Skip to main content

Advertisement

Log in

Balancing exploitation of renewable resources by a robot swarm

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

Renewable resources like fish stock or forests should be exploited at a rate that supports regeneration and sustainability—a complex problem that requires adaptive approaches to maintain a sufficiently high exploitation while avoiding depletion. In the presence of oblivious agents that cannot keep track of all available resources—a frequent condition in swarm robotics—ensuring that the exploitation effort is correctly balanced is particularly challenging. Additionally, the possibility to exploit resources by multiple robots opens the way to focusing the effort either on a single or on multiple resources in parallel. This means that the swarm needs to collectively decide whether to remain cohesive or split among multiple resources, as a function of the ability of the available resources to replenish after exploitation. In this paper, we propose a decentralised strategy for a swarm of robots that adapts to the available resources and balances the effort among them, hence allowing to maximise the exploitation rate while avoiding to completely deplete the resources. A detailed analysis of the strategy parameters provides insights into the working principles and expected performance of the robot swarm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bailis, P., Nagpal, R., & Werfel, J. (2010) Positional communication and private information in honeybee foraging models. In Swarm intelligence (pp. 263–274). Berlin: Springer.

    Google Scholar 

  • Bartumeus, F., da Luz, M. G. E., Viswanathan, G. M., & Catalan, J. (2005). Animal search strategies: A quantitative random-walk analysis. Ecology, 86(11), 3078–3087.

    Article  Google Scholar 

  • Bonabeau, E., Theraulaz, G., & Deneubourg, J.-L. (1996). Quantitative study of the fixed threshold model for the regulation of division of labour in insect societies. Proceedings of the Royal Society of London Series B: Biological Sciences, 263(1376), 1565–1569.

    Article  Google Scholar 

  • Bonani, M., Longchamp, V., Magnenat, S., Rétornaz, P., Burnier, D., Roulet, G., Vaussard, F., Bleuler, H., & Mondada, F. (2010) The marXbot, a miniature mobile robot opening new perspectives for the collective-robotic research. In Proceedings of the 2010 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 4187–4193). IEEE Press.

  • Borenstein, J., & Koren, Y. (1989). Real-time obstacle avoidance for fast mobile robots. IEEE Transactions on Systems, Man, and Cybernetics, 19(5), 1179–1187.

    Article  Google Scholar 

  • Castello, E., Yamamoto, T., Libera, F. D., Liu, W., Winfield, A. F. T., Nakamura, Y., et al. (2015). Adaptive foraging for simulated and real robotic swarms: The dynamical response threshold approach. Swarm Intelligence, 10(1), 1–31.

    Article  Google Scholar 

  • Cheein, F. A. A., & Carelli, R. (2013). Agricultural robotics: Unmanned robotic service units in agricultural tasks. IEEE Industrial Electronics Magazine, 7(3), 48–58.

    Article  Google Scholar 

  • Dimidov, C., Oriolo, G., & Trianni, V. (2016) Random walks in swarm robotics: An experiment with kilobots. In M. Dorigo, M. Birattari, X. Li, M. López-Ibáñez, K. Ohkura, C. Pinciroli, & T. Stützle (Eds.), Proceedings of the 10th international conference on swarm intelligence (ANTS 2016), volume 9882 of LNCS (pp. 185–196). New York: Springer.

    Google Scholar 

  • Dorigo, M., Floreano, D., Gambardella, L., Mondada, F., Nolfi, S., Baaboura, T., et al. (2013). Swarmanoid: A novel concept for the study of heterogeneous robotic swarms. IEEE Robotics & Automation Magazine, 20(4), 60–71.

    Article  Google Scholar 

  • Dornhaus, A., Klügl, F., Oechslein, C., Puppe, F., & Chittka, L. (2006). Benefits of recruitment in honey bees: Effects of ecology and colony size in an individual-based model. Behavioral Ecology, 17(3), 336–344.

    Article  Google Scholar 

  • Ducatelle, F., Di Caro, G. A., Forster, A., Bonani, M., Dorigo, M., Magnenat, S., et al. (2014). Cooperative navigation in robotic swarms. Swarm Intelligence, 8(1), 1–33.

    Article  Google Scholar 

  • Granovskiy, B., Latty, T., Duncan, M., Sumpter, D. J. T., & Beekman, M. (2012). How dancing honey bees keep track of changes: The role of inspector bees. Behavioral Ecology, 23(3), 588–596.

