Skip to main content
Log in

Dynamic transmission error measurements of a drive train

  • Assembly
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Due to generally reducing the noise level of machines and automotive applications gear noise optimization becomes more important. To optimize the excitation of the gearing in the development process, tooth contact analysis software is used. The transmission error is most common to characterize the noise excitation of gear sets. Usually in automotive applications gear noise is influenced by the entire drive train system with all its components. Therefore, it is necessary to asses if the transmission error of the gear set correlates to the noise of the drive train. Aim of a project funded by the German Research Foundation (DFG) was to investigate the possibility to measure the transmission error for every step of assembly. The transmission error was measured for a gear set, the transmission and the drive train. The research object was the drive train of a light truck. This report presents the results of the completed project.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Brecher C, Gorgels C, Hesse J (2008) Development of a flexible concept for direct determination of the excitation in manual transmissions, 7th international CTI symposium, innovative automotive transmissions vol 2, pp 713–731

  2. Brecher C, Gorgels C, Ingeli J (2010) Verwendung der FE-basierten Zahnkontaktanalyse zur Analyse asymmetrischer Verzahnungen, KT2010, 8. Gemeinsames Kolloquium Konstruktionstechnik, pp 41–46

  3. Brecher C, Gorgels C, Hesse J (2009) Untersuchung des dynamischen Verhaltens flankenoptimierter Radsätze im Gesamtsystem Antriebsstrang, Haus der Technik—Systemanalyse in der Kfz-Antriebstechnik V, pp 142–157

  4. Klocke F, Gorgels C, Vasiliou V (2009) Analysis of the influence of gear dimensions on cutting speed and contact conditions during the gear honing process. Prod Eng Res Dev 3(3):255–259

    Article  Google Scholar 

  5. Patel K, Batish A, Bhattacharya A (2009) Optimization of surface roughness in an end-milling operation using nested experimental design. Prod Eng Res Dev 3(4–5):361–373

    Article  Google Scholar 

  6. Klingelnberg J (2008) Kegelräder—Grundlagen, Anwendungen. Springer, Berlin

    Google Scholar 

  7. Norm DIN 3960 (1987) Begriffe und Bestimmungsgrößen für Stirnradpaare (Zylinderräder) und (Zylinderpaare) mit Evolventenverzahnung. Beuth Verlag, Berlin

  8. Norm ISO 17485 (2006) Kegelräder—ISO-Toleranz-system. Beuth Verlag, Berlin

  9. Richtlinie VDI 2608 (2001) Einflanken- und Zweiflanken-Wälzprüfung an Zylinderrädern, Kegelrädern, Schnecken und Schneckenrädern. Beuth Verlag, Berlin

  10. Abele E, Rothenbücher S, Weigold M (2008) Cartesian compliance model for industrial robots using virtual joints. Prod Eng Res Dev 2(3):339–343

    Article  Google Scholar 

Download references

Acknowledgments

The research presented in this paper was founded by the German Research Foundation (DFG). We also thank GETRAG and Visteon for provisioning gears and transmissions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hellmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brecher, C., Gorgels, C., Hesse, J. et al. Dynamic transmission error measurements of a drive train. Prod. Eng. Res. Devel. 5, 321–327 (2011). https://doi.org/10.1007/s11740-011-0310-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-011-0310-5

Keywords

Navigation