
Swarm Intell (2017) 11:317–346
DOI 10.1007/s11721-017-0145-6

PolyACO+: a multi-level polygon-based ant colony
optimisation classifier

Morten Goodwin1 · Torry Tufteland1 ·
Guro Ødesneltvedt1 · Anis Yazidi2

Received: 30 September 2016 / Accepted: 4 November 2017 / Published online: 16 November 2017
© Springer Science+Business Media, LLC, part of Springer Nature 2017

Abstract Ant colony optimisation (ACO) for classification has mostly been limited to rule-
based approaches where artificial ants walk on datasets in order to extract rules from the
trends in the data, and hybrid approaches which attempt to boost the performance of existing
classifiers through guided feature reductions or parameter optimisations. A recent notable
example that is distinct from the mainstream approaches is PolyACO, which is a proof-of-
concept polygon-based classifier that resorts to ACO as a technique to create multi-edged
polygons as class separators. Despite possessing some promise, PolyACO has some sig-
nificant limitations, most notably, the fact of supporting classification of only two classes,
including two features per class. This paper introduces PolyACO+, which is an extension of
PolyACO in three significant ways: (1) PolyACO+ supports classifying multiple classes, (2)
PolyACO+ supports polygons in multiple dimensions enabling classification with more than
two features, and (3) PolyACO+ substantially reduces the training time compared to Poly-
ACO by using the concept of multi-levelling. This paper empirically demonstrates that these
updates improve the algorithm to such a degree that it becomes comparable to state-of-the-art
techniques such as SVM, neural networks, and AntMiner+.
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1 Introduction

Classification is the problem of predicting categories of unknown items on the basis of
training data, and it is very common in machine learning with important application areas.
Some well-known examples include predicting sentiments of sentences, pinpointing objects
in images, detecting patient deaths, andpredicting the bestmove inGo.Hundreds of papers are
published on the topic each year, which has resulted in a myriad of classification algorithms
differing in principle, implementation, and performance. Classification becomes intrinsically
challenging whenever the data to be classified are not easily separable in the feature space
(Caruana et al. 2008; Madjarov et al. 2012).

Some of the best known classification techniques, such as support vector machine (SVM)
and perceptron-based classifiers, rely upon constructing mathematical functions having
weights that efficiently separate two or more classes of data in the feature space. In two-
dimensional spaces, the separation boundary might be nonlinear and thus the decision
boundaries might be complex. SVM deals with this situation by either projecting the data on
a higher-dimensional space or using a “kernel trick”, which provides a separator not limited
to a linear or polynomial function. The adoption of a kernel is equivalent to transposing the
data to many dimensions, but the accuracy depends on the right choice of the kernel functions
as well as on several other parameters. The latter choice is usually performed throughmanual
trial and error.

The training process of a classifier canbe considered as anoptimisation task, and ant colony
optimisation (ACO) specifically has been proposed for training classifiers in three general
areas. Firstly, ACO is commonly applied as a method to enhance state-of-the-art classifiers
through parameter optimisations (Daly and Shen 2009; Sharma et al. 2012; Abadeh et al.
2008; De Campos and Puerta 2008; Daly et al. 2011; Jun-Zhong et al. 2009). Secondly, some
prominent studies, including AntMiner and AntMiner+, have used ACO as a rule-based
classifier (Martens et al. 2007). Thirdly, some recent advances have introduced PolyACO, a
polygon-based classification algorithm (Goodwin and Yazidi 2016; Tufteland et al. 2016).1

Interestingly, PolyACOdealswith the classification problem in a completely differentmanner
fromexisting classifiers. Instead of relying uponmathematical functions, PolyACOsurrounds
the classes with polygons guided by artificial ants and ray casting.

This paper introduces PolyACO+, an extension of the existing PolyACO algorithm. Poly-
ACO+ includes two main enhancements. Firstly, it is extended through its ability to classify
multiple classes. PolyACO applies one polygon per problem, whereas PolyACO+ applies
one polygon per class. This approach is similar to how an SVM deals with multiple classes.
Secondly, PolyACO+ can handle datasets with more than two features. Since most datasets
have multiple features, this enhancement makes PolyACO+ more suitable for real classifica-
tion problems. This is achieved by taking majority votes on multiple two-feature projections,
i.e. by invoking PolyACO+ on various 2-D spaces. The number of planes for n dimensions is
calculated by counting the combinations of dimension pairs using the binomial coefficient:(n
2

)
. The ants walk along several two-dimensional planes, and in each plane the ants construct

a polygon per class. Figure 1 shows a polygon constructed by PolyACO+ for the class C1

in a two-dimensional plane. Furthermore, for performance reasons, the PolyACO+ reward
function is designed to support a parallel architecture optimised to run on GPUs. These
improvements make PolyACO+ dramatically faster and more accurate than its predecessor.
Empirical results show that PolyACO+ performs similarly or better than other state-of-the-
art classification algorithms in several classification tasks in terms of classification accuracy.

1 Published by the authors of this paper.
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Fig. 1 Example of a simple
two-class classification scenario
with the classes black (C1) and
grey (C2), each with two features

Class 1: C1

Class 2: C2

Nevertheless, despite PolyACO+’s very good performance, its major hurdle is the rather long
training time.

As for other classifiers, PolyACO+ has a training phase and a classification phase. The
former’s aim is to create polygons that encircle classes of items so that the polygons separate
the training classes from each other. In this phase PolyACO+ finds a polygon s j∗ per class
C j per pair of dimensions, consisting of vertices and edges. PolyACO+maximises a function
that measures how well the polygon s j separates the items of class C j from the others during
the training phase. Thus, formally speaking, we aim to find an s j∗ ∈ S so that f (s j∗) ≥ f (s j )
for each class C j per pair of dimensions, where S consists of all possible polygons and the
function f (s j )measures howwell polygon s j separates the data . The aim in the classification
phase is to use the polygons as a basis to determine to which class a new unknown item to be
classified belongs. The classification determines whether the item to be classified is within or
outside of the polygon s, for each dimension. The overall classification result is a combination
of classifications in all dimensions.

The paper is organised as follows. Section 2 presents the state of the art in ACO-based
classification. Section 3 introduces PolyACO+. Section 4 presents the results from applying
PolyACO+ to classification problems and compares the results with state-of-the-art classi-
fiers. Finally, Sect. 5 concludes and presents further work to be completed in this field.

2 State of the art

In order to place the work into the correct context, this section presents different state-of-
the-art algorithms for classification, placing an emphasis on classification using ACO.

2.1 Rule discovery classification

Rule discovery is a data mining task that generates a set of rules describing each class or
category in a dataset. Based on labelled data, the algorithm defines a set of rules. The goal
is to make predictions about unknown data using IF <conditions> THEN <class> rules,
where <conditions> is constructed by terms in the form of (term1 AND term2 AND…).

From a historical perspective, the first application that used ACO for classification was
AntMiner (Parpinelli et al. 2002). AntMiner is an algorithm that uses artificial ants to discover
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classification rules. Several improvements toAntMiner have been suggested through the years
(Liu et al. 2003), of which one very successful example is AntMiner+ (Martens et al. 2007).

AntMiner+ is an extension of AntMiner, which includes modifications such as a directed
acyclic graph to create the environment on which the ants move (Martens et al. 2007, 2011).
It also uses MAX–MIN ant system (MMAS) (Stützle and Hoos 2000) to manage ant
behaviour and pheromones and has an early stopping criterion (discussed further below).

