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Abstract A variety of general strategies have been applied to enhance the perfor-
mance of multi-objective optimization algorithms for many-objective optimization
problems (those with more than three objectives). One of these strategies is to split
the solutions to cover di↵erent regions (clusters) and apply an optimizer to each
region with the aim of producing more diverse solutions and achieving a better
distributed approximation of the Pareto front. However, the e↵ectiveness of clus-
tering in this context depends on a number of issues, including the characteristics
of the objective functions. In this paper we show how the choice of the clustering
strategy can greatly influence the behavior an optimizer. We try to find a rela-
tion between the characteristics a of multi-objective optimization problem (MOP)
and the e�ciency of the use of a clustering type in its resolution. Using as a case
study, the Iterated Multi-swarm (I-Multi), a recently introduced multi-objective
particle swarm optimization (MOPSO) algorithm, we scrutinize the impact that
clustering in di↵erent spaces (of variables, objectives, and a combination of both)
can have on the approximations of the Pareto front. Furthermore, using two dif-
ficult function benchmarks of problems of up to 20 objectives, we evaluate the
e↵ect of using di↵erent metrics for determining the similarity between the solu-
tions during the clustering process. Our results confirm the important e↵ect of
the clustering strategy on the behavior of multi-objective optimizers. Moreover,
we present evidence that some problem characteristics can be used to select the
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most e↵ective clustering strategy, significantly improving the quality of the Pareto
front approximations produced by I-Multi.

Keywords Many-objective · clustering · MOPSO · I-Multi · distance metrics ·
PSO

1 Introduction

The design of e�cient approaches for many objective optimization problems (MaOPs)
has become an active research area in meta-heuristics. A great number of ap-
proaches (Li et al 2015a) and algorithms have been proposed recently to treat
these problems. One of these approaches is the extension of particle swarm op-
timization (PSO) (Kennedy and Eberhart 1995) algorithms to deal with these
problems. Multi-objective particle swarm optimization (MOPSO) algorithms have
been successfully applied to continuous MaOPs (Britto et al 2013; Britto and Pozo
2012; Castro Jr. et al 2015). Among other characteristics, MOPSOs can be very
fast, are particularly good at finding diverse sets of solutions, and are relatively
simple to understand and implement.

One of the recent developments in MOPSOs is the application of clustering
strategies that search more e�ciently for non-dominated solutions in di↵erent re-
gions of the search space (Britto et al 2013; Mostaghim and Teich 2004; Pulido and
Coello Coello 2004; Zhang et al 2011). The rationale of applying clustering strate-
gies is similar to that behind the application of niching methods in single-objective
evolutionary algorithms (EAs) (Mahfoud 1995). However, the problem is more dif-
ficult due to several characteristics, such as the existence of conflicting objectives,
the explosion in the number of non-dominated solutions for MaOPs (Ishibuchi et al
2008) and the discontinuities and deceptive nature of some Pareto fronts. There-
fore, the application of clustering strategies in MaOPs is itself a research problem.
Nevertheless, even if the application of clustering in populational meta-heuristics
is widespread, and the benefits of these methods for the search can be significant,
the question of how the choice of the clustering strategies should be made has not
received due attention. We investigate this issue in the paper, showing that the
specific choice of the clustering strategy used by a MOPSO can have an important
impact in the behavior of the algorithm and in the quality of the Pareto fronts
generated by the MOPSOs.

We focus on finding answers for the following questions: 1) What is the most
e�cient clustering strategy for MaOPs: clustering in the space of decision vari-
ables, objectives, or both? 2) Is it possible to characterize the type of problems
(benchmark functions) for which one type of clustering is better than the others?
3) What is the influence of the similarity metric used for clustering in the behav-
ior of the algorithms? 4) Among the metrics compared, which one contributes the
most to obtaining good solutions? What is the best metric among the compared?

We investigate these issues using I-Multi (Britto et al 2013), a recently in-
troduced MOPSO that has been successfully applied to MaOPs and includes as
one of its distinguished features the application of a clustering step. I-Multi is a
paradigmatic example of a class of MOPSOs specifically conceived to deal with
MaOPs. I-Multi’s design, in particular the incorporation of multiple swarms to
cover di↵erent areas of the search space, allows the algorithm to naturally extend
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the strength of PSO approaches to multi-objective domains. Although we focus on
I-Multi, our study is also suitable for other MOPSOs that incorporate clustering of
the solutions as a component of the search. Moreover, there are two other reasons
that make our research relevant to the field.

The first reason is that some of our findings, in particular those related to the
influence of the modalities of di�culty of the functions on the behavior of the
di↵erent clustering strategies, can be useful to understand the behavior of other
optimizers that incorporate clustering (Bosman and Thierens 2002; Pelikan et al
2005; Pulido and Coello Coello 2004).

The second reason that makes our research valuable beyond the scope of MOP-
SOs, is that clustering in the di↵erent spaces can serve as a source of information
about the type of relationships between variables that arise in the problem, and
between objectives and variables. Recent research in MOPs (Fritsche et al 2015;
Karshenas et al 2014; Ma et al 2015) has emphasized the importance of capturing,
modeling, and using the di↵erent types or relationships between the variables and
objectives of a problem. Clustering is commonly applied as an essential tool in
exploratory data mining1 and it can be useful to identify patterns between the
grouped solutions and extract general rules describing these solutions. When clus-
tering Pareto-optimal solutions, we can expect to extract important patterns as
well. Hence, determining the characteristics of MOPs that make a particular type
of clustering strategy more e↵ective for optimization could also lead to a better
understanding of the patterns that arise in the (clustered) optimal solutions for
these MOPs.

After conducting extensive experiments using two families of di�cult bench-
mark functions of up to 20 objectives, we clearly identified clustering in the objec-
tive space as the most e�cient clustering strategy in most of the cases. However,
we also identify functions for which clustering in the decision space leads to better
approximations of the Pareto front. Further examination of these cases allows us
to identify two modalities of di�culty that are particularly suited to be treated
using clustering in the decision space. These are: bias and deception. Our study of
the influence of the clustering metrics reveals a clearer scenario in which the use
of other metrics, di↵erent to the commonly applied Euclidean distance, does not
produce significant improvements in the general case. The authors of this paper
have not found any previous work where the performance of di↵erent clustering
strategies for MOPs is linked to the modalities of di�culty of the functions. Sim-
ilarly, we did not find any previous study on the impact of the similarity metrics
on the behaviors of the algorithms.

The remainder of this paper is organized as follows: Section 2 presents some
preliminary concepts and introduces the notation used throughout this work. The
I-Multi algorithm used here as a case study is explained in Section 3 and some
representative clustering algorithms related to ours are presented in Section 4.
Section 5 describes the clustering strategies investigated, and Section 6 shows
the experimental study conducted to compare these strategies. Finally, Section 7
presents our conclusions.

1 ”give a reference”
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2 Elementary concepts

In this section, we introduce the notation used and present the concepts of multi
and many-objective optimization. Moreover, we explain what the main character-
istics of a good Pareto front are, and discuss some challenges and alternatives to
achieve these characteristics.

