS), volume 112 of the series springer tracts in advanced robotics (pp. 193–206). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Krieger, M. J., Billeter, J.-B., & Keller, L. (2000). Ant-like task allocation and recruitment in cooperative robots. Nature, 406(6799), 992–995.

    Article  Google Scholar 

  • Kube, C. R., & Bonabeau, E. (2000). Cooperative transport by ants and robots. Robotics and Autonomous Systems, 30(1), 85–101.

    Article  Google Scholar 

  • Lerman, K., Galstyan, A., Martinoli, A., & Ijspeert, A. (2001). A macroscopic analytical model of collaboration in distributed robotic systems. Artificial Life, 7, 375–393.

    Article  Google Scholar 

  • Lerman, K., Jones, C., Galstyan, A., & Matarić, M. J. (2006). Analysis of dynamic task allocation in multi-robot systems. The International Journal of Robotics Research, 25(3), 225–241.

    Article  Google Scholar 

  • Liu, W., & Winfield, A. (2010). Modelling and optimisation of adaptive foraging in swarm robotic systems. The International Journal of Robotics Research, 29(14), 1743–1760.

    Article  Google Scholar 

  • Marden, J. R., Arslan, G., & Shamma, J. S. (2009). Joint strategy fictitious play with inertia for potential games. IEEE Transactions on Automatic Control, 54(2), 208–220.

    Article  MathSciNet  Google Scholar 

  • Martinoli, A., Easton, K., & Agassounon, W. (2004). Modeling swarm robotic systems: A case study in collaborative distributed manipulation. The International Journal of Robotics Research, 23(4–5), 415–436.

    Article  Google Scholar 

  • Martinoli, A., Ijspeert, A. J., & Mondada, F. (1999). Understanding collective aggregation mechanisms: From probabilistic modelling to experiments with real robots. Robotics and Autonomous Systems, 29(1), 51–63.

    Article  Google Scholar 

  • Matarić, M. J., Sukhatme, G. S., & Astergaard, E. H. (2003). Multi-robot task allocation in uncertain environments. Autonomous Robots, 14(2–3), 255–263.

    Article  MATH  Google Scholar 

  • Mather, T. W., Hsieh, M. A., & Frazzoli, E. (2010). Towards dynamic team formation for robot ensembles. In IEEE international conference on robotics and automation (ICRA) (pp. 4970–4975). IEEE.

  • McEvoy, M., & Correll, N. (2015). Materials that couple sensing, actuation, computation, and communication. Science, 347(6228), 1261689.

    Article  Google Scholar 

  • Morris, S. E., & Shin, H. S. (2000). Global games: Theory and applications. New Haven, CT: Cowles Foundation for Research in Economics.

    Google Scholar 

  • Nisan, N., Roughgarden, T., Tardos, E., & Vazirani, V. V. (2007). Algorithmic game theory (Vol. 1). Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Parsons, S., & Wooldridge, M. (2002). Game theory and decision theory in multi-agent systems. Autonomous Agents and Multi-Agent Systems, 5(3), 243–254.

    Article  MathSciNet  MATH  Google Scholar 

  • Pini, G., Gagliolo, M., Brutschy, A., Dorigo, M., & Birattari, M. (2013). Task partitioning in a robot swarm: A study on the effect of communication. Swarm Intelligence, 7(2–3), 173–199.

    Article  Google Scholar 

  • Pynadath, D. V., & Tambe, M. (2002). Multiagent teamwork: Analyzing the optimality and complexity of key theories and models. In Proceedings of the first international joint conference on autonomous agents and multiagent systems (AAMAS): Part 2 (pp. 873–880). ACM.

  • Raafat, R. M., Chater, N., & Frith, C. (2009). Herding in humans. Trends in Cognitive Sciences, 13(10), 420–428.

    Article  Google Scholar 

  • Robinson, G. E. (1987). Modulation of alarm pheromone perception in the honey bee: Evidence for division of labor based on hormonally regulated response thresholds. Journal of Comparative Physiology A, 160(5), 613–619.

    Article  Google Scholar 

  • Seeley, T. D. (1989). Social foraging in honey bees: How nectar foragers assess their colony’s nutritional status. Behavioral Ecology and Sociobiology, 24(3), 181–199.

    Article  Google Scholar 

  • Shehory, O., & Kraus, S. (1998). Methods for task allocation via agent coalition formation. Artificial Intelligence, 101(1), 165–200.

    Article  MathSciNet  MATH  Google Scholar 

  • Suzuki, S., Adachi, R., Dunne, S., Bossaerts, P., & O’Doherty, J. P. (2015). Neural mechanisms underlying human consensus decision-making. Neuron, 86(2), 591–602.

    Article  Google Scholar 

  • Theraulaz, G., Bonabeau, E., & Deneubourg, J.-L. (1998). Response threshold reinforcements and division of labour in insect societies. Proceedings of the Royal Society of London Series B: Biological Sciences, 265(1393), 327–332.

    Article  MATH  Google Scholar 

  • Tumer, K., & Wolpert, D. (2004). A survey of collectives. In Collectives and the design of complex systems (pp. 1–42). Springer.

  • Vig, L., & Adams, J. A. (2007). Coalition formation: From software agents to robots. Journal of Intelligent and Robotic Systems, 50(1), 85–118.

    Article  Google Scholar 

  • Yoshida, W., Seymour, B., Friston, K. J., & Dolan, R. J. (2010). Neural mechanisms of belief inference during cooperative games. Journal of Neuroscience, 30(32), 10744–10751.

    Article  Google Scholar 

Download references

Acknowledgments

A. Kanakia and N. Correll have been supported by NSF CAREER Grant #1150223. We are grateful for this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaus Correll.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanakia, A., Touri, B. & Correll, N. Modeling multi-robot task allocation with limited information as global game. Swarm Intell 10, 147–160 (2016). https://doi.org/10.1007/s11721-016-0123-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-016-0123-4

Keywords

Navigation