AntMiner+ starts by creating a directed acyclic graph environment. An ant starts in the
Start vertex and stops at the Stop vertex. The resulting path represents a potential rule. The
paths that are walked by most ants, according to a predetermined threshold, are kept as
classification rules. Similar toMMAS, only the ants that achieve the globally highest score
update the pheromones, and all values are adjusted to stay within the boundaries τmax and
τmin. The algorithm converges when one path reaches τmax and all others are equal to τmin.
Subsequently, the rule associated with the path containing τmax is extracted along with the
training data covered by it. Ants are continuously released until a stop condition is reached.
This can either be an early stopping criterion or the fact that none of the ants is able to extract
a rule that covers at least one training point. If the latter happens, no rule can be extracted as
all the paths have zero quality. This is typically caused by noise in the remaining data, which
indicates that further rule induction is useless.

In contrast,AntMiner+ resorts to early stopping to avoid over-fitting.Anearly stophappens
when the error measure on the validation set (one set which is 1/3 of the training set) starts
to increase. Training is then stopped, thus effectively preventing the rule from fitting the
training data noise. It should be noted that early stopping causes loss of data that cannot be
used for construction rules and is therefore better fitted for larger datasets.

In addition to the previously mentioned AntMiner series including its variations (Martens
et al. 2007, 2011; Tripathy et al. 2013; Aribarg et al. 2012), the literature also includes
other ACO rule-based classifiers. Perhaps the most notable example is Ant-labeler, a semi-
supervised method for assigning labels to unlabelled data (Albinati et al. 2015). It uses ACO
as a learning method and, during a self-training process, generates rule-based models. This
results in a pheromone matrix from which classification rules are derived.

2.2 PolyACO

PolyACO is a grid-based polygon algorithm aimed at creating boundaries by surrounding
and separating classes guided by ACO (Goodwin and Yazidi 2016; Tufteland et al. 2016).
Figure 2 presents an overview included here for explanatory purposes. The figure is an excerpt
from the original PolyACO paper (Goodwin and Yazidi 2016) and shows an example of how
PolyACO is trained for the two classes C1 and C2 by surrounding items from only C1 with
a polygon. A similar approach has been proposed using learning automata in Goodwin et al.
(2016).

PolyACO is a rudimentary classification algorithm that only supports classification of two
classes at once and only classes that have two features. The reason for this is that in PolyACO
the ants explore solutions in a grid-like graph environment that is generated from the training
data. Therefore, PolyACO is limited to solving classification problems in two-dimensional
spaces.

Ants are released sequentially with random initial positions. The ants explore and find
paths in a similar manner to traditional ACO for path finding. Instead of finding a path from a
source to a goal, they end up at the same position from which they started. When ants return
to their original position, their travelled path will have formed a polygon shape. To determine
path quality, PolyACO uses a combination of the polygon perimeter and a score of how well
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Training Classification

ACO Ray tracingLabeled data Polygon

Unknown items 
to be labeled

Class 1: C1

Class 2: C2

Fig. 2 Overview of training and classification in PolyACO. In the training phase, ACO is used to create a
polygon that separates the classes, and items are classified based on whether they are inside or outside of the
polygon. Classification happens through ray tracing where geometric rays are cast at the y-value of items to
determine if the polygon surrounds the items

Fig. 3 Example of best known polygon s j∗ over training periods

the training data are positioned relative to the polygon. This quality measurement is used as
the reward function, and the objective of the algorithm is to maximise it.

After each ant walk, the pheromone trail is evaporated to avoid stagnation. Evaporation
on an edge sets the edge to the minimum pheromone value and is applied to each edge with
the probability ρ, called evaporation rate. For example, with an evaporation rate of 0.01, a
random sample of 1% of the edges will have their pheromone value reset to the minimum
pheromone value after each ant walk.

Ants only deposit pheromones on the edges if their solution is better than the global best
solution. Additionally, the global best solution is reinforced after each iteration to save it from
gradually evaporating. This is in line with the approach used in MMAS (Stützle and Hoos
2000). Figure 3 shows an example of how the best known polygon evolves over multiple ant
walks.

The environment where the ants explore solutions is constructed based on the training
data. It is a squared bidirectional weighted graph where all edges along a given axis are of
equal length, thus forming a grid-like environment. The limits of the graph along axis k,Gk

min
and Gk

max, are initialised with the maximum and minimum values of the data points along
each axis. A minor value ε is added to the max value and subtracted from the min value in
order to encapsulate all data points within the graph. Formally,
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Fig. 4 Example of best known polygon s j∗ for varying granularity factorμ. The parameterμ can be adjusted
by the user

Gk
min = min(T k

i j ) − ε (1)

Gk
max = max(T k

i j ) + ε, (2)

where T k
i j represents an edge from node i to node j at axis k.

The resolution of the graph environment can be manually adjusted through a granularity
factor μ provided to the grid at initialisation. μ > 2 is an integer that gives the granularity of
the grid along both axes. For example, a μ value of 5 would result in a 5× 5 grid, a value of
10 would result in a 10 × 10 grid, etc. Since the graph is a square the resolution is the same
for all axes. In other words μ determines the granularity of the environment.

While a high granularity gives the ants more paths to choose from and the possibility to
create more accurate solutions, it also increases the size of the search space and the time it
takes for a single ant to complete its path. Figure 4 shows an example demonstrating that
more fine-grained graphs can construct better classifiers than more coarse-grained graphs
when given identical datasets.

After every completed ant walk, the pheromones in the graph environment are updated.
The amount of pheromone laid in an area of the graph depends on the quality of the ant
solution. The aim is to create a polygon s j that surrounds all the items of class C j and does
not surround any item of the opposite classes. The quality of a solution s j is measured by a
reward function f (s j ) which is a function of the perimeter of the polygon and the number
of elements that are correctly placed within it:

f (s j ) =
∑

ti∈C h(ti , s j )

|C | , (3)

where h(ti , s j ) is a function that determines whether an element ti is on the inside of the
solution s and C contains all items to be classified. PolyACO uses ray casting to determine
if an element is on the inside or outside of a solution. h(ti , s j ) is defined as follows:

h(ti , s j ) =
⎧
⎨

⎩

1 if ti ∈ C j and is inside of s j
1 if ti /∈ C j and is outside of s j
0 otherwise,

(4)

whereC j is the class represented by polygon (solution) s j so that a perfect solution surrounds
all items of the class C j and no items of opposite classes.

In other terms, for an item that truly belongs to class C j according to its label and which
is inside the polygon s j , it will get h(ti , s j ) = 1. For an item that does not belong to class
C j according to its label and which falls outside the polygon s j , it will get h(t j , s j ) = 0.
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The function f (s j ) includes h(ti , s j ) for all items and thus reflects the homogeneity of items
inside polygon s j .

To avoid overly complex polygons, we should favour polygons with smaller perimeters.
This is achieved by modifying the reward function to be proportional to the inverse of the
perimeter. Therefore, the smaller the perimeter, the higher the reward. The pheromone update
can then be summarised utilising the following equations:

τi j ←
[
τi j + �τ besti j

]τmax

τmin
(5)

�τ besti, j = f (s j )

|s j | . (6)

While this update form is similar to how pheromones are updated inMMAS, it includes
factoring in the new reward function.

The current version of PolyACO has some weaknesses compared to other state-of-the-art
classifiers. First, it is unable to classify data in more than two dimensions. Secondly, it does
not handle classification problems comprising more than two classes. Thirdly, it is very slow
and takes a long time to train.

2.3 Multi-levelling

Multi-levelling is a technique commonly applied to combinatorial optimisation problems as
a way to efficiently search for solutions in a complex space. It involves recursive coarsening
of complex problems to obtain a hierarchy of approximations to the original problem. An
initial solution is found and then refined at each level as the problem space is coarsened
(Walshaw 2004; Lian et al. 2015).