2.1 Many-objective optimization

Multi-objective optimization problems (MOPs) require the simultaneous optimiza-
tion (maximization or minimization) of two or more objective functions. These ob-
jectives are usually in conflict, so these problems have a set of optimal solutions,
instead of just one as in single objective optimization problems. This optimal set
of solutions is usually found using the non-dominance relation.

A general MOP without constraints can be defined as optimizing f(x) =
(f1(x), ..., fm(x)), where x 2 ⌦ is an n-dimensional decision variable vector x =
(x1, ..., xn) from a universe ⌦, and m is the number of objective functions.

An objective vector u = f(x) dominates a vector v = f(y), denoted by u � v

(in case of minimization) if u is partially less than v i.e., 8i 2 {1, ...,m}, u
i


v
i

^ 9j 2 {1, ...,m} : u
j

< v
j

.
A vector u is non-dominated if there is no v that dominates u. Given that

u = f(x), if u is non-dominated, then x is Pareto optimal. The set of Pareto
optimal solutions is called the Pareto optimal set, and the image of these solutions
in the objective space is called the Pareto front (Coello et al 2006).

Many-objective optimization problems (MaOPs) are a type of MOPs that
present more than three objective functions to be optimized simultaneously. Sev-
eral studies have indicated that Pareto based algorithms scale poorly in MaOPs (Britto
et al 2013; Britto and Pozo 2012; Ishibuchi et al 2011). The main reason for this
is the number of non-dominated solutions which increases greatly with the num-
ber of objectives. Consequently, the search ability is deteriorated because it is not
possible to impose preferences for selection purposes.

Other issues faced when dealing with MaOPs are: The crowdness of solu-
tions becomes di�cult to gauge, since estimation operators such as the Crowd-
ing Distance (Deb et al 2000) become ine↵ective as the number of objectives in-
crease (Kukkonen and Deb 2006); Dominance-resistant solutions may potentially
degrade the search (Ikeda et al 2001); Performance metrics such as hypervol-
ume become computationally expensive to calculate; Visualization of the objective
space becomes extremely challenging in comparison to 2 and 3-objective problems.

2.2 Well distributed Pareto fronts

In multi-objective optimization, the two most important requirements to a Pareto
set generated by an optimization algorithm are convergence and diversity (Adra
2007). Convergence means that the approximation of the Pareto front generated
for a MOP is as close as possible to the true Pareto front. Diversity means that,
since a single ideal solution in a MOP does not exist, and a trade-o↵ surface can
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potentially present an infinite number of solutions, a good approximation needs
to be well spread and to uniformly cover wide areas of the Pareto front.

However, with an increase in the number of objectives, the size of the objective
space and the surface of the Pareto front can increase greatly, making it much
harder for an optimizer to achieve good convergence and diversity.

A possible alternative to deal with such problems is to use multiple populations
(or swarms). These populations should be well spread over the entire search space
in order to increase the diversity of solutions. Moreover, when each single popula-
tion concentrates in a small portion of the search space, the individuals are able to
specialize, leading to better convergence. Thus, the key question is how to make a
partition of the search space that allows an e�cient spread of the populations.

3 I-Multi algorithm

The PSO (Kennedy and Eberhart 1995) algorithm is an optimization technique
inspired by bird flocking behavior. In PSO, the movement of each individual (or
particle) is a↵ected by its own experience and that of its neighbors (we use a fully
connected topology). The approach uses the concept of population (or swarm)
and a measure of performance similar to the fitness value used in evolutionary
algorithms (Coello et al 2006).

Di↵erent algorithms have been proposed to extend the PSO to solve multi-
objective problems, thus creating a MOPSO (Britto and Pozo 2012; Nebro et al
2009). Most approaches di↵er from the single-objective PSO in the use of an
external archive (repository) to store the best (non-dominated) solutions found
so far. Another common di↵erence is the leader selection scheme, which has to
be chosen from a set of equally good leaders according to some criterion. These
questions become more di�cult since, as the number of non-dominated solutions
increases, an archiving method will need to prune the repository (according to a
predefined criterion) and keep only a bounded number of solutions.

I-Multi (Britto et al 2013) is a recently introduced MOPSO designed to deal
with many-objective problems. A distinguished characteristic of I-Multi is that
it uses multiple swarms to cover di↵erent areas of the objective space. Its search
procedure can be divided in two phases: diversity and multi-swarm searches. A
pseudocode of the I-Multi is presented in Algorithm 1.

The first phase of I-Multi is called diversity search. In this step, a traditional
single-swarm MOPSO is executed by a predefined number of iterations in order to
obtain a set of well-distributed (diversified) non-dominated solutions (basis front)
for multi-swarm initialization. In this phase we use the the Speed-constrained
Multi-objective PSO (SMPSO) (Nebro et al 2009) algorithm with the Multi-level
Grid Archiving (MGA) (Laumanns and Zenklusen 2011) as archiver. SMPSO is
an e�cient MOPSO that presents a velocity constriction mechanism as presented
in (Clerc and Kennedy 2002). The mechanism is based on a factor � that varies
according to the values of the influence coe�cients of personal and global leaders
(C1 and C2 respectively). The global leader selection method of SMPSO uses a
binary tournament based on the crowding distance metric from (Deb et al 2000),
and its original archiving strategy also uses the crowding distance. The parameters
used in the I-Multi algorithm can be found in Table 2.
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Fig. 1 Representation of the I-Multi algorithm.

The multi-swarm phase of I-Multi, begins by using the K-Means algorithm
(Hartigan and Wong 1979) for clustering the solutions contained in the basis front
(F

b

) to generate a predefined number of sub-swarms (NS). The solutions from each
cluster compose the initial repository of each sub-swarm (F

k

) and the centroid of
the cluster is used as seed (S

k

) for the swarm. Around each seed (within a specified
search region (V)), a set of solutions is randomly generated as particles of the sub-
swarm. For a predefined number of iterations, each sub-swarm runs independently,
using the SMPSO with the Ideal archiver (Britto and Pozo 2012) to enhance its
convergence. After that, the repository of each sub-swarm is integrated to the basis
front, so only the non-dominated solutions regarding all repositories are kept. At
the end of this process, the basis front is split into sub-swarms as before. This
process of joining and splitting the fronts is called split iteration, and it is repeated
a predefined number of times (SI). This process enables an indirect communication
between the sub-swarms.

