Skip to main content
Log in

Categories of size effects

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Size effects play an important role in up-or downscaling of processes and the transfer of knowledge to the processing in new geometric dimensions like micro- and nanotechnology. A definition of size effects and a systematic order for size effects is proposed. The main categories are density, shape and microstructure size effects, which can be subdivided into further subcategories. Using the example of size effects in the strength of materials it is shown that the systematic can be used to get the different effects unambiguous into an order, which helps to avoid apparent contradictions in experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vollertsen F (2003) Size effects in manufacturing. In: Vollertsen F, Hollmann F (eds) BIAS-Verlag, ISBN 3-933762-14-6, Strahltechnik vol 24:1–9

  2. Vollertsen F, Yuan S (eds) (2007) Proc. 2nd conf. on new forming technologies (2nd ICNFT) BIAS Bremen

  3. Pawelski O (1964) Beitrag zur Ähnlichkeitstheorie der Umformtechnik. Arch Eisenhuttenwesen 35(1):27–36

    Google Scholar 

  4. Pawelski O (1992) Ways and limits of the theory of similarity in application to problems of physics and metal forming. J Mater Process Technol 34:19–30. doi:10.1016/0924-0136(92)90086-8

    Article  Google Scholar 

  5. Kopp R, Wiegels H (1998) Einführung in die Umformtechnik, Augustinus Buchhandlung Aachen

  6. Vollertsen F, Walther R (2008) Energy balance in laser-based free form heading. Ann CIRP 57(1):291–294

    Article  Google Scholar 

  7. Kals R, Pucher HJ, Vollertsen F (1995) Effects of specimen size and geometry in metal forming. Proc. of the 2nd int. conf. on advances in materials and processing technologies. In: Hashmi MSJ (ed) Dublin vol 3:1288–1297

  8. Armstrong RW (1961) On size effect in polycrystal plasticity. J Mech Phys Solids 9:196–199. doi:10.1016/0022-5096(61)90018-7

    Article  Google Scholar 

  9. Justinger H, Hirt G (2007) Analysis of size-effects in the miniaturized deep drawing process. Key Eng Mater 344:791–798

    Article  Google Scholar 

  10. Van Brussel H, Peirs J, Reynaerts D, Delchambre A, Reinhart G, Roth N et al (2000) Assembly of microsystems. Ann CIRP 49(2):451–472

    Article  Google Scholar 

  11. Kast D (1969) Modellgesetzmäßigkeiten beim Rückwärtsfließpressen geometrisch ähnlicher Näpfe. PhD-thesis, Giradet Essen

  12. Geiger M, Engel U, Vollertsen F, Kals R, Messner A (1994) Metal forming of micro parts for electronics. Prod Eng 2(1):15–18

    Article  Google Scholar 

  13. Kals R, Vollertsen F, Geiger M (1996) Scaling effects in sheet metal forming. In: Kals HJJ, Shirvani B, Singh UP, Geiger M (eds) Sheet metal. University of Twente, Enschede II:65–75

  14. Peng L, Liu F, Ni J, Lai X (2007) Size effects in thin sheet metal forming and its elastic–plastic constitutive model. Mater Des 28(5):1731–1736

    Google Scholar 

  15. Fleck NA, Hutchinson JW (1997) Strain gradient plasticity. Adv Appl Mech 33:295–361

    Article  Google Scholar 

  16. Fleck NA, Hutchinson JW (2001) A reformulation of strain gradient plasticity. J Mech Phys Solids 49:2245–2271. doi:10.1016/S0022-5096(01)00049-7

    Article  MATH  Google Scholar 

  17. Xiang Y, Vlassak JJ (2006) Bauschinger and size effects in thin-film plasticity. Acta Mater 54(20):5449–5460. doi:10.1016/j.actamat.2006.06.059

    Article  Google Scholar 

  18. Brenner SS (1956) Tensile strength of whiskers. J Appl Phys 27(12):1484–1491. doi:10.1063/1.1722294

    Article  Google Scholar 

  19. Greer JR, Oliver WC, Nix WD (2005) Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater 53(6):1821–1830. doi:10.1016/j.actamat.2004.12.031

    Article  Google Scholar 

  20. Tiesler N, Engel U, Geiger M (1999) Forming of microparts-effects of miniaturization on friction. Adv Technol Plast 2:889–894

    Google Scholar 

  21. Tiesler N (2002) Microforming-size effects in friction and their influence on extrusion processes. Wire 52:34–38

    Google Scholar 

  22. Engel U, Eckstein R (2002) Microforming—from basic research to its realization. J Mater Process Technol 125/126(9):35–44. doi:10.1016/S0924-0136(02)00415-6

    Article  Google Scholar 

  23. Engel U (2004) Tribology in microforming. 2nd int. conf. on tribology in manufacturing processes 549–559

  24. Shaw MC (2003) The size effects in metal cutting. Sadhana 28(5):875–896. doi:10.1007/BF02703319

    Article  Google Scholar 

  25. Bull SJ (2003) On the origins and mechanisms of the indentation size effects. Z Metallk 94:787–792

    Google Scholar 

  26. Janssen PJM, de Keijser TH, Geers MGD (2006) An experimental assessment of grain size effects in the uniaxial straining of thin Al sheet with a few grains across the thickness. Mater Sci Eng A 419(1/2):238–248. doi:10.1016/j.msea.2005.12.029

    Google Scholar 

  27. Janssen PJM (2007) First-order size effects in the mechanics of miniaturised components. Ph.D. thesis Eindhoven University of Technology

  28. Raulea LV, Govaert LE, Baaijens FPT (1999) Grain and specimen size effects in processing metal sheets. Adv Technol Plast 2:939–944