Adaptive mesh refinement (AMR) is a multi-grid technique used to dynamically modify
the grid during computation by increasing the resolution of the grid in areas of interest (Berger
and Colella 1989). The strategy for selecting the grid areas in which to increase the resolution
depends on the problem.AMRmakes it possible to solve certain problemswith amuch higher
precision level than traditional multi-grid methods as it requires less computing power than
a uniform high-resolution grid. AMR has, for instance, been used to model the collapse and
fragmentation of molecular clouds with an unprecedented accuracy (Klein 1999).

2.4 Other classification schemes using ant colony optimisation

Several other classification algorithms using ACO and other metaheuristic algorithms are
available in the literature.

(Salama and Abdelbar 2016) use a cluster-based classification approach with ACO. They
introduce a two-step approach. First, they assign a class to a cluster using ACO. Subse-
quently, they continue using a local classifier which is independent of ACO. The approach
introduces instance- and medoid-based ACO clustering and is basically an optimiser for
existing classifiers.

The same authors introduce an approach for learning neural network structures usingACO
(Salama and Abdelbar 2015). Accordingly, they propose ANN-Miner to learn the structure
of a feed-forward network, which in turn can be used to predict unknown classes of new
patterns.

Varma et al. (2015) introduce NRSACO as a method for setting attribute reduction as an
extension of rough sets theory. They claim that in contrast to standard rough sets, NRSACO is
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able to avoidbeing stuck in localminima.This is similar to feature selectionmechanismsusing
particle swarm optimisation, which aim at reducing the number of features for classification
so that the classification becomes faster and easier (Xue et al. 2014), and to how ACO is used
for data reduction (Salama and Abdelbar 2016).

An approach using ACO to optimise decision boundaries in decision trees is introduced
in Sapin et al. (2015). Specifically, ACO is used to find nucleotide polymorphisms, which
are then combined into a decision tree.

3 PolyACO+

PolyACO+ is an improvement of PolyACO which can handle an arbitrary number of dimen-
sions and classes. It also drastically reduces the training time by computing the reward
function in parallel on GPUs and by employing a dynamic multi-level scheme. This section
describes the working of PolyACO+.2

3.1 Multiple-class classification

Figure 5 presents an overviewof howPolyACO+handlesmultiple classes. For example,when
the number of classes is two, one polygon is sufficient to create a decision boundary. However,
when the number of classes is larger than two, PolyACO+ creates one polygon per class.
Since there are multiple polygons, an item to be classified belongs to three possible cases:

1. The item is located inside one polygon; in this case, the item is simply classified as the
polygon to which it belongs.

2. The item is not located within any polygons; in this case, it is not possible to determine
to which class it should belong. This problem is solved by simply accepting “no class”
as a valid output from the classifier.

3. The item is encapsulated by several polygons; PolyACO+ handles this situation by ran-
domly selecting to which class the item should belong. However, one consequence is
that PolyACO+ classification becomes stochastic. An alternate option could therefore be
to handle class conflicts by order of precedence. For example, given that the polygons
from class C1 and C2 both surround a sample, then the sample is to be classified as C1

sinceC1 has the lower index value. This action would produce an unjustified bias towards
polygons with low index values and might yield unexpected results.

3.2 Parallelisation with GPU

Based on recent advances from Tufteland et al. (2016), we now introduce GPU in the training
phase. This is done by parallelising the most costly part of the algorithm, the reward function,
to the graphics processing unit (GPU) using CUDA (Ryoo et al. 2008).

The h(ti , s) function combines all data points and edges in a training set. This set can be
parallelised, which makes it well suited for a GPU kernel function. In practice, the GPU is
invoked once per ant and returns a two-dimensional array of points in the training set and
the number of edges produced by the ant. For more details, we refer the reader to Tufteland
et al. (2016).

The two elements required for classification are the trained model and an implementation
of the classification phase. The trained model in PolyACO+ is simply a description of the

2 The full source code of PolyACO+ may be found at https://github.com/UIA-CAIR/PolyACOPlus.
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Training Classification

Multiple ACO Ray tracingLabeled data Polygons

Unknown items 
to be labeled

Class 1: C1

Class 2: C2

Class 3: C3

Fig. 5 Overview of training and classification for PolyACO+ with multiple classes

Training Classification

Multiple ACO Ray tracing

Labeled data Polygons

Class 1: C1

Class 2: C2

xy-plane

xz-plane

yz-plane

Multiple ACO Ray tracing

Multiple ACO Ray tracing

Vote: C1

Vote: C1

Vote: C2

Classification:
C1

Fig. 6 Overview of training and classification for PolyACO+ with several features

polygons constructed in the training phase. Although constructing these polygons is very
computationally expensive, once they have been constructed they can be reused in the clas-
sification phase. This phase is much less computationally expensive than the training phase
and can therefore be implemented on other devices relatively easily.

3.3 Multiple features

PolyACO+ supports multiple features by splitting a multi-feature classification problem
into several two-dimensional sub-problems which are trained independently. The overall
classification is a combination of the results from all sub-problems through a majority voting
scheme. More precisely, the overall class prediction is derived by taking the most common
class prediction from all the sub-problems, as illustrated in Fig. 6.

3.3.1 Training

Instead of constructing solutions for only one plane as in the case of PolyACO, PolyACO+
constructs solutions in all the planes that the dataset consists of and handles each plane
individually. The number of possible planes depends on the number of features in the dataset.
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For example, a three-dimensional feature space with axes x, y, and z has three planes xy, xz,
and yz (see Fig. 6). More generally, the number of planes for an n-dimensional feature space
is simply equal to the number of dimension pairs and is given by

(n
2

)
.3

Further, the training phase constructs one polygon for each class in the dataset per plane.
Thus, for v classes and n dimensions, the total number of polygons created by PolyACO+ is

(
n

2

)
× v. (7)

For example, for a dataset with 3 classes and 4 dimensions, the number of polygons in the
training model is

(4
2

) × 3 = 18.

3.3.2 Classification

PolyACO is a two-class classifier. PolyACO+ uses the concept of majority voting to extend
PolyACO for handling multi-class problems. In order to classify a sample, each class is
awarded a vote if it surrounds a sample in a given plane. For example, a class is awarded 2
votes if the polygons surround a sample in 2 different planes. The sample is classified as the
class with the most votes when all votes are counted.

More formally, let ti be an unlabelled item to be classified, and h(ti , s) is computed
according to Eq.4:

h(ti , s) =
{
1 if ti is inside of s
0 otherwise.

(8)

The function v(ti , k) counts the votes for a given sample ti relative to the class k.

v(ti , k) =
p∑

i=0

h(ti , sk, j ), (9)

where sk, j is the polygon solution belonging to class k and plane j , and p is the total
number of planes (see Eq.7). The votes for all classes k are gathered in a vector vti =
(v(ti , 0), v(ti , 1), . . . v(ti , k))T . Finally, the predicted class for sample ti is defined as

p(ti ) = arg max(vti), (10)

where arg max(vti) is a function that returns the index of the largest element from vector vti.
In layman’s terms, PolyACO+ decides which class the item should belong by counting

the number of polygons from each class surrounding the item.