    Article  Google Scholar 

  • Gutiérrez, A., Campo, A., Monasterio-Huelin, F., Magdalena, L., & Dorigo, M. (2010). Collective decision-making based on social odometry. Neural Computing & Applications, 19(6), 807–823.

    Article  Google Scholar 

  • Hecker, J. P., & Moses, M. E. (2015). Beyond pheromones: Evolving error-tolerant, flexible, and scalable ant-inspired robot swarms. Swarm Intelligence, 9(1), 1–28.

    Article  Google Scholar 

  • Holme, P., & Saramäki, J. (2012). Temporal networks. Physics Reports, 519(3), 97–125.

    Article  Google Scholar 

  • Hui, C. (2006). Carrying capacity, population equilibrium, and environment’s maximal load. Ecological Modelling, 192(1–2), 317–320.

    Article  Google Scholar 

  • Krieger, M. J. B., Billeter, J.-B., & Keller, L. (2000). Ant-like task allocation and recruitment in cooperative robots. Nature, 406(6799), 992–995.

    Article  Google Scholar 

  • Labella, T. H., Dorigo, M., & Deneubourg, J.-L. (2006). Division of labor in a group of robots inspired by ants’ foraging behavior. ACM Transactions on Autonomous Adaptive Systems, 1(1), 4–25.

    Article  Google Scholar 

  • Liemhetcharat, S., Yan, R., & Tee, K. P. (2015). Continuous foraging and information gathering in a multi-agent team. In Proceedings of the 2015 international conference on autonomous agents and multiagent systems (AAMAS) (pp. 1325–1333). Richland, SC: International Foundation for Autonomous Agents and Multiagent Systems.

  • Liu, W., & Winfield, A. F. T. (2010). Modeling and optimization of adaptive foraging in swarm robotic systems. The International Journal of Robotics Research, 29(14), 1743–1760.

    Article  Google Scholar 

  • Liu, W., Winfield, A. F. T., Sa, J., Chen, J., & Dou, L. (2007). Towards energy optimization: Emergent task allocation in a swarm of foraging robots. Adaptive Behavior, 15(3), 289–305.

    Article  Google Scholar 

  • Loreto, V., Baronchelli, A., Mukherjee, A., Puglisi, A., & Tria, F. (2011). Statistical physics of language dynamics. Journal of Statistical Mechanics: Theory and Experiment, 2011(04), P04006.

    Article  Google Scholar 

  • Miletitch, R., Trianni, V., Campo, A., & Dorigo, M. (2013) Information aggregation mechanisms in social odometry. In Proceedings of the 20th European conference on artificial life (ECAL 2013) (pp. 102–109). Cambridge, MA: MIT Press.

  • Moretti, P., Baronchelli, A., Starnini, M., & Pastor-Satorras, R. (2013). Generalized voter-like models on heterogeneous networks. In A. Mukherjee, M. Choudhury, F. Peruani, N. Ganguly, & B. Mitra (Eds.), Dynamics on and of complex networks, volume 2: Applications to time-varying dynamical systems (pp. 285–300). New York: Springer.

    Chapter  Google Scholar 

  • Murphy, R. R., Tadokoro, S., Nardi, D., Jacoff, A., Fiorini, P., Choset, H., & Erkmen, A. M. (2008). Search and rescue robotics. In Springer handbook of robotics (pp. 1151–1173). Springer.

  • Pais, D., Hogan, P. M., Schlegel, T., Franks, N. R., Leonard, N. E., & Marshall, J. A. R. (2013). A mechanism for value-sensitive decision-making. PLoS ONE, 8(9), e73216.

    Article  Google Scholar 

  • Perna, A., & Latty, T. (2014). Animal transportation networks. Journal of The Royal Society Interface, 11(100), 20140334–20140334.

    Article  Google Scholar 

  • Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., et al. (2012). ARGoS: A modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence, 6(4), 271–295.

    Article  Google Scholar 

  • Pitonakova, L., Crowder, R., & Bullock, S. (2016). Information flow principles for plasticity in foraging robot swarms. Swarm Intelligence, 10(1), 33–63.

