Skip to main content
Log in

Analysis and simulation of size effects in micromilling

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

In this paper the influence of a downscaling of the tool diameter and of the machining parameters on the milling process is analyzed. Starting with an analysis of the cutting edge radius of the tools, the influence of the downscaling on the process is determined by analyzing the surface quality and the cutting forces. The simulation system NCChip, which has been developed at the ISF, is used to simulate the cutting forces when using small tool diameters. This simulation is also used to predict the cutting forces for more complex engagement conditions, like increasing radial immersion or milling of a slot pocket. Additionally, the effects of a downscaling on the tool deflection are analyzed, and strategies to reduce these effects are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Vollertsen F (2008) Categories of size effects. Prod Eng Res Devel 2:377–383. doi:10.1007/s11740-008-0127-z

    Article  Google Scholar 

  2. Shaw MC (2003) The size effect in metal cutting. Sadhana 28:875–896

    Article  Google Scholar 

  3. Larsen-Basse J, Oxley PLB (1973) Effect of strain-rate sensitivity on scale phenomena in chip formation. In: Proc. of the 13th Int. machine tool design and research conf. London

  4. Liu K (2005) Process modeling of micro-cutting including strain gradient effects. Dissertation Georgia Institute of Technology, USA

  5. Subbiah S, Melkote SN (2006) The constant force component due to material separation and its contribution to the size effect in specific cutting energy. J Manuf Sci Eng 128:811–815. doi:10.1115/1.2163363

    Article  Google Scholar 

  6. Joshi SS, Melkote SN (2004) An explanation for the size-effect in machining using strain gradient plasticity. J Manuf Sci Eng 126:679–684

    Article  Google Scholar 

  7. Liu K, Melkote SN (2007) Finite element analysis of the influence of tool edge radius on size effect in orthogonal micro-cutting process. Int J Mech Sci 49:650–660. doi:10.1016/j.ijmecsci.2006.09.012

    Article  Google Scholar 

  8. Atkins AG (2003) Modelling metal cutting using modern ductile fracture mechanics: quantitative explanations for some longstanding problems. Int J Mech Sci 45:373–396

    Article  Google Scholar 

  9. Denkena B, Becker JC, Jivishov V (2005) scaling effects on chip formation, forces and surface layer in hard turning. In: 8th CIRP int. workshop on modeling of machining operations, Chemnitz, pp 87–91

  10. Denkena B, Clos R, Veit P, Jivishov V, Meyer R (2007) Influence of the cutting edge geometry on the chip formation in machining. In: Vollertsen F, Yuan S (eds) Proc. of the 2nd int. conf. on new forming technology, pp 491–498

  11. Weber M, Hochrainer T, Gumbsch P, Autenrieth H, Delonnoy L, Schulze V, Löhe D, Kotschenreuther J, Fleischer J (2007) Investigation of size-effects in machining with geometrically defined cutting edges. Mach Sci Technol 11:447–473. doi:10.1080/10910340701697086

    Article  Google Scholar 

  12. Stoll A, Leopold J, Neugebauer R (2006) Hybrid methods for analyzing burr formation in 2D-orthogonal cutting. In: Grabec I, Govekar I (eds) Proc. of the 9th CIRP workshop on modeling of machining operations, pp 441–448

  13. Klocke F, Lung D, Gerschwiler K, Abouriduane M (2007) Scaling effects of the cutting edge rounding on the minimum uncut chip thickness and 3D FE modeling in drilling. In: Proceedings of the 10th CIRP int. workshop on modeling of machining operations. Reggio Calabria, pp 197–205

  14. Klocke F, Gerschwiler K, Abouriduane M (2009) Size effects of micro drilling in steel. Prod Eng Res Dev 3:69–72. doi:10.1007/s11740-008-0144-y

    Article  Google Scholar 

  15. Dix M, Leopold J, Neugebauer R (2007) Modelling, simulations and experimental verification of size effects in burr formation. In: Vollertsen F, Yuan S (eds) Int. conf. on new forming technology. Bremen, pp 471–480

  16. Bissacco G, Hansen HN, de Chiffre L (2006) Size effects on surface generation in micro milling of hardened tool steel. Ann CIRP 55:593–596

    Article  Google Scholar 

  17. Graf von der Schulenburg M, Uhlmann E (2008) Scaling effects in milling operations of tungsten-copper-composites. In: Proc. of the int. conf. on mechanical and manufacturing engineering. Johor Bahru, Malaysia

  18. Aramcharoen A, Mativenga PT (2009) Size effect and tool geometry in micromilling of tool steel. Prec Eng 33:402–407. doi:10.1016/j.precisioneng.2008.11.002

    Article  Google Scholar 

  19. Lai X, Li H, Li C, Lin Z, Ni J (2008) Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness. Int J Mach Tools Manuf 48:1–14. doi:10.1016/j.ijmachtools.2007.08.011

    Article  Google Scholar 

  20. Bissacco G, Hansen HN, Slunsky J (2008) Modelling the cutting edge radius size effect for force prediction in micro milling. Ann CIRP 57/1:113–116. doi:10.1016/j.cirp.2008.03.085

    Article  Google Scholar 

  21. Paris H, Brissaud D, Gouskov A (2007) A more realistic cutting force model at uncut chip thickness close to zero. Ann CIRP 56/1:415–418. doi:10.1016/j.cirp.2007.05.096

    Article  Google Scholar 

  22. Kahnis P (2008) Analyse von Größeneinflüssen bei einer Herabskalierung des Fräsprozesses in den Mikrobereich. Dissertation Technische Universität Dortmund

  23. Kahnis P, Weinert K (2006) Analysis of tool influences on high-precision-micromilling of steel workpieces. In: Zervos H (ed) Proc. of the 6th int. conf. of the euspen, pp 128–131

  24. Kahnis P, Surmann T, Weinert K (2006) Analyse und Simulation des Mikrofräsprozesses. wt Werkstattstechnik online 96:836–843

    Google Scholar 

  25. Weinert K, Kahnis P (2007) Analysis of Tool Influences on Downscaled Milling Processes. In: Vollertsen F, Yuan S (eds) Proc. of the 2nd int. conf. on new forming technology, pp 481–489

  26. Biermann D, Kahnis P, Surmann T (2007) Analysis and simulation of cutting forces in downscaled milling processes. Proc. of the 10th CIRP int. workshop on modeling of machining operations. Reggio Calabria, pp 493–499

  27. Surmann T, Enk D (2007) Simulation of milling tool vibration trajectories along changing engagement conditions. Int J Mach Tools Manuf 47:1442–1448

    Article  Google Scholar 

  28. Biermann D, Baschin A, Kahnis P (2008) Dynamic analysis of the micromilling process—influence of tool vibrations on the quality of microstructures. Materwiss Werksttech 39:616–621. doi:10.1002/mawe.200800334

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Kahnis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biermann, D., Kahnis, P. Analysis and simulation of size effects in micromilling. Prod. Eng. Res. Devel. 4, 25–34 (2010). https://doi.org/10.1007/s11740-009-0201-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-009-0201-1

Keywords

Navigation