Skip to main content
Log in

Economic application of virtual commissioning to mechatronic production systems

  • Computer Aided Engineering
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

The interaction of heterogenous control hard and software plays a key role in enabling mechatronic production systems to become flexible and agile systems. Nevertheless, control software engineering still tends to be the last step within the development process. To a large extent it is carried out during the commissioning phase of the production ramp-up. On the first hand this leads to a loss of time and quality as well as to a loss of reputation and future orders on the second hand. A method that is referred to as Virtual Commissioning tries to overcome this situation. The aim is to enable control software engineering to, both take over the initiative in system design and to perform important activities earlier in the design process of production equipment. In this paper, the technological and economical scalability of Virtual Commissioning is analyzed. Based on the analysis, a technical concept for a scalable simulation environment is presented. The paper concludes with a new method for the economic application of Virtual Commissioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Firg. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Smith BC (1998) World class vehicle launch timing: the conclusion. Automotvie Manufacturing & Production, 11/98

  2. Wiendahl H-P, Hegenscheidt M, Winkler H (2002) Anlaufrobuste produktionssysteme. wt Werkstattstechnik Jahrgang 92, 2002 H. 11/12, pp 650–655

  3. Eversheim W, Koerth D, Gentzcke J (1990) Gesellschaft Produktionstechnik: Inbetriebnahme komplexer Maschinen und Anlagen: Strategien und Praxisbeispiele zur Rationalisierung in der Einzel- und Kleinserienproduktion. Düsseldorf: VDI-Verl

  4. Glas J (1993) Standardisierter Aufbau anwendungsspezifischer Zellenrechnersoftware: mit 80 Abb. Berlin [u.a.]: Springer (iwb-Forschungsberichte; 61)

  5. NN (1997) VDW-Bericht : Abteilungsübergreifende Projektierung komplexer Maschinen und Anlagen. Aachen: Verein Deutscher Werkzeugmaschinenhersteller

  6. Bender K, Albert J (1999) Echtzeitsimulation zum Test von Maschinensteuerungen: München: Utz (In: Informationstechnik im Maschinenwesen)

  7. Isermann R (1997) Mechatronic Systems – A Challenge for Control Engineering. In: Proceedings of the American Control Conference, Albu-querque, New Mexico, USA

  8. Jayaram M, Chen L (2003) Functional modeling of complex mechatronic systems. In: Proceedings of ASME 2003 design engineering technical conferences and computers and information in engineering conference. 2–6 September 2003. Chicago, Illinois, USA

  9. Li R-Q, Zou H-J (2005) A new symbolic representation method to support conceptual design of mechatronic system. Int J Adv Manuf Technol 25:619–627

    Article  Google Scholar 

  10. Qin S, Harrison R, West AA (2005) Study of 3D simulation modeling for supporting a plug-and-play, distributed control system. Int J Agile Manuf 8(1):101–108

    Google Scholar 

  11. Pritschow G, Rogers C, Röck S (2002) Echtzeitfähige Maschinenmodelle. wt Werkstattstechnik Jahrgang 92, 2002 H. 5, pp 187–193

  12. Dietrich U, Schulz T, Yaramanoglu N (2002) Bringing real and virtual worlds together in the manufacturing process. J Adv Manuf 1(1):51–65

    Article  Google Scholar 

  13. Berger A (2005) Virtuelle Inbetriebnahme eines Bearbeitungszentrums. In: Zaeh MF, Reinhart G (Hrsg.): Seminarberichte iwb 78: Mechatronik—Trends in der interdisziplinären Entwicklung von Werkzeugmaschinen. München: Utz 2005

  14. Heinrich S, Wortmann D (2004) Virtuelle Inbetriebnahme: Entwicklung von Layout- und Steuerungskonzepten mit Hilfe von Simulation. In: 2. Symposium, “Digitale Fabrik”, Leipzig, Juni

  15. Römberg S (2004) Virtuelle Inbetriebnahme:Innovative Entwicklungen im Bereich der Digitalen Fabrik. In: 2. Symposium “Digitale Fabrik”, Leipzig, Juni 2004

  16. Zhang D, Zhang H-C (1999) A simulation study of an object-oriented integration test bed for process planning and production scheduling. Int J Flexible Manuf Syst 11(1):19–35

    Article  Google Scholar 

  17. Zäh MF, Wünsch G, Pörnbacher, C, Ehrenstrasser M (2003) Emerging virtual machine tools. In: 29th design automation conference. Chicago, Illinois

  18. Min B-K, Huang Z, Pasek ZJ, Yip-Hoi D, Husted F, Marker S (2002) Integration of real-time control simulation to a virtual manufacturing environment. Int J Adv Manuf Syst 1(1):67–87, Special Issue on Virtual Manufacturing

    Article  Google Scholar 

  19. Milberg J (1992) Von CAD/CAM zu CIM: Leitfaden zum Erfolg, Berlin [u.a.], Springer (CIM-Fachmann)

  20. Zäh MF, Wünsch G, Hensel T, Lindworsky A (2006) Nutzen der virtuellen Inbetriebnahme: Ein Experiment. ZWF-Zeitschrift für wirtschaftlichen Fabrikbetrieb 101(10)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Wünsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinhart, G., Wünsch, G. Economic application of virtual commissioning to mechatronic production systems. Prod. Eng. Res. Devel. 1, 371–379 (2007). https://doi.org/10.1007/s11740-007-0066-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-007-0066-0

Keywords

Navigation