3.4 Multi-levelling

PolyACO+ is enhanced with multi-levelling capability and mesh refinement, which removes
the need for manually tuning the granularity values of the grid. Following the principles of
mesh refinement, the graph starts with a low granularity, for example μ = 3, and adaptively
increases the granularity. The rise in leveling happens after the ants have converged onto a
path according to the stop criterion, i.e. when no new solution is found for a fixed number
of iterations η. The pheromone trail is transferred over to the new graph, giving the ants an

3 Inevitably, the number of planes grows exponentiallywith the number of features. However, feature selection
and reduction methods could be used to deal with this problem. See Sect. 5.
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Training

Multi-Level ACO

Initial Leveling upACO

Transfer Pheromones

ACO
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Class 1: C1

Class 2: C2

Fig. 7 Overview of multi-levelling in PolyACO+ with dynamic AMR

indication as to where the good paths are. The granularity is increased until a givenmaximum
level M is reached. At this point, when the ants converge, a solution is found. Figure 7 shows
a concrete example of multi-level PolyACO+ from μ = 2 up to μ = 3.

We present two alternative approaches to multi-levelling in PolyACO+: a naïve multi-
level approach based on traditional multi-grid techniques and a more sophisticated approach
with adaptive mesh refinement (AMR) that intelligently selects in which part of the graph
the granularity should increase.

3.4.1 Naïve multi-level

In the naïve multi-level approach, the grid is constructed initially with a low granularity and
is “leveled up” by increasing the granularity on the entire grid when the ants converge. The
convergence rate for a level is defined when η ants have not found an improved solution.
After η ants have walked without improvement, PolyACO+ levels up by splitting each edge
into two new edges, and new edges and vertices are created in order to connect all vertices.
During the experiments, the convergence rate η is set to 800.

Figure 8 shows the results of the experiment where we compare the results from a naïve
multi-level run and a set of fixed granularity values. PolyACO+ with a μ value (grid size) of
5 converges rapidly to one solution, and the found solution has the lowest score compared to
the rest of the solutions. When we set μ = 10, we see that the convergence speed decreases,
but the quality of the solution increases. The case with μ = 15 yields an even slower
convergence speed, but scores the highest of the three. Nonetheless, all solutions obtained by
the fixed granularity approach are surpassed by the naïve multi-level approach in both score
and convergence time. The figure also shows that the multi-levelling PolyACO+ produces
better solutions after 300s, long after the other approaches have converged. The full test
results are presented in Table 1, where we have also listed results obtained with μ values of
30 and 60.

3.4.2 Multi-level with adaptive mesh refinement (AMR)

The naïve multi-level approach yields both increased accuracy and faster convergence speed.
However, this comes at the cost of creating unnecessarily many edges and vertices in areas
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Fig. 8 Naïve multi-level (average of 20 runs)

Table 1 Quality (Eq. 3) of naïve
multi-level after 15 and 300
seconds for different granularity
levels

Granularity, μ Score, 15 s (%) Score, 300 s (%)

3 with multi-level 94.25 95.54

3 73.57 73.57

5 92.15 92.15

10 94.14 94.44

15 91.09 95.20

30 67.39 93.00

60 54.93 69.07

Bold indicates to highlight the
highest performance in the
corresponding column

where there are no training data. Those edges and vertices do not capture any points and
therefore will only increase the search space and reduce the convergence speed. Instead of
having a high granularity overall, amore desirable approachwould be to have a higher level of
granularity only in the areas that are covered by data points. This is achieved with multi-level
AMR.

The local improvementworks by recursivelywalking through the graph section by section.
A section is defined as any four edges that form a square. Since a section is also a closed
polygon, ray casting is applied to determine if a point is located inside or outside the section.
If a section has data points of both the target class and of any other class, the section is
divided into four new subsections. Figure 9a, b shows a multi-grid with AMR on a simple
constructed scenario, and a more complex semicircular dataset. The figures show how the
grid is fine-grained in areas with data from both classes, and coarsely grained in the remaining
areas.

AMR can be applied to PolyACO+ in two ways. The first approach is a static AMRwhere
it is applied only once on training data and the outputted grid remains unchanged during
the entire training phase. The second is a dynamic AMR where it is applied several times
during training as illustrated in Fig. 7. The dynamic approach starts with a coarser grid and
then gradually increases the granularity over time. In this way, it can initially find good
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(b)(a)

Fig. 9 AMR multi-level PolyACO+ applied to: a a simple example; b the semicircular dataset

solutions very quickly and then refine these solutions in the next levels. Both the static and
dynamic AMR approaches increase the granularity only in the most relevant parts of the grid.
AMR approaches differ from the simpler naïve multi-level ones since the latter increase the
granularity in the entire graph.

The dynamic AMR approach is used throughout this paper; all approaches are compared
and discussed in Sect. 4.6.

Convergence The stopping criterion in PolyACO is specified by the number of ants to run
before stopping. The obtained solution is given by the ant path that has achieved the best
score when the stopping criterion is reached. In PolyACO+ convergence is defined as when
no new best solution is found for a given number of ants η. The intuition behind this stopping
criterion is that the algorithm will not terminate as long as it is still finding new and better
solutions. The convergence is per level, and when the convergence rate is reached at the final
level M , the algorithm terminates. Figure 10 illustrates the positive effects of the dynamic
convergence in the multi-level approach. After each level-up (the crosses), the rate at which
the algorithm finds new better solutions increases immediately. More productive levels, i.e.
levels where better solutions are found frequently, are assigned more ants than levels where
no better solutions are found. Regarding the example in the figure, we can observe that levels
3 and 4 are assigned more ants than levels 5 and 6, because they are more productive.

3.5 Early stopping

In order to improve efficiency, an optional early stopping criterion is applied by terminating
earlier if the best polygon score does not improve for a given number of levels. For example,
if the max levelM is set to 5 and early stopping convergence is set to 2 and the algorithm finds
the best possible solution already at level 1, the algorithm will terminate at level 3 instead of
level 5 for that particular polygon.

3.6 Multiple data points with shared coordinates

It is often the case that multiple data points share coordinates in a plane. For example, a two-
by-two grid has only four possible coordinates. If the training set is larger than the number
of possible coordinates, certain points must share coordinates. A problem occurs when the
algorithm levels up: the granularity of a given section is increased if there are points of
different classes within that section. In this manner, the grid is able to separate points of
different classes without increasing the granularity on the entire grid. However, if points of
different classes share coordinates, the multi-grid is never able to separate these points, even
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Fig. 10 Multi-level AMS convergence in construction of a single polygon (η = 2000, M = 6, average of 20
runs)

with an infinitely high granularity. In order to handle this special case, PolyACO+ does not
increase the granularity of a section if all points in the section share the same coordinate.

3.7 Additional enhancements

This section describes some additional enhancements to PolyACO+ compared to PolyACO.
Equation 6 shows how pheromones are updated in PolyACO. This equation tends to bias
the perimeter of the polygon compared to encapsulation of data points. This paper proposes
an improved pheromone update equation using weights on the perimeter factor and data
encapsulation, respectively:

�τ besti, j = f (s j )
α ·

(
1

|s j |
)β

. (11)

For example, the significance of the length factor β can be decreased by setting it to a low
value.

All ants are initialised with a random position in PolyACO. Consequently, this might
cause many ants to start in a position that is far away from any data point in the target
class, making it hard to find good polygons around the target clusters. Therefore, two new
methods for selecting the start position, Weighted and On_Global_Best, are proposed. The
Weighted method selects a start position based on the amount of placed pheromones. The
On_Global_Best method selects the current global best solution. Both approaches produced
superior results compared to the random initialisation strategy. However, further investigation
is needed in order to identify the best of the two approaches.