    Google Scholar 

  29. Raulea LV, Goijaets AM, Govaert LE, Baaijens FPT (1999) Size effects in the processing of thin metal sheets. Proc SheMet 99:521–528

    Google Scholar 

  30. Gau JT, Principe C, Wang J (2007) An experimental study on size effects on flow stress and formability of aluminium and brass for microforming. J Mater Process Technol 184(1–3):42–46. doi:10.1016/j.jmatprotec.2006.11.003

    Article  Google Scholar 

  31. Lorenzo RD, Beccari S, Micari F (2003) An experimental investigation on micro sheet forming. Proc of the 1st Int CIRP Seminar on Micro and Nano Technology, Copenhagen:73–76

  32. Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46(3):411–425. doi:10.1016/S0022-5096(97)00086-0

    Article  MATH  Google Scholar 

  33. Ashby MF (1970) The deformation of plastically non-homogeneous materials. Philos Mag 21:399–424. doi:10.1080/14786437008238426

    Article  Google Scholar 

  34. Bazant ZP, Guo Z (2002) Size effect and asymptotic matching approximations in strain gradient theories of micro-scale plasticity. Int J Solids Struct 39:5633–5657. doi:10.1016/S0020-7683(02)00368-2

    Article  MATH  Google Scholar 

  35. Manika I, Maniks J (2006) Size effects in micro- and nanoscale indentation. Acta Mater 54(8):2049–2056. doi:10.1016/j.actamat.2005.12.031

    Article  Google Scholar 

  36. Zhao M, Slaughter WS, Li M, Mao SX (2003) Material-length-scale-controlled nanoindentation size effects due to strain gradient plasticity. Acta Mater 51:4461–4469. doi:10.1016/S1359-6454(03)00281-7

    Article  Google Scholar 

  37. Fredriksson P, Gudmundson P (2005) Size dependent yield strength of thin films. Int J Plast 21(9):1834–1854. doi:10.1016/j.ijplas.2004.09.005

    Article  MATH  Google Scholar 

  38. Tymiak NI, Kramer DE, Bahr DF, Wyrobek TJ, Gerberich WW (2001) Plastic strain and strain gradients at very small indentation depths. Acta Mater 49:1021–1034. doi:10.1016/S1359-6454(00)00378-5

    Article  Google Scholar 

  39. Stölken JS, Evans AG (1998) A microbend test method for measuring the plasticity length scale. Acta Mater 46:5109–5115. doi:10.1016/S1359-6454(98)00153-0

    Article  Google Scholar 

  40. Carrillo JG, Cantwell WJ (2007) Scaling effects in the tensile behaviour of fiber-metal laminates. Compos Sci Technol 67:1684–1693. doi:10.1016/j.compscitech.2006.06.018

    Article  Google Scholar 

  41. Herzig N, Meyer LW (2006) Material characterisation at high strain rates with special emphasis on miniaturization and size dependencies. Proc Int Conf on high speed forming (2nd ICHSF) In: M. Kleiner, E. Tekkaya, Dortmund (eds) ISBN 3-00-018432-5:13–22

  42. Krüger L, Meyer LW, Halle T, Herzig N (2004) Size effects on flow stress behaviour of tool steel 40CrMnMo7 at high loading rates. Proc 6th Mesomechanics, Patras/Greece:420–425

  43. Davidenkov N, Shevandin E, Wittmann F (1947) The influence of size on the brittle strength of steel. J Appl Mech:A63–A67

  44. Zhou J, Shan DB, Guo B, Ma DL (2007) Experimental study on specimen and grain size effects in uniaxial tension test of aluminium foil. Key Eng Mater 344:777–782

    Article  Google Scholar 

  45. Hoffmann H, Hong S (2006) Tensile test of very thin sheet metal and determination of flow stress considering the scaling effect. Ann CIRP 55(1):263–266

    Article  Google Scholar 

  46. Miyazaki S, Fujita H, Hiraoka H (1979) Effect of specimen size on the flow stress of rod specismens of polykristalline Cu–Al alloy. Scr Metab 13(6):447–449. doi:10.1016/0036-9748(79)90067-X

    Article  Google Scholar 

  47. van Putten K, Franzke M, Hirt G (2007) Size effect on friction and yielding in wire flat rolling. Proc of the 2nd Int. Conf. on new forming technology. In: Vollertsen F, Yuan S. (eds) BIAS Bremen:583–592

  48. Geiger M, Messner A, Engel U, Kals R, Vollertsen F (1995) Design of micro-forming processes: fundamentals, material data and friction behaviour. Int Cold Forg Congress 9:155–164

    Google Scholar 

  49. Tsai MC, Chen YA, Wu CF, Chen FK (2005) Size-effects in micro-metal sheet forming of unalloyed copper and brass. Adv Mater Res 6–8:705–710

    Article  Google Scholar 

  50. Hong S, Hoffmann H (2003) Study of scaling effects on mechanical properties for milli-forming of sheet metal—tensile test of a very thin sheet. In: Vollertsen F, Hollmann F (eds) Process scaling, BIAS Bremen ISBN 3-933762-14-6:145–151

Download references

Acknowledgments

The author likes to thank his colleagues, especially D. Biermann, H. N. Hansen, I. S. Jawahir, K. Kuzman, and K. Weinert for the valuable general discussion about size effects, which stimulated the considerations of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Vollertsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vollertsen, F. Categories of size effects. Prod. Eng. Res. Devel. 2, 377–383 (2008). https://doi.org/10.1007/s11740-008-0127-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-008-0127-z

Keywords

Navigation