Skip to main content
Log in

Can individual heterogeneity influence self-organised patterns in the termite nest construction model?

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

We present investigations on the influence of individual heterogeneity on self-organised patterns in the termite nest construction model. The presented results extend the original model (Bruinsma 1979; Deneubourg 1977) from theoretical biology which has served as foundation and inspiration for computational optimisation approaches. Our findings have implications for the handling of heterogeneities inherent to physical sensing devices as well as indicate the potential of intentionally endowing software agents or their hardware embodiments (robots, sensor nodes, etc.) with a degree of individuality. We show that increasing heterogeneity is equivalent to changing the values of certain global parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Axelrod, R. (1987). The evolution of strategies in the iterated prisoners dilemma. Genetic algorithms and simulated annealing (pp. 32–41). London: Pittman.

    Google Scholar 

  • Beckers, R., Holland, O., & Deneubourg, J.-L. (1994). From local actions to global tasks: stigmergy and collective robots. In: Proceedings of the Workshop on Artificial Life (pp. 181–189). Cambridge: MIT Press.

  • Bonabeau, E., Dorigo, M., & Theraulaz, G. (2000). Inspiration for optimization from social insect behaviour. Nature, 406(6791), 39–42.

    Article  Google Scholar 

  • Bonabeau, E., Sobkowski, A., Theraulaz, G., & Deneubourg, J.-L. (1997). Adaptive task allocation inspired by a model of division of labor in social insects. In Biocomputing and emergent computation: Proceedings of BCEC97 (pp. 36–45).

  • Bonabeau, E., Theraulaz, G., & Deneubourg, J.-L. (1996). Quantitative study of the fixed threshold model for the regulation of division of labour in insect societies. Proceedings of the Royal Society of London B: Biological Sciences, 263(1376), 1565–1569.

    Article  Google Scholar 

  • Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Aron, S., & Camazine, S. (1997). Self-organization in social insects. Trends in Ecology & Evolution, 12(5), 188–193.

    Article  Google Scholar 

  • Brooks, R. A., Maes, P., Mataric, M. J., & More, G. (1990). Lunar base construction robots. EEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications, 1, 389–392.

    Article  Google Scholar 

  • Bruinsma, O. H. (1979). An analysis of building behaviour of the termite Macrotermes subhyalinus (Rambur). PhD thesis, Wageningen University.

  • Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraulaz, G., & Bonabeau, E. (2001). Self-organization in biological systems. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Camerer, C. F., & Fehr, E. (2006). When does “economic man” dominate social behavior? Science, 311(5757), 47–52.

    Article  Google Scholar 

  • Corson, F., Couturier, L., Rouault, H., Mazouni, K., & Schweisguth, F. (2017). Self-organized notch dynamics generate stereotyped sensory organ patterns in drosophila. Science. https://doi.org/10.1126/science.aai7407.

  • Deneubourg, J.-L. (1977). Application de l’ordre par fluctuations a la description de certaines étapes de la construction du nid chez les termites. Insectes Sociaux, 24(2), 117–130.

    Article  Google Scholar 

  • Deneubourg, J.-L., Aron, S., Goss, S., & Pasteels, J. M. (1990). The self-organizing exploratory pattern of the argentine ant. Journal of Insect Behavior, 3(159–168), 1990.

    Google Scholar 

  • Dorigo, M. (1992). Optimization, Learning and Natural Algorithms. PhD thesis, Politecnico di Milano, Milan, Italy.

  • Gerling, V., & von Mammen, S. (2016). Robotics for self-organised construction. In 2016 IEEE 1st International Workshops on Foundations and Applications of Self* Systems (FAS*W) (pp. 162–167).

  • Glick, B. S. (2007). Let there be order. Nature Cell Biology, 9(2), 130–132.

    Article  Google Scholar 

  • Halloy, J., Sempo, G., Caprari, G., Rivault, C., Asadpour, M., Tâche, F., et al. (2007). Social integration of robots into groups of cockroaches to control self-organized choices. Science, 318(5853), 1155–1158.

    Article  Google Scholar 

  • Hildmann, H., & Martin, M. (2014). Adaptive scheduling in dynamic environments. 2014 Federated Conference on Computer Science and Information Systems, 2, 1331–1336.

