Skip to main content
Log in

Orbital drilling kinematics

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 11 February 2010

Abstract

In orbital drilling the tool (special end mill) moves relative to the work piece on a helical course. Because of the three-dimensional tool path and the superimposed rotary cutting motion a complex machining motion results which determines the contact conditions of the tool. The objective of this study is to describe mathematically the occurring cutting conditions over the engagement angle as a function of the technology parameters: bore diameter, tool diameter and the gradient of the helical course. On the basis of this mathematical description further fundamental and qualitative statements regarding the cutting process of orbital drilling can be determined. The theoretical description confirmed a change of the cutting characteristic over the penetration engagement angle of the tool from drilling to milling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Brinksmeier E, Fangmann S (2007) Orbital drilling of high tolerance boreholes. In: International conference on applied production technology (APT‘07), BIAS-Verlag, pp 75–84

  2. Teti R (2002) Machining of composite materials, Keynote paper. Ann CIRP 51(2):611–634

    Article  Google Scholar 

  3. Brinksmeier E, Janssen R (2002) Drilling of multi-Layer composite materials consisting of carbon fiber reinforced plastics (CFRP), titanium and aluminium alloys. Ann CIRP 51(1):87–90

    Article  Google Scholar 

  4. Brinksmeier E, Krogmeier F, Walter A (2005) Bohrungsbearbeitung von mehrschichtigen Compound-Werkstoffen. In: Spanende Fertigung, 4. Ausgabe. Vulkan Verlag, Essen, pp 43–50

  5. Denkena B, Dege J (2007) Zirkularfräsen von Schichtverbunden aus CFK und Titan, Begleitband zum Seminar: Neue Fertigungstechnologien in der Luft- und Raumfahrt 28./29.11.2007, Berichte aus dem IFW Band 11/2007, pp 85–98

  6. Tönshoff H-K, Friemuth T, Groppe M (2001) High efficient circular milling—a solution for an economical machining of bore holes in composite materials (CFK, Aluminium). In: Proceedings of the 3rd international conference on metal cutting and high speed machining, Metz

  7. Weinert K, Hammer N (2004) Zirkularfräsen von Bohrungen im Leichtbau. WB Werkstatt und Betrieb 137(10):54–58

    Google Scholar 

  8. Altintas Y et al (1996) A general mechanics and dynamics model for helical end mills. Ann CIRP 45(1):59

    Article  Google Scholar 

  9. Tönshoff HK (1995) Spanen. Grundlagen. Springer, Berlin

    Google Scholar 

  10. Nakayama K et al (1998) Basic rules on the form of chip in metal cutting. Ann CIRP 27(1):17–21

    Google Scholar 

  11. Denkena B, Tracht K, Schmidt C (2006) A flexible force model for predicting cutting forces in end milling. Prod Eng XIII/2:15–20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Fangmann.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11740-010-0210-0

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brinksmeier, E., Fangmann, S. & Meyer, I. Orbital drilling kinematics. Prod. Eng. Res. Devel. 2, 277–283 (2008). https://doi.org/10.1007/s11740-008-0111-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-008-0111-7

Keywords

Navigation