Skip to main content
Log in

Kilogrid: a novel experimental environment for the Kilobot robot

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

We present the Kilogrid, an open-source virtualization environment and data logging manager for the Kilobot robot, Kilobot for short. The Kilogrid has been designed to extend the sensory-motor abilities of the Kilobot, to simplify the task of collecting data during experiments, and to provide researchers with a tool to fine-control the experimental setup and its parameters. Based on the design of the Kilobot and compatible with existing hardware, the Kilogrid is a modular system composed of a grid of computing nodes, or modules that provides a bidirectional communication channel between the Kilobots and a remote workstation. In this paper, we describe the hardware and software architecture of the Kilogrid system as well as its functioning to accompany its release as a new open hardware tool for the swarm robotics community. We demonstrate the capabilities of the Kilogrid using a 200-module Kilogrid, swarms of up to 100 Kilobots, and four different case studies: exploration and obstacle avoidance, site selection based on multiple gradients, plant watering, and pheromone-based foraging. Through this set of case studies, we show how the Kilogrid allows the experimenter to virtualize sensors and actuators not available to the Kilobot and to automatize the collection of data essential for the analysis of the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. See http://www.kilobotics.com/.

  2. See http://iridia.ulb.ac.be/supp/IridiaSupp2017-001/.

  3. http://iridia.ulb.ac.be/kilogrid/.

  4. Costs do not include taxes.

  5. The price of a Kilobot is computed from the price listed by K-Team Corporation and does not include taxes nor the cost of the OHC and of the Kilobot charger.

  6. If communication between Kilobots is not required, that from a Kilobot to a cell can be augmented up to 72 bits every 0.5 s.

References

  • Antoun, A., Valentini, G., Hocquard, E., Wiandt, B., Trianni, V., & Dorigo, M. (2016). Kilogrid: a modular virtualization environment for the Kilobot robot. In 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3809–3814). IEEE Press.

  • Arvin, F., Krajník, T., Turgut, A. E., & Yue, S. (2015a). COS\(\phi \): Artificial pheromone system for robotic swarms research. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 407–412).

  • Arvin, F., Xiong, C., & Yue, S. (2015b). Colias-\(\phi \): An autonomous micro robot for artificial pheromone communication. International Journal of Mechanical Engineering and Robotics Research, 4(4), 349–353.

    Google Scholar 

  • Becker, A., Habibi, G., Werfel, J., Rubenstein, M., & McLurkin, J. (2013). Massive uniform manipulation: Controlling large populations of simple robots with a common input signal. In 2013 IEEE/RSJ international conference on intelligent robots and systems (pp. 520–527).

  • Beckers, R., Holland, O.E., & Deneubourg, J. L. (1994). From local actions to global tasks: Stigmergy and collective robotics. In Artificial life IV (pp. 181–189). MIT Press.

  • Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41.

    Article  Google Scholar 

  • Brutschy, A., Garattoni, L., Brambilla, M., Francesca, G., Pini, G., Dorigo, M., et al. (2015). The TAM: Abstracting complex tasks in swarm robotics research. Swarm Intelligence, 9(1), 1–22.

    Article  Google Scholar 

  • Dorigo, M., Birattari, M., & Brambilla, M. (2014). Swarm robotics. Scholarpedia, 9(1), 1463.

    Article  Google Scholar 

  • Garnier, S., Combe, M., Jost, C., & Theraulaz, G. (2013). Do ants need to estimate the geometrical properties of trail bifurcations to find an efficient route? A swarm robotics test bed. PLoS Computational Biology, 9(3), 1–12.

    MathSciNet  Google Scholar 

  • Gauci, M., Radhika, N., & Rubenstein, M. (2017). Distributed autonomous robotic systems: The 13th international symposium. Springer, chap Programmable self-disassembly for shape formation in large-scale robot collectives (in press).

  • Goss, S., Aron, S., Deneubourg, J. L., & Pasteels, J. M. (1989). Self-organized shortcuts in the argentine ant. Naturwissenschaften, 76(12), 579–581.

    Article  Google Scholar 

  • Gutiérrez, Á., Campo, A., Dorigo, M., Amor, D., Magdalena, L., & Monasterio-Huelin, F. (2008). An open localization and local communication embodied sensor. Sensors, 8(11), 7545–7563.

    Article  Google Scholar 

  • Khaliq, A. A., Di Rocco, M., & Saffiotti, A. (2014). Stigmergic algorithms for multiple minimalistic robots on an RFID floor. Swarm Intelligence, 8(3), 199–225.

    Article  Google Scholar 

  • Khaliq, A. A., & Saffiotti, A. (2015). Stigmergy at work: Planning and navigation for a service robot on an RFID floor. In IEEE International Conference on Robotics and Automation, ICRA 2015, (pp. 1085–1092). IEEE Press.

  • Liu, W., & Winfield, A. F. (2011). Open-hardware e-puck linux extension board for experimental swarm robotics research. Microprocessors and Microsystems, 35(1), 60–67.

    Article  Google Scholar 

  • Mathews, N., Valentini, G., Christensen, A. L., O’Grady, R., Brutschy, A., & Dorigo, M. (2015). Spatially targeted communication in decentralized multirobot systems. Autonomous Robots, 38(4), 439–457.