3.8 PolyACO+ parameters

Table 2 contains an overview of all the parameters of PolyACO+. The parameters ρ, τmin,
and τmax come from MMAS, and α, β, and M are introduced in PolyACO+.
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Table 2 Overview of all
algorithm parameters in
PolyACO+

Name Description Default value

τmin Minimum pheromone value 0.001

τmax Maximum pheromone value 1.0

ρ Pheromone evaporation rate 0.02

η Convergence rate 1200

M Max granularity steps 6

α Weight for the reward function 1.0

β Weight for the polygon perimeters 0.01

Unless stated otherwise, the default parameter values from Table 2 are used in all experi-
ments throughout this paper. These were obtained by testing various parameter values over a
given number of ants on the generated semicircular dataset (see Sect. 4.2.2), and then the best
performing values were selected. This was done over several rounds for each parameter. For
example, for the pheromone evaporation rate ρ we first tested the values 0.001, 0.01, 0.1, and
1.0 and the results have been calculated with an average over 20 runs per parameter. ρ = 0.01
performed the best. Therefore, we further tested the values 0.005, 0.02, 0.035, and 0.05. This
time, ρ = 0.02 performed the best and was therefore selected as the default value for ρ.

4 Results

Experimental results are given in this section to demonstrate the efficiency of PolyACO+.
We first start by presenting the synthetic and real data used in these experiments in Sect.
4.1. We continue in Sect. 4.2 by providing results from two featured datasets (including
challenging problems such as circular datasets), while Sect. 4.3 is concerned with multiple-
class classification withmultiple attributes. Section 4.4 deals with fastening PolyACO+ using
GPU, and Sect. 4.5 compares the results with other algorithms.

4.1 Data

This section presents results from various scenarios ranging from simple classification prob-
lems using easily separable data to more complex settings involving both real-life and
synthetic noisy data. For each generated scenario, 1000 data points per class are gener-
ated. For the real scenarios, the whole corresponding dataset is used. The real datasets used
in the experiments are Iris, Breast CancerWisconsin (bcw), and Digits4 from the UCI dataset
repository (Lichman 2013). In all cases, half of the data are used for training and the other half
for classification. All scenarios are run with 10,000 ants unless otherwise explicitly specified.

4.2 Two dimensions and two classes

4.2.1 Simple environment dataset

This section presents a simple experimental setting as a proof of concept of PolyACO+ in
two dimensions. The aim of the experience is to empirically demonstrate that the approach

4 Subset of “Pen-Based Recognition of Handwritten Digits Dataset (Lichman 2013)” retrieved from scikit-
learn (http://scikit-learn.org/0.17/auto_examples/datasets/plot_digits_last_image.html).
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(a) (b) (c)

Fig. 11 Example of classification of the simple environment dataset. a PolyACO+ pheromones, b PolyACO+
polygon, and c linear SVM

Table 3 Classification accuracy
of PolyACO+ compared to
state-of-the-art classification
algorithms for the datasets simple
environment (sim), overlapping
data (over), circular (circ),
circular with noise (circ+ε), and
semicircular (s-circ)

sim s-circ over circ circ+ε

Instances 1000 1000 1000 1000 1000

Attributes 2 2 2 2 2

Polygons 1 1 1 1 1

Technique

PolyACO+ 100.0 100.0 85.20 100.0 94.80

PolyACO 100.0 100.0 85.20 100.0 94.80

Linear SVM 100.0 91.20 83.70 53.80 53.80

Polynomial SVM 100.0 99.70 82.20 89.20 77.80

Gaussian SVM 100.0 100.0 84.00 100.0 95.90

works in a simple environment containing two easily separable sets of data. The data are
composed of two sets of points: C1 and C2. Figure 11a illustrates the pheromone trails at
the end of the training phase. The thicker the line, the more the pheromones deposited there,
which means that the algorithm is more certain that the edge is part of the best solution. From
the figure, we observe that the pheromones have built a rectangular polygon encircling all
items in C1 without including any of the items in C2. Figure 11b presents the best found
polygon s based on the pheromone trail. Since this is a polygon that perfectly separates the
classes, it yields f (s j ) = 1. The mapping from pheromones to polygon in this example is
quite straightforward. Lastly, for comparison purposes, Fig. 11c depicts the corresponding
linear SVM. It is interesting to observe that PolyACO+ and SVM are able to find the same
boundaries.

This simplistic example indicates that when it comes to easily separable data, the result
of the PolyACO+ is similar to that of a linear SVM. Table 3 shows an overview of the
classification results. Both PolyACO+ and SVM reach an accuracy of 100.0—which is not
surprising given the simplicity of the classification task.

4.2.2 Semicircular dataset

Figure 12 illustrates the behaviour of the scheme in a more complex scenario involving
semicircular data where there are no clear-cut boundaries.

Despite the added complexity, the PolyACO+ approach works almost identically to the
simple scenario in Fig. 11; Figure 12a, b shows the pheromone trail and polygon s, respec-
tively, in the training data. We observe that there is an easy mapping from pheromones to
polygon. Figure 12c shows the boundary found by a linear SVM, which is not perfect sim-
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(a) (b)

(c) (d)

Fig. 12 Example of classification of the semicircular dataset. a PolyACO+ pheromones, b PolyACO+ poly-
gon, c linear SVM, and d polynomial SVM

ply because the classification problem cannot be solved by a linear separator. Lastly, the
polynomial SVM in Fig. 12d produces better, but not perfect boundaries.

Table 3 shows that PolyACO+ achieves a classification accuracy of 100.0, while linear,
polynomial, and Gaussian SVMs yield an accuracy of 91.2, 99.7, and 100.0, respectively.

4.2.3 Overlapping dataset

In the above scenarios, the data are perfectly separable. In the current scenario, the data in
Fig. 13 are more challenging because they are overlapping and therefore no line or polygon
can perfectly separate the datasets.

Figure 13a shows the pheromones after the training phase. Concerning the left and lower
parts of the polygon, the pheromone trail is strong and thus the lines are thick. In contrast,
whenever the data overlap, the scheme is less confident and the pheromone trail is weaker.
This indicates that when the confidence of the classifier is strong, PolyACO+ provides strong
pheromone trails. Figure 13b shows the corresponding polygon, and Fig. 13c, d shows cor-
responding boundaries of linear and polynomial SVM.

In Table 3, we observe that PolyACO+ reaches an accuracy of 85.2, while linear SVM
reaches 83.7, and polynomial SVM reaches 82.2. One conclusion to be drawn from this
example is that PolyACO+ finds a slightly better boundary than SVM, presumably because
the rigged lines better fit the data than the straight and polynomial lines.

4.2.4 Circular dataset

The classification tasks when the data points of a class form a circular shape are particularly
difficult without mapping it to multiple dimensions. The data are generated from a Gaussian
distribution from two circles having the same centre but with two different radii.
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(a) (b)

(c) (d)

Fig. 13 Example of classification of the overlapping dataset.aPolyACO+pheromones,bPolyACO+polygon,
c linear SVM, and d polynomial SVM

Figure 14a shows that the polygon is able to perfectly encircle class C1, which is only
matched by the SVM containing a Gaussian kernel in Fig. 14c. The linear SVM in Fig. 14b
and the polynomial SVM (not presented as a figure) do not find any viable solution.

By adding 5% noise to the data, meaning that 5% of the data are intentionally wrongly
labelled, Fig. 14d shows that PolyACO+ is still able to obtain a nearly perfect solution.

Table 3 shows that PolyACO+ gets an accuracy of 1 compared to 53.8 for linear SVM
and 89.2 for polynomial SVM. The PolyACO+ accuracy is only matched by Gaussian SVM.
5 In a noisy environment, the PolyACO+ algorithm has only marginally reduced level of
accuracy, namely 94.8. Correspondingly, the polynomial SVM accuracy dropped from 89.2
to 77.8, while the accuracy of Gaussian SVM dropped to 95.9. Figure 15 shows the evolution
of the score for the best polygon s ( f (s j )) and of the size of the polygon (|s|). Pheromones
are represented by the edges’ width in the graph.

