Skip to main content
Log in

Austenitic stainless steel for separating safeguards: development of an FEA-model for the simulation of impact tests in reference to material specific parameters

  • Machine Tool
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Austenitic stainless steels have a high potential for the use in separating safeguards of machine tools based on the TRIP (Transformation Induced Plasticity) effect. The problem with these materials is the high variance of the alloy composition. Therefore, the specific penetration resistance W D,spec varies significantly. The presented research analyses the impact of material specific parameters on the specific penetration resistance W D,spec and the FEA simulation of impact tests. The result of the project is the knowledge of the penetration resistance and hence the security (factor of safety) against penetration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. DIN Deutsches Institut für Normung e.V. (2009) DIN EN 12417: Werkzeugmaschinen—Sicherheit—Bearbeitungszentren. Beuth-Verlag, Berlin

  2. Bold J (2004) Trennende Schutzeinrichtungen für Werkzeugmaschinen zur Hochgeschwindigkeitsbearbeitung. In: Uhlmann E (ed) Berichte aus dem Produktionstechnischen Zentrum. IRB-Verlag, Stuttgart. ISBN 978-3816766971

  3. Wittner M (2007) Leichtbau im Maschinenschutz—Umsetzungsstrategien und Konzepte. Dissertation TU Berlin

  4. Edelstahl-Vereinigung e.V. (1989) mit Verein deutscher Eisenhüttenleute (VDEh) (Hrsg.): Nichtrostende Stähle. 2. Auflage. Düsseldorf: Verlag Stahleisen

  5. Angel T (1954) Formation of martensite in austenitic stainless steels. J Iron Steel Inst Mai 66:165–174

    Google Scholar 

  6. Becker H, Brandis H, Küppers W (1986) Zur Verfestigung instabil austenitischer nichtrostender Stähle und ihre Auswirkung auf das Umformverhalten von Feinblechen. Thyssen Edelstähle Technische Berichte 12(1):35–54

    Google Scholar 

  7. Eichelmann GH Jr, Hull FC (1953) The effect of composition on the temperature of spontaneous transformation of austenite to martensite in 18–8-type stainless steel. Trans ASM 45:77–104

    Google Scholar 

  8. Kulmburg A, Sölkner W, Korntheuer F, Schmid H-E (1979) Das Umwandlungsverhalten komplexlegierter Stähle mit 12 bis 18% Chrom. Berg- und Hüttenmännische Monatshefte 124(9):400–406

    Google Scholar 

  9. Monkman FC, Cuff FB Jr, Grant NJ (1957) Computation of Ms for stainless steels. Metal Progress 71:94–96

    Google Scholar 

  10. Nohara K, Ono Y, Ohashi N (1977) Composition and grain size dependencies of strain-induced martensitic tranformation in metastable stainless steels. Tetsu-to-Hagane, S. 772

  11. Pickering FB (1978) Physical metallurgy and the design of steels. Applied Science Publishers LTD, London

    Google Scholar 

  12. Uhlmann E, Bleck W, Duchstein B, Labudde T, Wildau M (2010) Leichte Werkzeugmaschinenumhausungen. Einsatzmöglichkeiten von austenitischem Edelstahl und Aluminiumlegierungen unter Kenntnis der werkstofftechnischen Parameter. ZWF—Zeitschrift für wirtschaftlichen Fabrikbetrieb 105(6):536–541

    Google Scholar 

  13. Uhlmann E, Marcks P (2006) Analysis of the design of machineguard- windows using finite element analysis. Prod Eng Res Develop 13(1):211–214

    Google Scholar 

  14. Bathe KJ (1996) übersetzt von: Peter Zimmermann: Finite-Elemente-Methode. Springer-Verlag, Berlin

    Google Scholar 

  15. Houbold JC (1950) A recurrence matrix solution for the dynamic response of elastic aircraft. J Aeronaut Sci 17:540–550

    MathSciNet  Google Scholar 

  16. Newmark NM (1959) A method of computation for structural dynamics. ASCE J Eng Mech Div 85:67–94

    Google Scholar 

  17. MSC Software (2007) MSC.Marc theory and user information, volume A

  18. Uhlmann E, Duchstein B (2009) Trennung leicht gemacht. Werkstatt und Betrieb 142(3):55–57

    Google Scholar 

Download references

Acknowledgments

We express our sincere thanks to the Deutsche Forschungsgemeinschaft (DFG) for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Duchstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uhlmann, E., Duchstein, B. Austenitic stainless steel for separating safeguards: development of an FEA-model for the simulation of impact tests in reference to material specific parameters. Prod. Eng. Res. Devel. 5, 307–313 (2011). https://doi.org/10.1007/s11740-011-0307-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-011-0307-0

Keywords

Navigation