Skip to main content
Log in

Soft-computing algorithms as a tool for the planning of cyclically interlinked production lines

  • Production Management
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

The planning and configuration of complex flexible production lines—cyclically interlinked systems—cover numerous aspects and various possibilities. It is not possible to determine the applicability and characteristics for each of these variations by applying already existing planning methods. This paper outlines an innovative approach to this problem, which is based on the application of learning algorithms such as artificial neural networks. The iterative design process of a production line is initiated by a customer request. An initial layout is usually planned by an engineer and considered in a forecast system, which classifies the layout as stable or unstable. In case of stable layouts, the performance and cost values are visualized with operating figures. On this basis, the engineer is able to evaluate the layout. If the result is not satisfactory, new production line layouts are generated by modifying the overruled layout and another iteration begins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Manns M (2005) Förderengpassprognose verketteter Produktionssysteme mit Nebenflüssen durch neuronale Netze, Dissertation, Universität Hannover, Schriftenreihe IFW, Hannover

  2. Scholz-Reiter B, Müller S, Wiendahl H-P (2000) Throughput time control in production systems supported by neural networks. CIRP Ann 49:331–334

    Article  Google Scholar 

  3. Günthner W (1997) Projektbegleitender Einsatz eines simulationsgestützten Planungswerkzeugs in der Halbleiterproduktion, Vortragsband AIF ‘97, TU München, fml

  4. Bullinger H-J, Rieth D, Euler H-P (1993) Planung entkoppelter Montagesysteme. Teubner, Stuttgart

  5. Kuhn H (1998) Fließproduktionssysteme – Leistungsbewertung, Konfigurations- und Instandhaltungsplanung. Physica-Schriften zur Betriebswirtschaft Nr. 67, Physica, Heidelberg

  6. Nyhuis P, Wiendahl H-P (2003) Logistische Kennlinien. Springer, Berlin

    Google Scholar 

  7. Feldmann K, Stief E (1996) Integrated optimization support tool for simulation. Prod Eng 3(2):79–82

    Google Scholar 

  8. Puppe F (1990) Problemlösungsmethoden in Expertensystemen. Springer, Berlin

    MATH  Google Scholar 

  9. Metaxiotis KS, Askounis D, Psarras J (2002) Expert systems in production planning and scheduling: a state-of-the-art survey. J Intell Manuf 13(4):253–260

    Article  Google Scholar 

  10. Tönshoff H-K, Günther G (1997) Fortgeschrittene Methoden der Zustandsüberwachung. Werkstattstechnik 87(7/8):373–376

    Google Scholar 

  11. Feldmann K, Sutanto A (2003) Modular assembly system in a virtual manufacturing environment. In: Proceedings of the 36th CIRP international seminar on Manufacturing Systems, Saarbrücken, pp 137–141

  12. Tönshoff HK, Manns M (2005) Applicability of neuro-fuzzy function approximation in material-flow forecasting. Int J Knowl-Based Intell Eng Syst 9(2):81–92

    Google Scholar 

  13. VDI-Gesellschaft Produktionstechnik (Association of German Engineers) (1990) VDI 2860 - Assembly and handling; handling functions, handling units; terminology, definitions and symbols

  14. DIN Deutsches Institut für Normung e.V. (German Institute for Standardization) (2003) DIN 8593 - Manufacturing processes joining

  15. Zadeh LA (1994) Soft computing and fuzzy logic. IEEE Softw 11(6):48–56

    Article  Google Scholar 

  16. Tönshoff H-K, Czenkusch C, Brinksmeier E, Heinzel C (1997) Modeling of grinding processes with fuzzy and neural nets compared to multiple regression. In: EUFIT 97 5th European Congress on Intelligent Techniques and Soft Computing, Aachen, 3:2064–2068

  17. Levy S, Pollack J (2001) Infinite RAAM: a principled connectionist substrate for cognitive modeling. In: Proceedings of the ICCM-2001 fourth International Conference on Cognitive Modeling

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Dreyer.

Additional information

The research described in this paper is part of the project “Methode zur Planung komplexer, produktionstechnischer Anlagen mit zyklischer Verkettung” funded by the Deutsche Forschungsgemeinschaft (DFG). It is a is cooperation project between IPH – Institut für Integrierte Produktion Hannover gGmbH and Lehrstuhl für Fertigungsautomatisierung und Produktionssystematik (FAPS) of the Friedrich-Alexander-University Erlangen-Nuremberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tönshoff, H.K., Reinsch, S. & Dreyer, J. Soft-computing algorithms as a tool for the planning of cyclically interlinked production lines. Prod. Eng. Res. Devel. 1, 389–394 (2007). https://doi.org/10.1007/s11740-007-0062-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-007-0062-4

Keywords

Navigation