The process of a split iteration is depicted in Figure 1, where at first there is
a single swarm whose solutions in the repository are represented as black circles
and the particles are presented as white circles. Next repository (basis front) of
the single swarm is split into a predefined number of clusters, where the solutions
clustered together in each cluster becomes the initial repository of a sub-swarm
and the centroid of this cluster is used as seed for this sub-swarm. To complete
each sub-swarm, a set of particles is randomly generated around the seed. After a
predefined number of runs, all the non-dominated solutions regarding all clusters
are combined again to form a new basis front and start a new split iteration.
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Algorithm 1: I-Multi

// Phase1: Diversity search
Fb=Run-MGA-SMPSO()
// Phase 2: Multi-swarm search
for s=1 to SI do

S,F=SplitFront(Fb)
V=calculateInterval()
for k=1 to NS do

Pk=initializePop(Sk,V)
Fk=Run-Ideal-SMPSO(Pk,Sk,V,Fk)

end for

Fb=Non-dominated(F)
end for

return Fb

4 Related work

Clustering is a useful mechanism to maintain diversity. It can be used to keep
groups of solutions in di↵erent regions or to aid in archiving for multi-objective
optimizers. Moreover it can be used to ensure convergence, since similar solutions
grouped together can specialize in smaller areas of the search space. Both single-
objective and multi-objective optimization algorithms are known for taking advan-
tage of clustering. In this section we review some related work in which clustering
plays an important role in improving the results obtained by the algorithms. Our
goal here is not to make an extensive literature review, but to discuss a number of
representative algorithms that cover di↵erent facets of the impact of clustering in
optimization algorithms. Table 11 shows a summary of the algorithms reviewed.
Each column of the table displays the main elements considered for our classifi-
cation of the algorithms: 1) Space in which clustering is conducted, 2) Clustering
metric, 3) Number of objectives of the optimization problems addressed, and 4)
Clustering method.

4.1 Clustering in single objective optimization

Clustering is usually employed in single-objective optimization algorithms as a way
of splitting the population (or swarm) to obtain more diversity through exploring
larger areas of the decision space. Moreover, convergence can be achieved through
specialization of subsets of solutions in smaller areas of the search space. Examples
of such strategy are presented in (Liang et al 2015; Yen and Daneshyari 2006),
where two multi-swarm PSOs that use clustering to split the swarms are presented.

Another popular use of clustering in optimization algorithms is to promote
diversity and help identifying interactions between variables of the problems. Es-
timation of Distribution Algorithms (EDAs) (Larrañaga and Lozano 2002) that
employ this technique are (Emmendorfer and Pozo 2009; Pelikan and Goldberg
2000; Tsuji et al 2006; Bosman and Thierens 2002).
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4.2 Clustering in multi-objective optimization

Multi-objective optimizers take advantage of clustering the solutions as well. In this
case, diversity maintenance can be even more important than in single-objective,
since the algorithms have to ensure well-spread solutions in the objective space
to achieve a good coverage of the Pareto front, and in the decision space to avoid
local optimal regions.

As in single-objective, a popular use for clustering in multi-objective algorithms
is to split the population (or swarm) in several subgroups, examples of these ap-
proaches can be found in (Pulido and Coello Coello 2004; Zhang and Xue 2007;
Benameur et al 2009).

Multi-objective EDAs that employ clustering are available in the literature as
well. In this case, usually a separate probabilistic model is built for each cluster,
since it is assumed that the solutions inside each cluster share important charac-
teristics. Examples of these algorithms can be found in (Pelikan 2005; Okabe et al
2004)

Another promising use for clustering in multi-objective optimization is to aid
in the diversity preservation of archiving methods. The most notable example
of this class is the well-known Strength Pareto Evolutionary Algorithm (SPEA),
proposed by Zitzler and Thiele (1999). It clusters the solutions into a predefined
number of clusters and only one representative solution per cluster is kept.

4.3 Clustering spaces, similarity measures and quality indicators

While doing this review, we were not able to find any work that investigates the
relation between the performance of the optimization algorithm and the space used
for clustering the solutions (decision or objective). Furthermore, we did not find
any previous works investigating the impact of using di↵erent similarity measures
for the clustering of solutions in an optimization algorithm.

Regarding the use of clustering quality indicators, Jin and Sendho↵ (2004) use
silhouette analysis to verify the quality of the clusters, but they do not use the
clustering directly in the Evolution Strategy (ES). Instead, they use the clustering
to determine if a solution should be evaluated by the original fitness function or by
a surrogate model. In (Sindhya et al 2013), a clustering mechanism is employed and
a clustering quality measure is calculated as an approximate quality measure of the
diversity of the population. If the diversity of the population is considered too low,
a diversity enhancement module is activated. Despite using a clustering quality
measure, in this paper the authors are only interested in estimating the diversity
of solutions in the population, and not to evaluate the clustering quality itself
for other purposes. Benameur et al (2009) used a measure called the normalized
partition entropy to compare the quality of di↵erent clustering runs to choose the
best of these runs.

These works apply clustering quality measures to optimization algorithms in
di↵erent ways. Nevertheless, none of them correlates the quality of the clustering
with the quality of the solutions generated by the algorithms as is done in our
work.
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5 Clustering strategies for multi-objective problems

In this section we present the di↵erent clustering strategies that have been imple-
mented as part of I-Multi, explaining the rationale behind their choice.

5.1 Components of the clustering algorithms

The following elements influence the behavior of the clustering strategies when
used within many-objective optimizers:

1. Clustering space explored: decision space, objective space or a combination of
both spaces.

2. Similarity measure employed to compute the clusters.
3. Number of clusters.
4. Type of clustering algorithm.

In this paper we focus on the examination of the first two strategies. As il-
lustrated in the review of related work, clustering in the decision and objective
spaces is extensively applied, but the impact of the choice on the behavior of the
EA is usually not addressed. Similarly, the issue of the similarity measure applied
is commonly overlooked. The influence of the number of clusters has been inves-
tigated in previous works (Britto et al 2013; Castro Jr. et al 2015) and the e↵ect
that the type of clustering algorithm may have in the search is left for future work.

In an ideal optimization problem, a high correlation between decision and
objective spaces is expected. In other words, solutions close in the objective space
are close in the decision space as well. However, there are problems where this
correlation is not high, like problems where some of the variables are redundant or
marginally influence the optimization function. For such problems the space where
the solutions are clustered plays an important role in the optimization process.

In the original I-Multi paper (Britto et al 2013), the objective of clustering in
the decision space is mostly to increase the convergence of the algorithm by means
of specialization. Since each cluster has very similar solutions, the interactions
among their decision vectors produce small perturbations, and consequently the
exploitation of a small part of the decision space is increased.

Here we propose to change the space of clustering from decision to objective.
By making this change, we expect to achieve more diversity in both spaces, since
each cluster will be concentrated in a di↵erent region of the Pareto front. However,
their decision variables will not necessarily be very similar, hence the interactions
among these solutions are more likely to generate greater perturbations, leading to
the exploration of a larger part of the decision space. By combining decision and
objective spaces, both contribute to the distance calculation. Then it is expected
that the solutions in the cluster have a good balance between both distances.
Consequently a good trade-o↵ between convergence and diversity is expected.

Besides the correlation between the di↵erent spaces, the similarity of two so-
lutions can be interpreted di↵erently depending on the indicator used to measure
this similarity. By changing the similarity metric, the shape and location of the
clusters are changed as well, and consequently the metric used has an impact on
the behavior of the search algorithm.
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5.2 Clustering space

In this work we investigate two di↵erent alternative spaces to perform the cluster-
ing procedure in I-Multi: clustering in the objective space and in an alternative
space that we called both, and is composed by a combination of objective and
decision spaces.