    Article  Google Scholar 

  • Melhuish, C., Welsby, J., & Edwards, C. (1999). Using templates for defensive wall building with autonomous mobile ant-like robots. In Proceedings of towards intelligent mobile robots (TIMR99), Vol. 99.

  • Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J.C., Floreano, D., & Martinoli, A. (2009). The e-puck, a robot designed for education in engineering. In P. J. S. Gonçalves, P. J. D. Torres & C. M. O. Alves (Eds.), Proceedings of the 9th conference on autonomous robot systems and competitions (Vol. 1, pp. 59–65). IPCB: Instituto Politécnico de Castelo Branco.

  • Payton, D., Daily, M., Estowski, R., Howard, M., & Lee, C. (2001). Pheromone robotics. Autonomous Robots, 11(3), 319–324.

    Article  MATH  Google Scholar 

  • Pickem, D., Wang, L., Glotfelter, P., Diaz-Mercado, Y., Mote, M., Ames, A.D., Feron, E., & Egerstedt, M. (2016). Safe, remote-access swarm robotics research on the robotarium. arXiv:1604.00640.

  • Reina, A., Cope, A. J., Nikolaidis, E., Marshall, J. A. R., & Sabo, C. (2017). ARK: Augmented reality for kilobots. IEEE Robotics and Automation Letters, 2(3), 1755–1761.

    Article  Google Scholar 

  • Reina, A., Salvaro, M., Francesca, G., Garattoni, L., Pinciroli, C., Dorigo, M., & Birattari, M. (2015). Augmented reality for robots: Virtual sensing technology applied to a swarm of e-pucks. In 2015 NASA/ESA conference on adaptive hardware and systems (AHS) (pp. 1–6). IEEE Press.

  • Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., & Nagpal, R. (2014a). Kilobot: A low cost robot with scalable operations designed for collective behaviors. Robotics and Autonomous Systems, 62(7), 966–975.

    Article  Google Scholar 

  • Rubenstein, M., Cabrera, A., Werfel, J., Habibi, G., McLurkin, J., & Nagpal, R. (2013). Collective transport of complex objects by simple robots: Theory and experiments. In T. Ito, C. Jonker, M. Gini & O. Shehory (Eds.), Proceedings of the 12th international conference on autonomous agents and multiagent systems, IFAAMAS, AAMAS ’13 (pp. 47–54).

  • Rubenstein, M., Cornejo, A., & Nagpal, R. (2014b). Programmable self-assembly in a thousand-robot swarm. Science, 345(6198), 795–799.

    Article  Google Scholar 

  • Soorati, M. D., & Hamann, H. (2016). Robot self-assembly as adaptive growth process: Collective selection of seed position and self-organizing tree-structures. In 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 5745–5750).

  • Støy, K. (2001). Using situated communication in distributed autonomous mobile robotics. In Proceedings of the 7th scandinavian conference on artificial intelligence, SCAI’01 (Vol. 1, pp. 44–52). IOS Press.

  • Trianni, V., De Simone, D., Reina, A., & Baronchelli, A. (2016). Emergence of consensus in a multi-robot network: From abstract models to empirical validation. IEEE Robotics and Automation Letters, 1(1), 348–353.

    Article  Google Scholar 

  • Valentini, G., Ferrante, E., & Dorigo, M. (2017). The best-of-n problem in robot swarms: Formalization, state of the art, and novel perspectives. Frontiers in Robotics and AI, 4, 9.

    Article  Google Scholar 

  • Valentini, G., Ferrante, E., Hamann, H., & Dorigo, M. (2016). Collective decision with 100 Kilobots: Speed versus accuracy in binary discrimination problems. Autonomous Agents and Multi-Agent Systems, 30(3), 553–580.

    Article  Google Scholar 

  • Valentini, G., Hamann, H., & Dorigo, M. (2015). Efficient decision-making in a self-organizing robot swarm: On the speed versus accuracy trade-off. In R. Bordini, E. Elkind, G. Weiss & P. Yolum (Eds.), Proceedings of the 14th international conference on autonomous agents and multiagent systems, IFAAMAS, AAMAS ’15 (pp. 1305–1314).

  • Vigelius, M., Meyer, B., & Pascoe, G. (2014). Multiscale modelling and analysis of collective decision making in swarm robotics. PLoS ONE, 9(11), e111542.

    Article  Google Scholar 

  • Werfel, J. (2012). Collective construction with robot swarms. In R. Doursat, H. Sayama, & O. Michel (Eds.), Morphogenetic engineering: Toward programmable complex systems (pp. 115–140). Berlin: Springer.

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council through the ERC Advanced Grant “E-SWARM: Engineering Swarm Intelligence Systems” (contract 246939) to Marco Dorigo. Marco Dorigo acknowledges support from the Belgian F.R.S.-FNRS, for which he is a Research Director.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Valentini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valentini, G., Antoun, A., Trabattoni, M. et al. Kilogrid: a novel experimental environment for the Kilobot robot. Swarm Intell 12, 245–266 (2018). https://doi.org/10.1007/s11721-018-0155-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-018-0155-z

Keywords

Navigation