4.3 Multiple classes and features

This section presents classification results with PolyACO+withmultiple classes and features.

4.3.1 Number of polygons with multiple classes

We have carried out many experiments on multiple class problems. We present results for
two real datasets, Iris and bcw (discussed further in Sect. 4.5.1). Concerning this particular
experiment, each dataset is run using three different values for the convergence rate and
50-fold cross-validation. A summary of results with many other datasets is available in Sect.
4.5.2.

5 Note that the choice of kernel, including the Gaussian SVM kernel, is not trivial and typically relies upon
trial and error or expert knowledge of the field (Smola and Schölkopf 2004). PolyACO+ has no such parameter
to be tuned.

123



Swarm Intell (2017) 11:317–346 335

Fig. 14 Example of
classification of circles. a
PolyACO+ polygon, b linear
SVM, c Gaussian SVM, and d
PolyACO+ polygon with 5%
noise

(a) (b)

(c) (d)

Fig. 15 Evolution of polygon over time. Average of 1000 runs

Table 4 Classification accuracy levels using polygons for all and all-minus-one classes for different values
of the stopping parameter η (100, 200, and 400)

Iris bcw

Convergence rate η 100 200 400 100 200 400

All-minus-one classes 90.40 93.20 93.84 97.28 97.03 96.79

All classes 92.44 94.12 95.28 96.92 96.92 97.12

The stopping criterion takes place whenever a number of η ants have walked without any improvement

The results in Table 4 demonstrate that while using all classes improves the classification
accuracy levels on the Iris dataset, it does not produce the same effect on the bcw dataset.
One possible cause for this discrepancy is that the data on the Iris dataset are continuous,
while the bcw data are discrete. Figure 16 shows an example plane from the bcw dataset
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Fig. 16 Polygons on sample planes from the bcw dataset for the classes grey (no-recurrent) and white
(recurrent), and the Iris dataset for the classes grey (setona), white (versicolour), and black (virginica). a bcw
and b Iris

compared with an example plane from the Iris dataset. The data in the bcw dataset are more
uniformly distributed over the entire plane than in Iris. Therefore, in thismanner, the classifier
constructs polygons that cover the entire plane, instead of leaving large empty areas (as shown
in Fig. 16b). Since most of the plane is covered by polygons, little additional space is left for
the class without a polygon, which reduces the risk of producing false positives.

The number of polygons constructed is a trade-off between precision and speed. Adding
one more polygon per plane increases the total training time, but the gain in classification
accuracy can be significant. The focus of this paper is more on classification accuracy than
on speed. We adopted the all-class approach in this article, because the results in Table 4
demonstrate that this method can provide improved classification accuracy, and the increase
in training time is not very large.

4.3.2 Proof of concept for many dimensions

In this section, we demonstrate the training phase and classification phase in PolyACO+
using the Iris dataset as an example (see Sect. 4.1). Iris has 3 classes and 4 features: sepal
width, sepal length, petal width, and petal length. Iris has 4 dimensions, which produce 6
two-dimensional planes.

Figure 17 illustrates the dataset in each of the 6 planes. The surrounding polygons are
produced during the training phase of PolyACO+. The colour of each polygon corresponds
to the class to which it belongs.

The accuracy level in Table 3 is very close to all variants of SVM. With respect to the Iris
Plant dataset the accuracy level for PolyACO+ is 95.2, compared to 97.2 for linear SVM and
99.7 for polynomial SVM. It is noteworthy that PolyACO+ reaches an accuracy level higher
than AntMiner+ 94.5 and, not surprisingly, significantly higher than the two-dimensional
PolyACO. This is a quite understandable result because using all four features produces
higher accuracy than only using two.

Hence, assuming that SVM and AntMiner+ are able to classify the data well in an adept
manner, it could be argued that the PolyACO+ algorithm does so as well.

4.4 GPU performance comparison

In order to measure the improvement of PolyACO+ by introducing GPU parallelisation, we
ran an experiment comparing PolyACO+ with and without this component.
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Fig. 17 Polygons for the Iris dataset in all planes with respect to classes grey (setona), white (versicolour),
and black (virginica). The triangle is a potential new point to be classified. a Sepal length vs sepal width, b
sepal length vs petal length, c sepal length vs petal width, d sepal length vs petal length, e sepal width vs petal
width, and f petal length vs petal width

Table 5 PolyACO+ feature-by-feature comparison using tenfold cross-validation, measured in seconds used
for training for Iris, bcw, and semicircular (s-circ) from 100 to 10,000 items

Iris (s) bcw (s) s-circ, 100 (s) s-circ, 1000 (s) s-circ, 10,000 (s)

PolyACO+ 113 162 6 7 8

PolyACO+ without multi-levelling 488 698 9 10 11

PolyACO+ without GPU 685 1956 15 77 676

The results in Table 5 show the runtime of PolyACO+ both with and without GPU paral-
lelisation. The classification results themselves have been omitted from the table; as expected,
they were very similar across all configurations. Applying parallelisation only changes the
speed of the algorithm and not the classification accuracy. The gain in speed when using
GPU is more significant when the size of the dataset increases.

Parallelisation reduces the runtime by a factor of up to 61.5x, which is a significant
improvement compared with the original PolyACO (Tufteland et al. 2016).

4.5 PolyACO+ compared to other classification algorithms

In order to test how well PolyACO+ performs on an overall basis, we compare it to state-of-
the-art algorithms. Thus, in this experiment we compare PolyACO+ to logistic regression,
SVM, neural networks,AntMiner+, and the original PolyACO.These algorithmswere chosen
because they either are very popular in the machine learning community or have similarities
with PolyACO+.We used SVMand logistic regression implementations from the scikit-learn
library and used Weka to run a neural network containing 2 hidden layers and a learning rate
of 0.5. The AntMiner+ results are from the original AntMiner+ paper (Martens et al. 2007).
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The AntMiner+ results are run with tenfold cross-validation, while all other results are run
with 100-fold cross-validation.6

4.5.1 Performance in higher-order dimensions

The training time of PolyACO+ drastically increases with increasing number of dimensions
due to the increase in the number of two-dimensional planes. For example, in the case of 4
dimensions, the number of planes is only

(4
2

) = 6, while for 1000 dimensions the number of

planes is
(1000

2

) = 499,500. On Iris, PolyACO+ uses on average 17.67 seconds per plane to
achieve good accuracy (95%± 2%). Regarding a dataset with 1000 dimensions and equally
many samples and classes as Iris, it would take approximately 100 days to complete a training
phase.

In order for PolyACO+ to be practical to use in higher-order dimensions, some measures
should be taken to either reduce the number of dimensions, e.g. through dimension reductions
such as principal component analysis (PCA) and t-distributed stochastic neighbour embed-
ding (t-SNE) (Van Der Maaten 2014) or apply other data reduction methods (Varma et al.
2015; Salama and Abdelbar 2016), or drastically increase the speed of the algorithm.

4.5.2 Results

Tables 3, 6, and 7 show that the classification scores are very close to each other, with
the exception of PolyACO. PolyACO+ scores the highest on bcw, while SVM obtains the
best score on Iris and neural networks scores best on Digits. The original PolyACO has
the lowest score on all the datasets. This is probably because PolyACO can only classify
two-dimensional data, and therefore, it extracts only the first two features of each dataset
and trains the model only based on them. It has a score of 10.18% on Digits, which is
statistically equivalent to guessing as Digits has 10 classes. This is expected, since PolyACO
only uses 2 out of the 64 features from Digits. Section 4.5.3 elaborates on PolyACO+ speed
end convergence rate, including steps towards reaching an accuracy of 72.56% on the Digits
data.