    Article  Google Scholar 

  • Hildmann, H., & Martin, M. (2015). Resource allocation and scheduling based on emergent behaviours in multi-agent scenarios. In International Conference on Operation Research and Enterprise Systems (pp. 140–147). Lisbon: Insticc, Scitepress.

  • Hildmann, H., Nicolas, S., & Saffre, F. (2012). A bio-inspired resource-saving approach to dynamic client-server association. IEEE Intelligent Systems, 27(6)

  • Jentink, F. A. (1906). On a new Antelope, Cephalophus Coxi, from North–Western Rhodesia. Notes from the Leyden Museum, 28, 117–119.

    Google Scholar 

  • Nicolis, G., & Prigogine, I. (1977). Self-organization in nonequilibrium systems: From dissipative structures to order through fluctuations. New York: Wiley.

    MATH  Google Scholar 

  • Ostrom, E. (2009). A general framework for analyzing sustainability of social-ecological systems. Science, 325(5939), 419–422.

    Article  MathSciNet  MATH  Google Scholar 

  • Pennisi, E. (2005). How did cooperative behavior evolve? Science, 309(5731), 93.

    Article  Google Scholar 

  • S. Raman, G. Raina, H. Hildmann, F. Saffre (2013). Ant-colony based heuristics to minimize power and delay in the internet. In IEEE International Conference on Green Computing and Communications 2013, Beijing, P. R. China.

  • Robinson, P. J. (1987). Structure and expression of polypeptides encoded in the mouse Qa region. Immunol Research, 6(1–2), 46–56.

    Article  Google Scholar 

  • Robinson, P. J. (1987). Two different biosynthetic pathways for the secretion of Qa region-associated class I antigens by mouse lymphocytes. Proceedings of the National Academy of Sciences, 84(2), 527–531.

    Article  Google Scholar 

  • Rubenstein, M., Cornejo, A., & Nagpal, R. (2014). Programmable self-assembly in a thousand-robot swarm. Science, 345(6198), 795–799.

    Article  Google Scholar 

  • Saffre, F., Halloy, J., Shackleton, M., & Deneubourg, J.-L. (2006). Self-organized service orchestration through collective differentiation. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 36(6), 1237–1246.

    Article  Google Scholar 

  • Saffre, F., & Simaitis, A. (2012). Host selection through collective decision. ACM Transactions on Autonomous and Adaptive Systems, 7(1), 4:1–4:16

  • Saffre, F., Tateson, R., Halloy, J., Shackleton, M., & Deneubourg, J.-L. (2009). Aggregation dynamics in overlay networks and their implications for self-organized distributed applications. The Computer Journal, 52(4), 397–412.

    Article  Google Scholar 

  • Sanfey, A. G. (2007). Social decision-making: Insights from game theory and neuroscience. Science, 318(5850), 598–602.

    Article  Google Scholar 

  • Sasai, Y. (2013). Cytosystems dynamics in self-organization of tissue architecture. Nature, 493(7432), 318–326.

    Article  Google Scholar 

  • Soleymani, T., Trianni, V., Bonani, M., Mondada, F., & Dorigo, M. (2015). Bio-inspired construction with mobile robots and compliant pockets. Robotics and Autonomous Systems, 74, 340–350.

    Article  Google Scholar 

  • Theraulaz, G., & Bonabeau, E. (1999). A brief history of stigmergy. Artificial Life, 5(2), 97–116.

    Article  Google Scholar 

  • Weber, M. (1978). The Nature of Social Action. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Werfel, J., Petersen, K., & Nagpal, R. (2014). Designing collective behavior in a termite-inspired robot construction team. Science, 343(6172), 754–758.

    Article  Google Scholar 

  • Wiener, N. (1960). Some moral and technical consequences of automation. Science, 131(3410), 1355–1358.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanno Hildmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saffre, F., Hildmann, H. & Deneubourg, JL. Can individual heterogeneity influence self-organised patterns in the termite nest construction model?. Swarm Intell 12, 101–110 (2018). https://doi.org/10.1007/s11721-017-0143-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-017-0143-8

Keywords

Navigation