In the traditional (decision space clustering) approach used by I-Multi, the cen-
troids of the clusters are used as “seeds”, i.e., solutions around which the search
region is defined. However, when doing clustering in the objective space, we can-
not use the centroids of the clusters found by K-Means as seeds. Instead, in this
approach we set the seed as the average of the decision variables of the solutions
whose images (objective vectors) have been grouped in the cluster.

Our other proposed approach (both) uses a combination of both spaces in
order to cluster the solutions. In this case, the K-Means algorithm is executed
in the space defined by the concatenation of decision variables and objectives
c = (u1, ..., um, x1, ..., xn), where u = f(x). m is the number of objectives and n is
the number of decision variables.

Since this approach uses the decision variables as part of the clustering space,
we use the last n elements of c as the centroid of the swarm.

5.3 Measures of similarity

The metric used to evaluate the similarity between the solutions have an influence
on the results of the clustering algorithm. The clustering metrics define di↵erent
ways to look at the similarity relationships between the solutions. Previous work
in the areas of machine learning and pattern recognition (Aggarwal et al 2001;
Deborah et al 2015; Howarth and Rüger 2005) have acknowledged the impact that
the choice of the distance metric have on di↵erent algorithms where computing
the similarity between solutions is required. For instance, the so called fractional

distance metrics have shown to significantly improve the e↵ectiveness of cluster-
ing algorithms for high dimensional problems (Aggarwal et al 2001). As part of
our study, we have selected a set of representative similarity metrics that include
Euclidean distance (Bandyopadhyay and Saha 2012), the most commonly applied
distance in optimization algorithms, and a set of other metrics extensively applied
in other areas but rarely investigated in the context of optimization algorithms.
One of the implicit questions we address is whether clustering algorithms that use
such metrics can promote better results than those that employ the Euclidean
metric. Therefore, as part of our study, we investigated a set of representative
similarity metrics and the sensitivity of I-Multi to this choice.

The Minkowski distance (Bandyopadhyay and Saha 2012) between two vectors
x = (x1, ..., xn) and y = (y1, ..., yn) is defined as:

 
nX

i=1

| x
i

� y
i

|k
! 1

k

(1)

where k is a parameter of the Minkowski metric that defines a family of metrics.
The e↵ect of changing the value of k is displayed in Figure 2. In our experiments,
we considered k 2 {0.5, 2, 4,1} as parameters of the Minkowski metric because
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these values represent the most commonly applied distance (Euclidean) and a
number of other metrics extensively applied in other areas, but rarely investigated
in the context of optimization algorithms, moreover these values allow us to explore
a variety of scenarios in terms of how to compute the similarity between the
solutions, and in particular the weight given to the di↵erence in the components
of the vectors.

For k = 2, the Euclidean distance is obtained from Equation (1), and for
k = 1 we obtain the Tchebyche↵ (Bandyopadhyay and Saha 2012) distance. For
k = 0.5, the distance is not a metric, since the triangle inequality is violated,
however k = 0.5 exhibit properties that are midway between the properties of the
Euclidean distance (k = 2) and (k = 0), a fact that makes it worth of investigation.

Fig. 2 Unit circles of the Minkowski metric with various values of k.

6 Experiments

The primary objectives of the experiments are the following: Q1) To find which
of the clustering strategies produces the best results when used within I-Multi.
Q2) To determine the impact that the choice of the distance metric has on the
results of I-Multi. Q3) To identify or unveil any type of casual relationship between
the characteristics of the optimization problem (number of objectives, deception,
multi-modality or bias) and the behavior of I-Multi when the di↵erent clustering
strategies are applied.

Finding an answer to question Q1 will contribute to a better understanding of
the behavior of the I-Multi algorithm and MOPSOs in general. Similarly, investi-
gating question Q2 will help to ascertain if the popular assumption of using the
Euclidean distance between solutions is the right choice, or if the results of MOP-
SOs that apply clustering techniques could be further improved by using other
metrics.

We will empirically address questions Q1 and Q2 by employing the I-Multi al-
gorithm using di↵erent methods on a representative set of di�cult multi-objective
functions for which a characterization of their domains of di�culty exists. We will
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evaluate the quality of the Pareto fronts obtained using the di↵erent clustering
strategies.

Question Q3 helps us to get some insight about how the characteristics of the
functions being optimized make the application of the di↵erent clustering strate-
gies particularly suitable for each characteristic. This potential mapping between
the characteristics of the functions and the “most promising” strategy for each
characteristic is important, since it allows the user to have at least some heuristic
criteria to decide in which situations a clustering strategy is expected to behave
better than the others. We address question Q3 by first detecting characteristic
patterns of behavior of the algorithms for each of the functions, and conceiving
additional experiments to test alternative hypotheses that explain this behavior
from the characteristics of the functions.

6.1 Function benchmarks and performance metrics

Selecting an appropriate testbed of functions is an important element of our anal-
ysis. In this paper we use the DTLZ (Deb et al 2005) and WFG (Huband et al
2006) benchmarks. These benchmark problems have been characterized in terms
of their di↵erent domains of di�culty (shape of the Pareto front, multimodality,
bias, separability and deception). In addition, these benchmark functions can scale
both in the number of objectives and in the number of decision variables. Finally,
the true Pareto optimal front is known for these functions.

A potential drawback of these benchmarks functions (except for DTLZ7 and
WFG8) is that the decision variables are split into two main groups according
to their relationship with the fitness landscape: distance variables and position
variables. Distance variables are related to the convergence characteristic of sets of
solutions for the problem. By changing a single distance variable of a solution, we
generate a new solution that dominates, is equal to or is dominated in relation to
the previous. These solutions will never be strictly non-dominated in relation to
each other. Position variables are related to the spread of solutions, and by modi-
fying an individual position variable of a solution, we only generate a new solution
that is incomparable (non-dominated) or equal to the original solution (Huband
et al 2006). Although this division allows to separately evaluate the behavior of op-
timizers in terms of spread and convergence, in real-world problems a more refined
classification of variables is often required in order to model the characteristics of
the problems Brownlee and Wright (2012)

A summary of the characteristics of the DTLZ and WFG problems used is
shown in Table 1, adapted from (Li et al 2015b).

Two particularly relevant domains of di�culty for our work are Bias and De-

ception. Bias means that there is a significant variation in distribution between
vectors in the decision space and the objective vectors (Huband et al 2006). De-
ception means that besides the true Pareto front, a problem has at least one local
optimum Pareto front and most of the search space favors it (Coello et al 2006).