It should be noted that the best SVM set-up from the experiments in Table 3 is, not
surprisingly, Gaussian SVM. It is for this reason that we have included comparisons to
Gaussian SVM in Table 6.

Table 6 presents comparison results of PolyACO+ with other state-of-the-art algorithms
on real datasets. For the purpose of comparison, we have included all obtainable data from
Martens et al. (2007).7 PolyACO+ produces a better accuracy level than all other algorithms
for the three datasets Iris, bcw, wine, and better than all except Gaussian SVM for the bal
dataset. However, more importantly, it is only outperformed by AntMiner+ with a large
margin for three datasets (ttt, tae, and car), all of which have categorical features. For all
other results, it reaches roughly the same, or significantly higher, accuracy level. The natural
conclusion to be drawn is that AntMiner+ is superior to PolyACO+ for categorical data, and
the opposite seems to be the case for datasets with continues numerical values.

Table 7 shows accuracy categorised by data type (data containing categorical values,
numerical values, and both).

6 The AntMiner+ data are from the original AntMiner+ paper (Martens et al. 2007) where experiments are
run with tenfold cross-validation. A higher cross-validation produces less bias towards overestimating the true
expected error.
7 Two datasets from Martens et al. (2007) could not be obtained because they are only available per request.
Despite requesting it from the data provider, we unfortunately did not receive the data.
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Table 6 Classification accuracy of PolyACO+ compared to state-of-the-art classification algorithms for the
datasets Australian Credit Approval (aus), Tic-Tac-Toe Endgame (ttt), Contraceptive Method Choice (cmc),
Teaching Assistant Evaluation (tae), Balance Scale (bal), Car Evaluation (car), wine, Iris, Breast Cancer
Wisconsin (bcw), and Digits (dig)

aus ttt cmc tae bal car wine Iris bcw dig

Instances 690 958 1473 151 625 1728 178 151 699 1797

Attributes 15 9 9 5 4 6 13 4 9 64

Polygons 182 72 108 30 18 60 234 18 72 20160

Num/cat both cat both cat num cat num num num num

Technique

PolyACO+ 85.52 65.80 45.05 49.70 87.43 69.91 99.32 95.20 98.05 78.28

AntMiner+ 84.05 99.75 45.93 56.73 79.81 92.01 94.59 56.73 96.40 –

AntMiner 84.09 77.03 42.32 40.39 68.09 77.38 84.50 76.60 91.14 –

AntMiner2 84.30 71.13 41.49 43.73 66.94 77.93 85.33 81.80 91.54 –

AntMiner3 83.61 68.94 40.85 40.39 65.02 77.50 83.50 77.00 90.91 –

RIPPER 84.52 97.99 48.94 35.30 79.38 94.01 90.68 93.00 95.35 –

C4.5 84.82 83.79 46.60 47.20 77.11 96.61 89.83 93.80 94.69 –

1NN 80.33 98.50 42.16 50.20 81.83 92.69 95.43 91.00 96.40 –

Logit 84.03 65.57 47.52 51.96 86.75 80.52 94.33 93.80 96.53 96.40

Gaussian SVM 85.22 91.06 48.55 48.42 91.58 97.71 94.83 94.40 92.81 94.01

Bold indicates to highlight the highest performance in the corresponding column
All data are from the UCI dataset repository (Lichman 2013). Results other than PolyACO+ are from the
original AntMiner+ paper (Martens et al. 2007

Table 7 Average classification accuracy of PolyACO+ compared to state-of-the-art classification algorithms
for datasets that only contain categorical values (cat), datasets that only contain numerical values (num),
datasets that contain both categorical and numerical values (both), and average classification accuracy for all
datasets (avg)

Technique cat num both avg

PolyACO+ 61.80 95.00 65.29 77.33

AntMiner+ 82.83 81.88 64.99 78.44

AntMiner 64.93 80.08 63.21 71.28

AntMiner2 64.26 81.40 62.90 71.58

AntMiner3 62.28 79.10 62.23 69.75

RIPPER 75.67 89.60 66.73 79.90

C4.5 75.86 88.86 65.71 79.83

1NN 80.46 91.17 61.25 80.95

Logit 66.01 92.85 65.78 77.89

Gaussian SVM 79.06 93.41 66.89 82.73

Bold indicates to highlight the highest performance in the corresponding column
Note that only PolyACO+, logit, and SVM have been tested on Digits. Therefore, Digits is not included in the
comparison
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Fig. 18 Confusion matrices for different classifiers. Each is run once on Iris. PolyACO+, polynomial SVM,
and linear SVM reached accuracies of 98%, while the other two scored 96% in this example

The confusion matrices in Fig. 18 illustrate the precision obtained when classifying Iris
using PolyACO+. When comparing this matrix to the other classifiers’ confusion matrix, we
find that they all look approximately the same, which arguably supports the assertion that
PolyACO+works as well as comparable algorithms. Overall, the results fromTables 3, 6, and
the confusionmatrices strongly indicate that PolyACO+ is a competitive algorithm for solving
classification problems when the features have numerical values. It is significantly more
accurate than PolyACO and performs similarly or better compared to the other algorithms in
the experiment. However, it is less competitive when it comes to categorical data.

4.5.3 Performance versus convergence rate

Figure 19 shows how the classification accuracy of PolyACO+ stabilises at a higher con-
vergence rate on the datasets Iris, bcw, and Digits. The figure shows that while a higher
convergence rate produces a higher classification accuracy, this accuracy is reached at dif-
ferent levels for different datasets. This is in line with what might be expected as the datasets
are of different complexity. Iris and bcw, which have 18 and 72 polygons, respectively, to
optimise, converge for η ≈ 300. In order to train PolyACO+ for the more complex dataset
Digits, it is needed to include 20,160 polygons in the training phase, and the convergence
rate clearly needs to be set higher. We would expect that by using a higher convergence rate,
PolyACO+ would produce a higher level of accuracy, and it is therefore encouraging that the
empirical evidence in Figure 19 supports this assertion.

4.6 Multi-level

This section compares the different multi-level approaches empirically. Each approach is run
on the semicircular dataset fromFig.12. The semicircular dataset is a good choice to illustrate
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Fig. 19 Classification accuracy when using an increasing convergence rate (η) for PolyACO+ on Iris and
bcw (average of 50 runs) and Digits (average of 5 runs)

the effects of multi-levelling as there are clear boundaries between the class clusters in this
case. The training phase is run for 100 seconds, and the best polygon is logged every second
to monitor the progress. The four approaches in the experiment are as follows: a static grid
with granularity μ = 15, naïve multi-level, static grid with AMR, and dynamic grid with
AMR.

A value ofμ = 15 was empirically tested to give PolyACO+ the highest accuracy without
multi-level (see Fig. 8) and is included in Fig. 20. The results in Fig. 20 show that the naïve
multi-level approach converges earlier than the static grid approach with a fixed granularity,
and at the same time lower than the two versions usingAMR. Similarly, staticAMRconverges
earlier than dynamic AMR, but with a lower score. This is because the static grid has a max
level of 4, meaning that it has a small and limited search space. In this way, it not only
converges very fast, but is not able to separate the data as well as the dynamic approach.

