Skip to main content
Log in

A new systematic classification of influences on thermal production processes for mechanical simulations

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

For process–structure simulation, a lot of models and methods have been created and implemented into different software systems. The uncontrolled growth of specific solutions has led to a bewilderment for (potential) users during the last years. Therefore, the most important step before choosing and applying a method for modeling is to define the task of each simulation clearly and, in addition, to analyze the general conditions. In this paper, a systematic classification of all relevant influences for a part-specific simulation by means of the Finite Element Method (FEM) concerning thermal production processes is presented. Relating to a certain scenario, this classification helps to choose adequate models. Combined with the experience and the theoretical background of the user, the dilemma of efficiency in application and the accuracy of the results can be solved satisfactorily for each task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zienkiewicz OC (1984) Methode der finiten Elemente, 2 edn. Carl Hanser Verlag, München

    Google Scholar 

  2. Radaj D (2002) Eigenspannungen und Verzug beim Schweißen. Rechen- und Messmethoden. DVS-Verlag, Düsseldorf

    Google Scholar 

  3. Mahrle A, Schmidt J, Weiss D (2000) Simulation of temperature fields in arc and beam welding. Heat Mass Transf 36(1), pp 117–126

    Article  Google Scholar 

  4. Lundbäck A (2003) Finite elemten modelling and simulation of welding of aerospace components. Ph.D thesis Luleå University of Technology, Sweden

  5. Schneider M (1999) Auswirkungen thermomechanischer Vorgänge beim Werkzeugschleifen. Ph.D-thesis Universität Dortmund

  6. Aurich D, Kloos K-H, Lange G, Macherauch E (1999) (Hrsg).: Eigenspannung und Verzug durch Wärmeeinwirkung. Wiley-VCH publishing, Weinheim

    Google Scholar 

  7. Rethmeier M (2004) Vision of VW with respect to the usage of welding assembly simulation in design, production and manufacturing. In: Proceedings of the conference EUROPAM 2004, Oct. 11–13, Paris, France

  8. Davé VR, Cowles JH, Lindland DS, Shubert GC, Lin W, Hartman DA (2004) The financial impact of weld process modeling. Welding J, pp 24–27

  9. N .N (2004) Fügeprozesssimulation—Innovative Anwendungen der Informatik. Studie des Institut für Füge- und Schweißtechnik der TU Braunschweig im Auftrag des Deutschen Verbands für Schweißen und verwandte Verfahren e. V., Düsseldorf

  10. N (2005) N.: SYSWELD—Welding and heat treatment reference manual. ESI Group, Paris

  11. Stelzmann U, Groth C, Müller G (2006) FEM-Anwendungen der Strukturdynamik—Lösungen mit dem FE-Programm ANSYS 9/10. Renningen-Malmsheim: Expert-publishing

  12. Groth C, Junk A (2004) Schweißprozesssimulation mit dem SST—Integration neuer Ansätze und bewährter Teilmodelle in die FE-Simulation des Laserstrahlschweißens. In: Proceedigs of the 22nd CAD-FEM users meeting Nov. 10–12, Dresden, Germany

  13. Zaeh MF, Auer F, Roeren S (2004) Simulation of laser beam welding production processes. In: Proceedings of the 3rd international conference CIMTEC May 31–Jun 2, Acireale, Italy, pp 575–586

  14. Zaeh MF, Auer F, Roeren S (2004) A method to consider the results of previous forming processes in the simulation of laser beam welding. In: Cerjak H, Bhadeshia HKDH, Kozeschnik E (eds) Mathematical modelling of weld phenomena 7—proceedings of the 7th international seminar of the numerical analysis of weldability, Verlag der Technischen Universität Graz, Graz, pp 621–634

  15. Zaeh MF, Roeren S (2006) Structural behavior of an en aw-6060 profile during and immediately after welding by a laser–laser-hybrid system. In: Advanced materials research: flexible manufacture of lightweight frame structures, vol 10(1), pp 133–142

  16. Ropohl G (1999) Allgemeine Technologie—eine Systemtheorie der Technik, 2nd edn. Carl Hanser Verlag, München

    Google Scholar 

  17. Baehr HD, Stephan K (2004) Wärme- und Stoffübertragung, 7th edn. Springer, Berlin

    Google Scholar 

  18. Auer F Methode zur Simulation des Laserstrahlschweißens unter Berücksichtigung der Ergebnisse vorangegangener Umformsi-mulationen. Ph.D-thesis, Technische Universität München, 2004 (iwb-Forschungsberichte Band 192)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Roeren.

Additional information

This paper is based on investigations within the scope of the Transregional Collaborative Research Center/ TR 10 and is kindly supported by the German Research Foundation (DFG).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaeh, M.F., Roeren, S. A new systematic classification of influences on thermal production processes for mechanical simulations. Prod. Eng. Res. Devel. 1, 121–126 (2007). https://doi.org/10.1007/s11740-007-0003-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-007-0003-2

Keywords

Navigation