6.1.1 Performance metrics and statistical tests

Inverted Generational Distance (IGD) (Coello and Cortés 2005), is a non Pareto
compliant indicator that measures the smallest distance between each point in
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Table 1 Characteristics of the functions included in the DTLZ and WFG benchmarks

Problem Pareto front shape Challenges of decision space
DTLZ1 linear multi-modal
DTLZ2 concave none
DTLZ3 concave multi-modal
DTLZ4 concave biased
DTLZ5 concave, degenerate none
DTLZ6 concave, degenerate multi-modal
DTLZ7 mixed, disconnected multi-modal
WFG1 mixed biased
WFG2 convex, disconnected multi-modal, non-separable
WFG3 linear, degenerate non-separable
WFG4 concave multi-modal
WFG5 concave deceptive
WFG6 concave non-separable
WFG7 concave biased
WFG8 concave biased, non-separable
WFG9 concave biased, multi-modal, deceptive, non-separable

the true discretized Pareto front (F t) and the points in a Pareto front found by
an optimizer (F k). IGD is a widely used metric, especially in the many-objective
community due to its low computational cost and its ability to measure the con-
vergence and diversity of a Pareto front approximation at the same time. It is
defined by Equation 2.

IGD(F k, F t) :=
1

|F t|

0

@
|F t|X

i=1

dist(F t

i

, F k)p

1

A

1
p

(2)

where dist(F t

i

, F k) means the minimal Euclidean distance from F t

i

to F k and
p = 2.

In this work we use a modified version of the IGD known as IGD
p

(Schutze
et al 2012) as main quality indicator. This modification makes the indicator fairer
by allowing it to be insensitive to the number of points in the discretized Pareto
front, but does not alter its main properties. IGD

p

is defined in Equation 3.

IGD(F k, F t) :=

0

@ 1
|F t|
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dist(F t

i

, F k)p

1

A

1
p

(3)

Although we focus our analysis on the IGD
p

metric, we used as second metric
another extensively used indicator called hypervolume (While et al 2012). The
hypervolume was used in summarized analyses to support additional information
about the overall di↵erences obtained with each algorithm variant. Notice, that
the application of the exact hypervolume computation (While et al 2012) becomes
unfeasible as the number of objectives is increased. Therefore, we used an approx-
imated version (Bader et al 2010) for ten objectives or more. The hypervolume is
defined as follows (Bringmann et al 2013):

HV (F k) := V OL

0

@
[

(u1,...,um)2F

k

[r1, u1]⇥ ...⇥ [r
m

, u
m

]

1

A (4)
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where V OL(.) is the usual Lebesgue measure and the reference point r is the nadir
(anti-optimal or “worst possible”) point in space. The greater the hypervolume
value of a set is, the better that set is taken to be.

The results of the IGD
p

in 30 independent runs of the algorithms are submitted
to the Kruskal-Wallis (Kruskal and Wallis 1952) statistical test at a 5% significance
level. When significant di↵erences were found, we conducted a post-hoc analysis
using the Nemenyi (Nemenyi 1963) test to identify particular di↵erences between
samples (Demsar 2006).

Since there are many results being compared in di↵erent situations, sometimes
it is hard to draw general conclusions. To ease this visualization, we present a sum-
marized table disregarding specific functions and objective numbers and focusing
the analysis on the di↵erences between the algorithms. This table is generated for
both indicators (IGD

p

and Hypervolume) by using the Friedman (Friedman 1937)
statistical test also at a 5% significance level, on the averages of the 30 runs of
each subproblem (problem/objective number).

The comparison between the di↵erent algorithm components using both statis-
tical tests is presented in tables containing the mean ranks of the results obtained
on 30 runs of the algorithm using each component. We assign final ranks to the
algorithms (presented in parenthesis) according to their mean ranks. In case of
a statistical tie (algorithms presenting no statistically significant di↵erence), the
final rank of each of the tied algorithms is equal to the average of the ranks that
would be assigned to them. The algorithm(s) with the smallest final ranks are
highlighted.

6.2 Parameters of the algorithms

The parameters of the algorithms used in our experiments are summarized in
Table 2.

Table 2 Parameters of the functions and I-Multi

C1, C2 varies randomly in [1.5,2.5]
Objectives (m) 3, 5, 8, 10, 15 and 20

Decision variables for WFG (n) k + l where k = 2⇥ (m� 1) and l = 20
Decision variables for DTLZ (n) m+ k � 1 where k = 5 for DTLZ1,

k = 20 for DTLZ7 and k = 10 otherwise
Initial phase duration 100 iterations

Initial phase population 100 particles
Multi-swarm phase duration 100 iterations
Number of swarms & clusters 50
Multi-swarm phase population (750/number of swarms) particles

Repository maximum size 200 solutions
Multi-swarm region size decrease from 0.5 to 0.1

Split iterations 5

The parameters C1 and C2 respectively control the e↵ect of the personal and
global best particles in the velocity. They are set according to the recommendation
given in the original SMPSO paper (Nebro et al 2009). The number of decision
variables was set according to the recommendation given for the problems in (Deb
et al 2005) and (Huband et al 2006). The number of split iterations, as well as
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the multi-swarm region size were calibrated in (Britto et al 2013) and we use the
best values found. The number of iterations (initial and total), the initial size of
the population, the maximum size of the repositories and the total number of
particles were also set as proposed in (Britto et al 2013). The number of sub-
swarms and clusters was investigated in a previous work (Castro Jr. et al 2015)
that used a variant of I-Multi, but we believe the results hold. Regarding the
number of particles per swarm, if the total number is not divisible by the number
of sub-swarms, the remaining particles are distributed among the sub-swarms. As
in (Castro Jr. et al 2015), we used the Crowding Distance (CD) (Deb et al 2000)
archiver in the multi-swarm phase.

6.3 Comparison between the spaces of clustering

This section presents the results of the di↵erent strategies used by I-Multi to cluster
the solutions. Each of these strategies is defined by the space in which clustering
is accomplished.

6.3.1 DTLZ benchmark

Table 12 shows the IGD
p

results. In this table, the first column represents the
number of objectives, the second column represents the di↵erent strategies: Objec-

tive indicates that clustering is made in the objective space. Both indicates that
the clustering is made in a combination of both, the objectives and decision spaces.
Decision means that the clustering is made in the decision variables space. The
other columns show the mean ranks of the results obtained on 30 independent
runs of the algorithm using each clustering space.

From the analysis of Table 12, we can group the behavior of the three algo-
rithms on all the functions in three classes. I) No statistical di↵erences between
the three algorithms across di↵erent number of objectives (Functions DTLZ3 and
to a lesser extent functions DTLZ1 and DTLZ7). II) Statistical di↵erences indi-
cate that objective clustering is the best choice (functions DTLZ2, DTLZ5, and
DTLZ6). III) Statistical di↵erences indicate that objective clustering is the worst
(function DTLZ4), while decision is the best.

In the previous classification, we have extracted global behavior patterns re-
garding the clustering space according to specific problems and objective numbers.
We considered the general rankings as a secondary measure of di↵erence between
the algorithms, even if statistical di↵erences were not found. A summarized analy-
sis, considering all the combinations of problems and numbers of objectives (seven
problems and six numbers of objectives, on a total of 42 subproblems) for each
algorithm is presented in Table 3 for the IGD

p

indicator and in Table 4 for the
Hypervolume indicator.