    Article  Google Scholar 

  • Reina, A., Marshall, J. A. R., Trianni, V., & Bose, T. (2017). Model of the best-of-n nest-site selection process in honeybees. Physical Review E, 95(5), 052411–15.

    Article  Google Scholar 

  • Reina, A., Miletitch, R., Dorigo, M., & Trianni, V. (2015a). A quantitative micro-macro link for collective decisions: the shortest path discovery/selection example. Swarm Intelligence, 9(2–3), 75–102.

    Article  Google Scholar 

  • Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., & Trianni, V. (2015b). A design pattern for decentralised decision making. PLoS ONE, 10(10), e0140950–18.

    Article  Google Scholar 

  • Roberts, J., Stirling, T. S., Zufferey, J.-C., & Floreano, D. (2009) 2.5D infrared range and bearing system for collective robotics. In Proceedings of the 2009 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3659–3664). IEEE Press.

  • Saleh, N., & Chittka, L. (2006). Traplining in bumblebees (Bombus impatiens): A foraging strategy’s ontogeny and the importance of spatial reference memory in short-range foraging. Oecologia, 151(4), 719–730.

    Article  Google Scholar 

  • Schroeder, A., Ramakrishnan, S., Kumar, M., & Trease, B. (2017). Efficient spatial coverage by a robot swarm based on an ant foraging model and the lévy distribution. Swarm Intelligence, 11(1), 39–69.

    Article  Google Scholar 

  • Seeley, T. D., Visscher, P. K., Schlegel, T., Hogan, P. M., Franks, N. R., & Marshall, J. A. R. (2012). Stop signals provide cross inhibition in collective decision-making by Honeybee swarms. Science, 335(6064), 108–111.

    Article  Google Scholar 

  • Simpson, S. J., Sibly, R. M., Lee, K. P., Behmer, S. T., & Raubenheimer, D. (2004). Optimal foraging when regulating intake of multiple nutrients. Animal Behaviour, 68(6), 1299–1311.

    Article  Google Scholar 

  • Song, Z., & Vaughan, R. T. (2013) Sustainable robot foraging: Adaptive fine-grained multi-robot task allocation for maximum sustainable yield of biological resources. In Proceedings of the 2013 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3309–3316). IEEE Press.

  • Spranger, M. (2013). Evolving grounded spatial language strategies. Künstliche Intelligenz, 27(2), 97–106.

    Article  Google Scholar 

  • Steels, L., & Belpaeme, T. (2005). Coordinating perceptually grounded categories through language: A case study for colour. The Behavioral and brain sciences, 28(04), 1–61.

    Google Scholar 

  • Trianni, V., & Campo, A. (2015). Fundamental collective behaviors in swarm robotics. In J. Kacprzyk & W. Pedrycz (Eds.), Springer handbook of computational intelligence (pp. 1377–1394). Berlin: Springer.

    Chapter  Google Scholar 

  • Trianni, V., & Dorigo, M. (2005). Emergent collective decisions in a swarm of robots. In Proceedings of the 2005 IEEE swarm intelligence symposium (SIS 2005) (pp. 241–248).

  • Valentini, G., Ferrante, E., & Dorigo, M. (2017). The best-of-n problem in robot swarms: Formalization, state of the art, and novel perspectives. Frontiers in Robotics and AI, 4, 1–43.

    Article  Google Scholar 

  • Winfield, A. F. (2009). Foraging robots. In Encyclopedia of complexity and systems science (pp. 3682–3700). New York: Springer.

    Chapter  Google Scholar 

  • Yoshida, K. (2009). Achievements in space robotics. IEEE Robotics & Automation Magazine, 16(4), 20–28.

    Article  Google Scholar 

Download references

Acknowledgements

Vito Trianni acknowledges the support by the European Commission FP7 Programme People: Marie-Curie Actions through the project “DICE, Distributed Cognition Engineering” (Grant Agreement Number 631297). Marco Dorigo acknowledges the support from the Belgian F.R.S.-FNRS, of which he is a Research Director.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vito Trianni.

Additional information

Guest editor: Roderich Groß.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 446 KB)

Supplementary material 2 (pdf 1981 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miletitch, R., Dorigo, M. & Trianni, V. Balancing exploitation of renewable resources by a robot swarm. Swarm Intell 12, 307–326 (2018). https://doi.org/10.1007/s11721-018-0159-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-018-0159-8

Keywords

Navigation