4.6.1 Discussion

The naïve approach consists of applying traditional multi-grid techniques by increasing the
granularity on the entire grid when ants converge and pass on the pheromone values from
the coarse grids to the finer grids. Another approach is to apply AMR by only increasing the
granularity in areas of relevance. This approach can be applied either once at initialisation of
the grid or dynamically during training. All multi-level approaches obtain very good results
compared to no multi-levelling. Dynamic multi-levelling with AMR shows superior results
compared to the other approaches and is therefore the preferred technique for PolyACO+.
Moreover, the performance is further increased by applying a dynamic convergence which
assigns more computing time to productive grid levels than to unproductive grid levels.
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Fig. 20 Multi-level comparison (averaged over 50 runs)

Table 8 Performance overview for Digits (average of 5 runs)

Convergence rate Average accuracy Average time per run (h) Time per polygon (s)

η = 300 72.55 69.6 12

η = 500 72.89 112.4 20

η = 800 78.28 139.8 24

4.7 Performance on the Digits dataset

Table 6 shows that PolyACO+ scores considerably lower on the Digits dataset than the other
classification algorithms. This could be explained by the fact that the Digits dataset is more
complex than the others, as it contains 64 features and 10 classes, resulting in a total of 20,160
polygons in the classification model (see Eq.7).

Figure 19 and Table 8 confirm that increasing the convergence rate also increases the
accuracy level. However, this takes place at the expense of slower convergence since a higher
convergence rate means increasing the number of ants.

4.8 Discrete, continuous, and categorical values

Table 7 shows the results for each classifier grouped by data type. When the data are purely
numerical, PolyACO+ beats all algorithms in our comparison. In contrast, when the data
are only categorical, AntMiner+ is the best performing algorithm. When the data contain
both numerical and categorical values, SVM becomes the best performing algorithm, but it
is noteworthy that PolyACO+ is better than AntMiner+ in this case. One conclusion to be
drawn from this is that PolyACO+works best and is the best among the compared algorithms,
when the dataset contains numerical values. Without numerical values, PolyACO+ should
not be the chosen classifier.
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(a) (b) (c)

Fig. 21 Example of a multi-grid in a continuous domain, Iris, and b discrete domain, bcw, and c categorical
data, car

Figure 19 shows that PolyACO+ stabilises at a lower convergence rate on the bcw dataset
than on Iris and Digits. PolyACO+ achieves an average of 93.5% accuracy on bcw with
η = 10, while it only achieves a 76.6% accuracy on Iris with the same settings.8 The main
difference between Iris and bcw is the number of features (4 and 9, respectively) and the type
of values in the data: bcw only has discrete values between 1 and 10, while Iris has continuous
values with no particular constraints. The multi-grid in PolyACO+ is a discretisation of the
entire dataset and is therefore quite congruent with discrete values. Figure 21 illustrates the
difference between multi-grids based on continuous data and on discrete data. The grid can
more easily separate the discrete data as it does not require a high resolution before each
unique data position has a separate section in the grid. The continuous data require a very
high resolution to separate the points, because the values can be much closer to each other
than in a discrete domain.

In order to explain the limitations of categorical data for PolyACO+, we use the example
of the categorical dataset car. Applying PolyACO+ to the car dataset produces an accuracy
level of 69.9, compared to 92.0 for AntMiner+.9 The car dataset consists of 6 features, all
of which are categorical. PolyACO+ by design expects numerical values for the features
in a grid and not categorical features. We counter this problem by mapping every possi-
ble value in a category to a binary 0–1 category. For example, feature maintenance in the
car dataset has 4 possible values: vhigh, high, med, and low. This is instead mapped to 4
features: maintenance_vhigh, maintenance_high, maintenance_med, and maintenance_low.
Figure 21c shows a plot of maintenance_vhigh (x-axis) versus maintenance_high (y-axis).
It is observable from this example that each items falls into either maintenance_vhigh,
maintenance_high, or neither, and there is an exact overlap between these categories. Since
PolyACO+ works in two-dimensional plots alone, there is not a very good separator from
these features alone. Further, since the car dataset only includes categorical data, this is true
for any subset of two features, and PolyACO+ does not perform that well in this situation.

5 Conclusion and further work

In this paper we have introduced PolyACO+, a classification algorithm which is a significant
extension of the PolyACO algorithm that uses ant colony optimisation and ray casting for
classification. PolyACO+ introduces several modifications and improvements to PolyACO,

8 Note that after convergence, the accuracy is much higher as presented in Table 6.
9 Note that for the continuous datasets, e.g. Iris, we observe the opposite case and PolyACO+ outperforms
AntMiner+ by a large margin: 95.2–56.7.
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such as the capability to handle multidimensional data, support for multiple classes, and an
efficient parallel architecture for GPUs that improves accuracy and speed.

PolyACO+ employs a novel approach to handling multidimensional data where a sep-
arate classifier is trained individually for each pair of features. Subsequently, PolyACO+
uses ray casting and majority voting to construct an aggregated classification decision. The
approach is successfully applied to multiple multidimensional datasets such as the bcw and
Iris datasets. The algorithm performs similarly or better than state-of-the-art algorithms with
an average classification accuracy of 95.20% on Iris and 97.11% on bcw. Moreover, Poly-
ACO+ outperforms all other classification algorithms, including neural networks and SVM.
Since bcw consists of discrete data, this suggests that PolyACO+ works particularly well for
this type of data.

To reduce the complexity per dimension, PolyACO+ also applies adaptive mesh refine-
ment. This multi-level technique works by increasing the granularity in parts of the graph
with denser data while keeping lower granularity in parts where the data are sparse. In this
manner, the ants do not have to spend time in areas which do not give added value.

Overall, PolyACO+ performs well on all our experiments with continuous and discrete
numerical values and meets our objectives in terms of improving PolyACO. We therefore
conclude that PolyACO+ is a viable technique for solving classificationproblems.Concerning
categorical data, PolyACO+ falls short compared to other classifiers specialised for this type
of data, for example AntMiner+.

One of the biggest drawbacks of PolyACO is the fact that it is slow. In order to circumvent
this disadvantage, PolyACO+ employs a parallel architecture for the reward function that
can run on GPUs. The runtime of the reward function is reduced using parallelisation, which
reduces the overall running time of the training phase to between 16 and 1.6% of its original
runtime.

PolyACO+ is still relatively slow compared to other classical algorithms. The reason for
this is that the number of polygons increases quadratically with respect to the number of
features.

Two strategies might improve the performance further: first, extending parallelisation to
other parts of the algorithm and second, resorting to smart dimension reduction techniques.
Potential approaches include adding a kernel functionality similar to how SVM uses kernels
(i.e. smart exploration of relevant and non-relevant dimensions), and letting the ants walk in
multidimensional planes. The viability of these approaches needs to be explored.

The paths in PolyACO+ are composed strictly of horizontal and vertical edges, and the
distance along a path is computed using the Manhattan distance. Two paths that are of the
same length calculated with the Manhattan distance may be of different lengths in Euclidean
geometry. The combination of PolyACO+ and a Euclidean geometry would permit diagonal
lines and allow a greater variety of polygons. Whether or not Euclidean-based PolyACO+
would improve the algorithm accuracy needs to be explored.

There are multiple ways of countering the Manhattan distance problem. One solution is
to use the area of the polygon instead of the perimeter in the reward function. However, this
approach could pose a challenge, as calculating the area may be computationally expensive,
while calculating the polygon perimeter is trivial. Another approach would be to introduce
diagonal edges. This solves the problem of Manhattan distance, but comes at the cost of
making the computations on the graph more expensive. Moreover it could be challenging to
implement the latter solution for asymmetric grids including the adaptive mesh refinement
grid used in PolyACO+.

Other mechanisms we intend to explore are multiple polygons per class per pair of dimen-
sions and weighing of each polygon as both mechanisms would allow the detection of more
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complex patterns and potentially yield a higher level of classification accuracy. On the other
hand, the mechanisms might as well increase the complexity of the classification phase. The
weighing approach allows for more focused classification schemes when items are part of
multiple classes. The weighing could be based on training accuracy or the distance an item
is from the boundary.
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