In these tables we can see that the summarized analysis erases the individual
di↵erences detected for each function. However, it can be appreciated that cluster-
ing in the objective space has a lower value of the average ranking, i.e. its global
results (considering the 42 subproblems) are slightly better when considering both
indicators.

In the next step, we focus on unveiling the characteristics of the functions that
influence the behavior of the clustering strategies. To do so, we will present a
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Table 3 Overall ranks of the IGDp as used in the Friedman test for all the DTLZ problems
and numbers of objectives. Final ranks, presented in parenthesis assigned according to the
ranks.

Objectives Both Decision
75.0 (2.0) 96.0 (2.0) 81.0 (2.0)

Table 4 Overall ranks of the Hypervolume as used in the Friedman test for all the DTLZ
problems and numbers of objectives. Final ranks, presented in parenthesis assigned according
to the ranks.

Objectives Both Decision
71.5 (2.0) 92.5 (2.0) 88.0 (2.0)

comparative analysis of the behavior of the algorithms on functions DTLZ2 and
DTLZ4. These functions are particularly interesting, because despite of presenting
similar expression (as shown in Equations (5) and (6)), they are exemplars of the
classes II and III previously described, i.e. the clustering strategies present an
opposite behavior when optimizing these functions.
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Since the only di↵erence between the functions is the bias, represented by the
parameter ↵ in Equation (6), this source of di�culty seems to be the one that
determines the opposite behavior of the clustering strategies. We conducted a
detailed analysis of the behavior of the clustering strategies for di↵erent values of
↵ in Equation (6).

Figure 3 shows the average of the IGD
p

results when optimizing the problem
DTLZ4 for three, five and eight objectives with di↵erent values of ↵, remembering
that smaller IGD

p

values are better. As can be seen, along with the increase of the
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Fig. 3 Function DTLZ4 with di↵erent ↵ values for 3, 5 and 8 objectives. Average indicator
results for the Pareto approximations obtained by I-Multi with di↵erent clustering strategies.

Table 5 Overall ranks of the IGDp as used in the Friedman test for all the WFG problems
and numbers of objectives. Final ranks, presented in parenthesis assigned according to the
ranks.

Objectives Both Decision
75.0 (1.0) 110.0 (2.0) 139.0 (3.0)

Table 6 Overall ranks of the Hypervolume as used in the Friedman test for all the WFG
problems and numbers of objectives. Final ranks, presented in parenthesis assigned according
to the ranks.

Objectives Both Decision
97.0 (1.5) 97.0 (1.5) 130.0 (3.0)

↵ value (consequently the bias), the results obtained using each clustering space
become closer to those obtained using the DTLZ4 function and farther from those
using the DTLZ2 function, where ↵ = 1, as can be seen in Table 12. Moreover, as
the number of objectives increase, the sensibility of the algorithm to the increase
of the bias seems to become smaller, where a change in the best clustering strategy
takes higher ↵ value to happen. Another interesting finding of the analysis is that
increasing bias worsens the quality of the Pareto approximations found by all
versions of the algorithm.

6.3.2 WFG benchmark

Table 13 shows the results of the clustering strategies on the WFG benchmark.
From the analysis of Table 13, it is possible to conclude that only classes II and III
arise for this benchmark. Clearly, in most problems, it is preferable to cluster the
solutions in the objective space (Class II). The most notable exception is problem
WFG5, in which clustering in the objective space is the worst for all numbers of
objectives and in general it is better to cluster in both spaces (Class III).

The di↵erences presented in Table 13 are quite visible, however we made a
global analysis of the results as in the previous benchmark. Tables 5 and 6 show
the global analysis considering the IGD

p

and Hypervolume indicators respectively.
When considering the IGD

p

it is more advantageous to cluster in the objective
space, followed by both spaces, while according to the Hypervolume indicator
clustering in the objective space or in both is equally good. IGD

p

and Hypervol-
ume indicate that clustering in the decision space, as done in (Britto et al 2013),
produces the worst results. Notice that there are significant statistical di↵erences
between the three strategies. Since the ranks of the results obtained with each
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space can be ordered as objectives < both < decision, we can assume that the only
reason why using the combined space (both) is better than the decision space is
because it encodes the objective space.

The fact that for most of the functions the objective clustering strategy is the
best, makes the case of function WFG5 more intriguing. In addition to being the
only function for which clustering the decision variables is better, WFG5 shares
some of the characteristics of function WFG4. Therefore, we conducted a similar
analysis to that presented in the previous section for functions DTLZ2 and DTLZ4.
Our goal is to identify the characteristics of WFG5 that make decision clustering a
more e�cient algorithm for this function. Function WFG5 defined in Equation 7,
where |z| = n = k + l and y = z[0,1] = ( z12 , ..., zn2n ).

Given z = (z1, ..., z
k
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Fig. 4 WFG functions with di↵erent combinations of transformations for 3, 5 and 8 objectives.
Average indicator results for the Pareto approximations obtained by I-Multi with di↵erent
clustering strategies.

Figure 4 shows the average of the IGD
p

results when optimizing instances of
three, five and eight objectives of custom WFG problems with di↵erent combina-
tions of transformation functions. Here, we combine the three shift functions avail-
able (linear (LR), deceptive (DE) and multi-modal (MM)), with the two reduction
functions (weighted sum (WS) and non-separable (NS)). The bias functions were
not used because neither WFG4 nor WFG5 are biased but display di↵erent results,
hence the bias is not determinant in this case.

We also want to highlight that some combinations tested are already part of the
WFG family: WFG4 is multi-modal, weighted sum; WFG5 is deceptive, weighted
sum; WFG6 is linear, non-separable. The combination linear, weighted sum can
be considered an unbiased version of WFG7 and WFG8, since the only di↵erence
between these function is if the bias is applied in the position-related or distance-
related decision variables. Other combinations are found in part of the decision
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variables of WFG9: deceptive, non-separable (position-related), and multi-modal,
non-separable (distance-related).

As can be seen from Figure 4, in the linear and multi-modal problems it is
harder to recommend a clustering space, since the best space changes according to
the objective number. On the other hand, in all the numbers of objectives studied,
clustering in the objective space is the worst when the problem has a deceptive
component, hence in these cases, clustering in decision space or in both spaces
is recommended. This similar behavior of using both spaces or only the decision
space can be explained by the fact that we have 24, 28 and 34 decision variables
for only 3, 5 and 8 objectives respectively. Therefore, the decision space influences
more than the objective space when using both spaces. From these results, we
conclude that the deceptive character of the function has the main e↵ect in the
deterioration of the results of the objective clustering strategy. The relevant finding
here is that clustering in the decision space is considerably less sensitive to this
e↵ect.

