Skip to main content
Log in

Automation of robotic assembly processes on the basis of an architecture of human cognition

  • Assembly
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

A novel concept to cognitive automation of robotic assembly processes is introduced. An experimental assembly cell with two robots was designed to verify and validate the concept. The cell’s numerical control—termed a cognitive control unit (CCU)—is able to simulate human information processing at a rule-based level of cognitive control. To enable the CCU to work on a large range of assembly tasks expected of a human operator, the cognitive architecture SOAR is used. On the basis of a self-developed set of production rules within the knowledge base, the CCU can plan assembly processes autonomously and react to ad-hoc changes in assembly sequences effectively. Extensive simulation studies have shown that cognitive automation based on SOAR is especially suitable for random parts supply, which reduces planning effort in logistics. Conversely, a disproportional increase in processing time was observed for deterministic parts supply, especially for assemblies containing large numbers of identical parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang Z, Sharifi H (2000) A methodology for achieving agility in manufacturing organizations. Int J Oper Prod Manage 20(4):496–512

    Article  Google Scholar 

  2. Kinkel S, Friedwald M, Hüsing B, Lay G, Lindner R (2008) Arbeiten in der Zukunft, Strukturen und Trends der Industriearbeit. Studien des Büros für Technikfolgen-Abschätzung bei Deutschen Bundestag, 27th edn. Sigma, Berlin (in German)

  3. Onken R, Schulte A (2010) System-ergonomic design of cognitive automation. Studies in computational intelligence, vol 235. Springer, Berlin

    Book  Google Scholar 

  4. Rasmussen J (1986) Information processing and human-machine interaction. An Approach to Cognitive Engineering, North-Holland

    Google Scholar 

  5. Wiendahl HP, ElMaraghy HA, Nyhuis P, Zäh MF, Wiendahl HH, Duffie N, Brieke M (2007) Changeable manufacturing. Classification, design and operation. Ann CIRP 56(2):783–809

    Article  Google Scholar 

  6. Eversheim W (1998) Organisation in der Produktionstechnik, Bd. Konstruktion. Springer, Berlin

    Google Scholar 

  7. Kempf T, Herfs W, Brecher C (2008) Cognitive control technology for a self-optimizing robot based assembly cell. In: Proceedings of the ASME 2008 international design engineering technical conferences & computers and information in engineering conference, America Society of Mechanical Engineers, US

  8. Chong HQ, Tan AH, Ng GW (2007) Integrated cognitive architectures: a survey. Artif Intell Rev 28:103–130

    Article  Google Scholar 

  9. Anderson JR, Bothell D, Byrne MD, Douglass S, Lebiere C, Qin Y (2004) An integrated theory of the mind. Psychol Rev 111:1036–1060

    Article  Google Scholar 

  10. Langley P, Cummings K, Shapiro D (2004) Hierarchical skills and cognitive architectures. In: Proceedings of the twenty-sixth annual conference of the cognitive science society. Chicago

  11. Lehman J, Laird J, Rosenbloom P (2006) A gentle introduction to soar, an architecture for human cognition: 2006 update. Retrieved 17 May 2010 from http://ai.eecs.umich.edu/soar/sitemaker/docs/misc/GentleIntroduction-2006.pdf

  12. Jones RM, Laird JE, Nielsen PE, Coulter KJ, Kenny P, Koss FV (1999) Automated intelligent pilots for combat flight simulation. AI Magazine 20:27–41

    Google Scholar 

  13. Stensrud B, Taylor G, Crossman J (2006) IF-Soar: a virtual, speech-enabled agent for indirect fire training. In: Proceedings of the 25th army science conference, Orlando, FL

  14. Putzer HJ (2004) Ein uniformer Architekturansatz für kognitive Systeme und seine Umsetzung in ein operatives Framework. Köster, Berlin (in German)

    Google Scholar 

  15. Janrathitikarn O, Long LN (2008) Gait control of a six-legged robot on unlevel terrain using a cognitive architecture. In: Proceedings of the IEEE aerospace conference

  16. Laird JE, Yager ES, Hucka M, Tuck CM (1991) Robo-soar: an integration of external interaction, planning, and learning using soar. Robot Auton Syst 8:113–129

    Article  Google Scholar 

  17. Hauck E, Ewert D, Schilberg D, Jeschke S (2010) Design of a knowledge module embedded in a framework for a cognitive system using the example of assembly tasks. In: Proceedings of the 3rd international conference on applied human factors and ergonomics. Taylor & Francis, Miami

  18. Gat E (1998) On three-layer architectures. In: Kortenkamp D, Bonnasso R, Murphy R (eds) Artificial intelligence and mobile robots, pp 195–211

  19. Mayer M, Odenthal B, Faber M, Kabuß W, Kausch B, Schlick C (2009) Simulation of human cognition in self-optimizing assembly systems. In: Proceedings of 17th world congress on ergonomics IEA 2009. Beijing

  20. Maynard HB, Stegemerten GJ, Schwab JL (1948) Methods-time measurement. McGraw-Hill, London

  21. Mayer M, Odenthal B, Grandt M, Schlick C (2008) Task-oriented process planning for cognitive production systems using MTM, In: Karowski W, Salvendy G (eds) Proceedings of the 2nd international conference on applied human factors and ergonomic (AHFE). USA Publishing, USA

  22. Laired JE, Congdon CB (2006) The soar user’s manual version 8.6.3

  23. Hollnagel E, Woods DD (2005) Joint cognitive systems: foundations of cognitive systems engineering. Taylor & Francis Group, Boca Raton

    Book  Google Scholar 

  24. Norros L, Salo L (2009) Design of joint systems: a theoretical challenge for cognitive system engineering. Cogn Tech Work 11:43–56

    Article  Google Scholar 

  25. Mayer M, Odenthal B, Faber M, Kabuß W, Jochems N, Schlick C (2010) Cognitive engineering for self-optimizing assembly systems. In: Karwowski W, Salvendy G (eds) Advances in human factors, ergonomics, and safety in manufacturing and service industries. CRC Press, USA

  26. Flemisch FO, Adams CA, Conway SR, Goodrich KH, Palmer MT, Schutte PC (2003) The H-metaphor as a guideline for vehicle automation and interaction. NASA/TM—2003-212672

  27. Ewert D, Mayer M, Kuz S, Schilberg D, Jeschke S (2010) A hybrid approach to cognitive production systems. In: Proceedings of the 2010 international conference on intelligent robotics and applications (ICIRA 2010) Shanghai, China

  28. Zaeh MF, Wiesbeck M (2008) A model for adaptively generating assembly instructions using state-based graph. In: Mitsuishi M, Ueda K, Kimura F (eds) Manufacturing systems and technologies for the new frontier. Springer, Berlin

    Google Scholar 

  29. Odenthal B, Mayer M, Kabuß W, Kausch B, Schlick C (2009) An empirical study of assembly error detection using an augmented vision system. In: Virtual and mixed reality, VMR 2009, held as part of HCI international 2009. San Diego

Download references

Acknowledgments

The authors would like to thank the German Research Foundation (DFG) for its kind support of the research on cognitive automation within the Cluster of Excellence Integrative Production Technology for High-Wage Countries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Ph. Mayer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, M.P., Schlick, C.M., Ewert, D. et al. Automation of robotic assembly processes on the basis of an architecture of human cognition. Prod. Eng. Res. Devel. 5, 423–431 (2011). https://doi.org/10.1007/s11740-011-0316-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-011-0316-z

Keywords

Navigation