Skip to main content
Log in

Simulation based optimization of the NC-shape grinding process with toroid grinding wheels

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

For achieving high material removal rates while grinding free formed surfaces, shape grinding with toroid grinding wheels is favored. The material removal is carried out line by line. The contact area between grinding wheel and workpiece is therefore complex and varying. Without detailed knowledge about the contact area, which is influenced by many factors, the shape grinding process can only be performed sub-optimally. To improve this flexible production process and in order to ensure a suitable process strategy a simulation-tool is being developed. The simulation comprises a geometric-kinematic process simulation and a finite elements simulation. This paper presents basic parts of the investigation, modelling and simulation of the NC-shape grinding process with toroid grinding wheels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Stautner M (2006) Simulation und Optimierung der mehrachsigen Fräsbearbeitung. Dissertation Universität Dortmund, Vulkan Verlag, Essen

  2. Surmann T (2006) Geometrisch-physikalische Simulation der Prozess-dynamik für das fünfachsige Fräsen von Freiformflächen. Dissertation Universität Dortmund, Vulkan Verlag, Essen

  3. Damm P (2006) Rechnergestützte Optimierung des 5-Achsen Simultan-fräsens von Freiformflächen. Dissertation Universität Dortmund, Vulkan Verlag, Essen

  4. Ungemach E, Odendahl S, Stautner M, Mehnen J (2006) In-process simulation of multi-axes milling in the production of lightweight structures. In: Kleiner M et al (eds) Flexible manufacture of lightweight frame structures. Advanced Materials Research, vol. 10. TTP Trans Tech Publications Ltd, Switzerland, pp. 111–120

  5. N. N.: DIN 8589-11, Fertigungsverfahren Spanen. Teil 11: Schleifen mit rotierendem Werkzeug. Einordnung, Unterteilung, Begriffe. Beuth Verlag, Berlin, September 2003

  6. Hegener G (1998) Technologische Grundlagen des Hochleistungs-Außenrund-Formschleifens. Dissertation RWTH Aachen, Shaker Verlag, Aachen

  7. Gerent O (2001) Entwicklungen zu einem ganzheitlichen Prozessmodell für das Hochleistungs-Außenrund-Formschleifen. Dissertation RWTH Aachen, Shaker Verlag, Aachen

  8. Gehring V (1993) Numerisch gesteuertes Formschleifen von gekrümmten Werkstückoberflächen. Fortschr.-Ber. VDI Reihe 2 Nr. 299. VDI-Verlag, Düsseldorf

  9. Okuyama S, Kitajima T, Yui A (2004) Theoretical study on the effect of form error of grinding wheel surfaces under free form grinding. Key Eng Mater 257–258:147–152

    Google Scholar 

  10. Brinksmeier E, Aurich JC, Govekar E, Heinzel C, Hoffmeister HW, Peters J, Rentsch R, Stephenson DJ, Uhlmann E, Weinert K, Wittmann M (2006) Advances in modelling and simulation of grinding processes. Ann CIRP, Vol. 55:1–30

  11. N. N.: DIN ISO 6104, Schleifwerkzeuge mit Diamant oder Bornitrid—Rotierende Schleifwerkzeuge mit Diamant oder kubischem Bornitrid.. Beuth Verlag, Berlin, August 2005

  12. Warnecke G, David K (2000) A modeling method for analyzing dynamic behavior of the grinding process and for predicting the stability limit. Production Engineering—Research and Development, Annals of the German Academic Society for Production Engineering, VII, 2. pp 115–120

  13. Weinert K, Schulte M, Kötter D, Noyen M (2006) Economical and flexible profile grinding of hard alloys and hard composites. Production Engineering—Research and Development, Annals of the German Academic Society for Production Engineering, XIII, 1. pp 19–22

  14. Weinert K, Blum H, Jansen T, Mohn T, Rademacher A (2005) Angepasste Simulationstechnik zur Analyse NC-gesteuerter Formschleifprozesse. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb, 100 7–8, Carl Hanser Verlag, pp. 406–410

    Google Scholar 

  15. Tönshoff HK, Peters J, Inasaki I, Paul T.: Modelling and Simulation of Grinding Processes. Annals of the CIRP, Vol. 41/2/1992, pp. 677–688

  16. Panagiotopoulos PD, Glocker C (2000) Inequality constraints with elastic impacts in deformable bodies. The convex case. Arch Appl Mech 70:349–365

    Article  MATH  Google Scholar 

  17. Czekanski A, El-Abbasi N, Meguid SA, Refaat MH (2001) On the elastodynamic solution of frictional contact problems using variational inequalities. Int J Numer Methods Eng 50:611–627

    Article  MATH  Google Scholar 

  18. Blum H, Jansen T, Rademacher A, Weinert K (2006) Finite elements in space and time for dynamic contact problems. Ergebnisberichte Angewandte Mathematik, Universität Dortmund, No. 322, available via www.mathematik.uni-dortmund.de/lsiii/static/ preprintfb.nhtml

  19. Blum, H.; Kleemann, H.; Rademacher, A.; Schröder, A SOFAR. small object oriented finite element library for application and research. www.mathematik.uni-dortmund.de/lsx/research/software/sofar/index.html

  20. Martins JAC, Oden JT (1987) Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws. Nonlinear Anal Theory Methods Appl 11(3):407–428

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research work was supported by the Deutsche Forschungsgemeinschaft (DFG) within the “Schwerpunktprogramm” Prediction and Manipulation of Interaction between Structure and Process (SPP 1180). It is conducted in cooperation with Chair for Scientific Computing, University of Dortmund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Weinert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinert, K., Blum, H., Jansen, T. et al. Simulation based optimization of the NC-shape grinding process with toroid grinding wheels. Prod. Eng. Res. Devel. 1, 245–252 (2007). https://doi.org/10.1007/s11740-007-0042-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-007-0042-8

Keywords

Navigation