6.3.3 Correlation between quality of solutions and quality of clustering

In this section we want to study the relationship between the quality of the clus-
tering and the quality of the solutions obtained during the search. We understand
the quality of the clustering, as how good it is grouping similar solutions and
putting di↵erent solutions in di↵erent clusters. As a measure of clustering quality
we use the Davies-Bouldin Index (DB) (Davies and Bouldin 1979). Similarly, we
evaluate the quality of the solutions using the IGD

p

metric. We then investigate
the correlation between DB and IGD

p

.
In order to calculate this correlation, we calculated the DB and IGD

p

at each
iteration of the multi-swarm phase (last 100 iterations) of I-Multi. Then we aver-
aged these 100 values over 30 independent runs and used these averaged values to
calculate the correlation. To calculate the DB, first the scatter within each cluster
is calculated by:
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is the centroid of the cluster and
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| is its size. Usually, the value of q is 1, so T
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becomes the average Euclidean
distance between the points in the cluster and its centroid. Hence the separation
between the clusters is measured by:
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When p = 2, this measure corresponds to the Euclidean distance between the
centroids of F
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. Next, a measure of quality of each cluster is calculated by:
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and this is used to calculate R
i

⌘ maxR
ij

i 6=j

. Finally, the DB index is calculated
as:
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NSX
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R
i

(11)

where NS is the number of clusters.
DB is the system-wide average of the similarity measures of each cluster with

its most similar cluster. The “best” choice of cluster will be that which minimizes
this average similarity.

To investigate the relationship between IGD
p

and DB, we selected four repre-
sentative optimization functions: two problems from each set of benchmark func-
tions and from these, we selected problems where the best results were achieved by
clustering in the decision and objective spaces. These four problems can be con-
sidered representative for the entire set of benchmark functions used. Moreover,
if we add all problems, we could bias the classifier to a determined outcome, for
instance to clustering in the objective space since most of the problems present
good results in this clustering space. The selected functions were: DTLZ2, DTLZ4,
WFG4 and WFG5.

We intend to determine if the quality of the clustering is correlated with the
quality of the Pareto front, and how this correlation is influenced by the choice of
the clustering strategy. One possible approach to investigate this question would be
to compute the correlation between IGD

p

and DB for each possible combination
of factors involved in the performance of the algorithm (e.g. clustering strategy;
number of objectives; optimization problem) but we would like to obtain a more
structured and informative representation of how the correlation depends on these
factors. One way to obtain such type of informative representation is learning a
decision tree (Breiman 1984).

A decision tree can be used for classification or regression. In the case of clas-
sification, a set of attributes is classified based on previously observed instances of
these attributes. In the tree structure, the leaves correspond to the class given for
the target variable and branches represent conjunctions of features that determine
the classes of the target variable. We define three attributes: clustering strategy;
number of objectives; optimization problem, and one class variable: correlation
between IGD

p

and DB. The first attribute serves as a descriptor of the algorithm,
relevant for our analysis. The other two attributes characterize the di�culty of
the problem. Basically, we want the decision tree to predict, based on the char-
acteristics of the problem and the clustering strategy applied, how good will be
the correlation between the IGD

p

and DB. That way we can learn under which
conditions will a good clustering likely produce good Pareto front approximations.
The decision tree serves as a representation of how the correlation between IGD

p

and DB depends on the clustering strategy and the characteristics of the problem.
We employed a Reduced Error Pruning Tree (REPTree) (Elomaa and Kääriäinen

2001) on our dataset containing all 72 instances (combination of six numbers of
objectives, three clustering spaces and four problems). As an example, one line of
the dataset used to learn the tree is: ”Objectives, 3, DTLZ2, 0.9074“, meaning that
for the three objective version of problem DTLZ2 with clustering done in objective
space, we have a correlation of 0.9074. Therefore, given an instance of the input
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variables, the tree will output what is the expected correlation between IGD
p

and
DB. Figure 5 presents the generated decision tree.

1: Clustering space

2: Problem

 = Objectives

7: Problem

 = Decision

12: Problem

 = Both

3 : -0.05 (6/0.65)

 = DTLZ2

4 : -0.64 (6/0.11)

 = DTLZ4 5 : -0.54 (6/0.08)

 = WFG4

6 : -0.08 (6/0.12)
 = WFG5

8 : 0.83 (6/0)

 = DTLZ2

9 : 0.82 (6/0)

 = DTLZ4

10 : -0.03 (6/0.24)

 = WFG4

11 : 0.42 (6/0.07)

 = WFG5

13 : -0.81 (6/0.04)

 = DTLZ2

14 : -0.42 (6/0.31)
 = DTLZ4

15 : -0.09 (6/0.27)

 = WFG4 16 : -0.57 (6/0.02)

 = WFG5

Fig. 5 Decision tree of the correlation between the IGDp and the DB.

In the leaves of the output tree, besides the node index and the class value, we
can appreciate in parentheses the number of instances matching the rule and the
percentage of instances misclassified by that rule. The mean absolute error of the
model is 0.283.

In this tree, we can clearly identify three subtrees: on the left, a subtree cor-
responding to the clustering in the objective space; in the center, a subtree cor-
responding to the clustering in the decision space; and in the right, a subtree
corresponding to the clustering in the combination of both spaces. Moreover, each
of these subtrees has the same number of samples in it: 24.

This clear split of the tree in three symmetrical parts corresponding to each
clustering strategy, points to a strong relationship between the quality of the clus-
tering and the quality of the solutions generated by I-Multi. Other than that, we
can not identify other influences from the clustering strategy in the correlations.

6.3.4 Discussion

In general, clustering in the objective space is recommended in both, the DTLZ
and the WFG problems, since it achieves the best performance in most of the
cases. However this clustering space is more sensitive to properties of the problem,
such as bias or deception and can yield poor results in such conditions.

In the investigation of the correlation between the quality of the clustering
and the quality of the solutions generated by the algorithm at each generation, we
have seen that the space in which the clustering is done is an important factor to
determine the strength of this correlation. Hence, it is expected that the choice of
the clustering space a↵ects the final results obtained by the algorithm.
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Table 7 Overall ranks of the IGDp as used in the Friedman test for all the DTLZ problems
and numbers of objectives. Final ranks, presented in parenthesis assigned according to the
ranks.

Euclidean Tchebyche↵ Minkowski (0.5) Minkowski (4)
99.0 (2.5) 106.0 (2.5) 103.0 (2.5) 112.0 (2.5)

Table 8 Overall ranks of the Hypervolume as used in the Friedman test for all the DTLZ
problems and numbers of objectives. Final ranks, presented in parenthesis assigned according
to the ranks.

Euclidean Tchebyche↵ Minkowski (0.5) Minkowski (4)
95.0 (2.5) 100.5 (2.5) 123.0 (2.5) 101.5 (2.5)

6.4 Comparison between distance metrics

In this section we investigate another significant question, i.e., whether and how
the choice of the similarity metric influences the results of the clustering strategy.
Building on the results shown in previous sections in which we found that, in
general, better results can be obtained using the clustering in the objective space,
we constrain the study of the metrics to I-Multi using this clustering space.

In the previous section, we used the K-Means algorithm. This algorithm was
designed to work with the Euclidean distance and uses this metric in two places:
explicitly in the distance calculation to allocate the closest points to a cluster and
implicitly in the calculation of the new centroids that are defined as the mean of
the points in a cluster. However, when we change the similarity metric employed,
the mean may no longer represent the center of a cluster in the point of view of
the new metric.

One alternative to solve this issue is to change the method used to define the
center of the cluster. In this section we used the medoid as center, which is the
representative point of a cluster for which the dissimilarity to all the other points
of the cluster is minimal (Kaufman and Rousseeuw 1987). By using the medoid
instead of the mean, we change the algorithm from K-Means to K-Medoids (Kauf-
man and Rousseeuw 1987). In K-Medoids, we can use any similarity measure,
since the same distance will be used to calculate the medoids and to allocate all
the points to their closest medoid to form a cluster.

Tables 14 and 15 show the results of I-Multi using di↵erent similarity measures
for function benchmarks DTLZ and WFG, respectively. Similar to the analysis
conducted in previous sections, the results of the global analysis are shown in
Tables 7 and 8 for the IGD

p

and Hypervolume of the DTLZ problems respectively
and in Tables 9 and 10 for the IGD

p

and Hypervolume of the WFG problems
respectively.

6.4.1 DTLZ benchmark

When considering the DTLZ problems, in general we can see few statistically sig-
nificant di↵erences, and when they occur it is very hard to find a pattern. The
only general pattern that emerged is the increase in the statistically significant
di↵erences with the number of objectives. The exception of this behavior is the
problem DTLZ2, where we can clearly see that Minkowski with k = 0.5 performs
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Table 9 Overall ranks of the IGDp as used in the Friedman test for all the WFG problems
and numbers of objectives. Final ranks, presented in parenthesis assigned according to the
ranks.

Euclidean Tchebyche↵ Minkowski (0.5) Minkowski (4)
110.0 (1.5) 162.0 (3.5) 148.0 (3.0) 120.0 (2.0)

Table 10 Overall ranks of the Hypervolume as used in the Friedman test for all the WFG
problems and numbers of objectives. Final ranks, presented in parenthesis assigned according
to the ranks.

Euclidean Tchebyche↵ Minkowski (0.5) Minkowski (4)
111.0 (1.5) 148.0 (3.0) 151.0 (3.0) 130.0 (2.5)

the best for all numbers of objectives. Since the DTLZ2 is a concave shaped func-
tion that does not pose any further challenge to the algorithms, the number of
non-dominated solutions found for it is usually very high, which can increase the
influence of clustering mechanisms in the final result of the algorithm.

In an overall view of the results from the summarized Tables 7 and 8 considering
the IGD

p

and Hypervolume results respectively, there is no significant di↵erence
between any of the algorithms, although the overall ranking attributed to the
Euclidean distance is slightly smaller than the others.

6.4.2 WFG benchmark

Considering the results for the WFG benchmark functions, we can identify more
significant di↵erences than for the DTLZ. As in the previous case, in general the
di↵erences increase with the number of objectives, but besides that behavior it is
very hard to find patterns. Exceptions are the functions WFG3 and WFG4, where
for m > 8, Minkowski with k = 0.5 achieves the best results in all cases.

In an overall analysis of Tables 9 and 10 considering the IGD
p

and Hypervol-
ume indicators respectively, the Euclidean distance achieved the best results. This
can be explained by the fact that it is usually among the best measures in most
of the cases, and even when it is not among the best, it usually is not among the
worst, so in a general analysis it performs best and can be considered a stable
metric.

6.4.3 Discussion

For the distance measures considered, we can state that in general I-Multi is not
very sensitive to the choice of a similarity metric for clustering. However, this
di↵erence increases with the number of objectives. This behavior can happen for
two reasons: first the size of the Pareto front increases greatly with the number of
objectives (except for functions DTLZ5, DTLZ6 and WFG3 which are degenerate),
secondly because of the number of non-dominated solutions to be clustered also
increases greatly with the number of objectives.

Although most of the functions do not exhibit a clear pattern suggesting which
measure is better, for DTLZ2, WFG3 andWFG4, the measure Minkowski with k =
0.5 achieved the best results, which indicates that the selection of an appropriate
similarity measure can be problem-dependent.
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Finally, from the two summarized tables for both problems, we can recommend
using the Euclidean distance to cluster the solutions, since the results indicate that
it is a robust metric which in most of the cases appears ranked among the best
solutions and in very few cases was ranked among the worst metrics.

7 Conclusion

In this paper we investigated two important characteristics of the solutions clus-
tering in optimization algorithms for multi and many-objective problems by taking
I-Multi as an example. These characteristics were the space in which the clustering
is performed and the similarity metric used to compare the solutions.

Understanding the influence of these characteristics is an important aspect for
clustering-based evolutionary algorithms, since one can exploit this information
when designing new algorithms as well as when applying them to problems with
known properties, such as deception or bias.

As far as we know, this is the first study covering the impact of using di↵erent
clustering spaces and similarity metrics on the performance of many-objective
optimization algorithms. Since we investigated two di↵erent characteristics of the
clustering phase of I-Multi, we conducted two separate experimental studies.

In the first study, we compared the results obtained by clustering the solutions
in three di↵erent spaces: objectives, decision and both, which is a combination
of the two aforementioned spaces. From the results obtained, we could identify
that the space in which the clustering is done has an important impact in the
performance of the algorithm. Moreover, the best choice of clustering space can
be problem-dependent, and is impacted by specific properties of the problem,
especially deception and bias. In an overall analysis, we can recommend clustering
the solutions in the objective space, since it presented good results in most of the
problems.

In the second study, we compared the results obtained when using four di↵erent
clustering metrics: Euclidean, Tchebyche↵, Minkowski with k = 0.5 and Minkowski
with k = 4. The results indicated that, in general, the algorithm is not sensitive to
the choice of the metric used, however, this sensitivity increases with the number
of objectives. This choice can also be problem-dependent, but in an overall view
we can recommend the use of the Euclidean distance, since it was the most robust
metric in our comparison.

7.1 Further work

In this study we have focused on the analysis of the K-Means algorithm and its
modification to K-Medoids in the second experimental study. However, an im-
portant question is to determine if further improvement to MOPSOs could be
achieved by using other clustering methods, especially those that do not require
defining in advance the number of clusters. These clustering methods can gener-
ate clusters of better quality and our results indicate that the clustering quality
influences the performance of the algorithm. One possible direction is to evaluate
the behavior of other clustering methods that have shown good results for single-
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objective EAs such as hierarchical clustering (Lozano and Larrañaga 1999) and
a�nity propagation (Santana et al 2010) algorithms.

An interesting issue is whether there exist any type of interactions between the
distance metrics and the type of clustering. Is one distance metric better than the
others for some clustering strategy? We have not addressed this question but it is
worth considering this problem in further work.

While I-Multi is a good example of other MOPSOs, the investigation of the
e↵ect of clustering could be extended to algorithms that use probabilistic modeling
of the solutions contained in each cluster. One representative example of this type
of algorithms is C-Multi (Castro Jr. et al 2015).
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