Skip to main content
Log in

Characteristic line emissions of the metal vapour during laser beam welding

  • Quality Assurance
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

This article provides an insight into the origin of the radiation emissions during laser beam welding of aluminium and steel alloys. It is the fundamental basis for the development of a system monitoring the welding process of challenging alloys with respect to their chemical composition in the melt pool. To reduce welding faults, e.g. cracks, brittle phases or other metallurgical based defects, a high degree of process knowledge is necessary. This manuscript presents novel spectroscopic investigations used to analyse laser beam welding setups to gain a better understanding of the emission formation. Therefore, also the spatial origin of the emitted radiation of the deep penetration welding process was examined. These empirical results are accompanied by theoretical considerations about the excitation degree of different alloying elements. Together they are a progressive step to develop a system to control the chemical composition of the melt pool during the active welding process. Knowing the composition of the melt allows to control e.g. a filler unit to change the melt composition. The empirical results were conducted by processing common alloys of today’s manufacturing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kou S (2003) Welding metallurgy. Wiley, New Jersey

    Google Scholar 

  2. Huber S, Merzkirch M, Zaeh MF, Schulze V (2009) Applications of high-power diode lasers for aluminum welding. SPIE—LASE 2009. High-power diode laser technology and applications VII. SPIE Digital Library, San Jose

    Google Scholar 

  3. Geiger M, Leitz KH, Koch H, Otto A (2009) A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets. Prod Eng 3(2):127–136

    Article  Google Scholar 

  4. Hügel H, Dausinger F (2004) Fundamentals of laser-induced processes. In: Poprawe R, Weber H, Herziger G (eds) Laser applications. Springer, Berlin

    Google Scholar 

  5. Katayama S (2009) Fundamentals of fiber laser welding. In: Gumenyuk A (ed) International colloquium high power laser welding 2009. Bundesanstalt für Materialprüfung und –forschung, Berlin

  6. Zaeh MF, Huber S (2010) In situ-Legierungsanpassung beim Laser-Tiefschweißprozess. wt Werkstatttechnik Online 6:447–453

  7. Palanco S, Klassen M, Skupin J, Hansen K, Schubert E, Sepold G, Laserna JJ (2001) Spectroscopic diagnostics on CW-laser welding plasmas of aluminum alloys. Spectrochim Acta Part B At Spectrosc 56(6):651–659

    Article  Google Scholar 

  8. Bogaerts A, Gijbels R (1998) Fundamental aspects and applications of glow discharge spectrometric technique. Spectrochem Acta Part B 53(1):1–42

    Article  Google Scholar 

  9. Cremers DA, Radziemski LJ (2006) Handbook of laser-induced breakdown spectroscopy. Wiley, West Sussex

    Book  Google Scholar 

  10. Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2005) Atmospheric pressure plasmas: a review. Spectrochem Acta Part B At Spectrosc 61(1):2–30

    Article  Google Scholar 

  11. Dilthey U, Goumeniouk A, Lopota V, Turichin G (2000) Kinetic description of keyhole plasma in laser welding. J Appl Phys D 33:2747–2753

    Article  Google Scholar 

  12. Lieberman MA, Lichtenberg AJ (1994) Principles of plasma discharges and materials processing. Wiley, New York

    Google Scholar 

  13. McNaught AD, Wilkinson A (1997) Compendium of chemical terminology: IUPAC recommendations. Blackwell, Oxford

    Google Scholar 

  14. NIST (2008) NIST atomic spectra database. National Institute of Standards and Technology

  15. Zaeh MF, Braunreuther S, Daub R, Stadler T (2010) Reflected laser radiation—relevance for laser safety? In: Schmidt M, Vollertsen F, Geiger M (eds) Proceedings of 6th international conference on laser assisted net shape engineering. Elsevier, Erlangen

    Google Scholar 

  16. Dudeck S, Rieger D, Puente Leôn F (2007) Direct observation of a laser melt pool surface. In: Proceedings of 13th International SENSOR conference Nuremberg. International Frequency Sensor Association

  17. Trautmann A, Zaeh MF (2008) Novel Insights into porosity formation mechansims in laser beam welding of aluminium. International congress on applications of lasers and electro-optics (ICALEO) 2008. Laser Institute of America, Temecula, CA, USA

  18. Peter L, Claas H, Kurucz R (2010) Kurucz database. Universität Hannover

  19. Beyer E (1985) Einfluss des laserinduzierten Plasmas beim Schweissen mit CO2-Lasern, Darmstadt, Technische Hochschule Darmstadt

  20. Aden M (1994) Plasmadynamik beim laserinduzierten Verdampfungsprozess einer ebenen Metalloberfläche. Fakultät für Maschinenwesen. Aachen, Rheinisch-Westfälische Technische Hochschule Aachen

  21. Vas’kovskii YM, Gordeeva IA, Rovinskii RE, Shirkova IP (1991) Experimental determination of the parameters of a laser jet and verification of ionisation equilibrium. Sov J Quantum Electron 21:984–986

    Article  Google Scholar 

  22. Griem HR (1997) Principals of plasma spectroscopy. Cambridge University Press, Cambridge

    Book  Google Scholar 

  23. Zaeh MF, Huber S, Daub R (2010) In situ melt identification during laser beam welding. International congress on applications of lasers & electro-optics (ICALEO) 2010. CRC Press, Anaheim, USA

    Google Scholar 

  24. Schaeffler A (1949) Constitution diagram for stainless steel weld metal. Metal Prog 56(11):680B

    Google Scholar 

  25. Sibillano T, Ancona A, Berardi V, Schingaro E, Basile G, Lugara PM (2006) A study of shielding gas influence on the laser beam welding of AA5083 aluminium alloys by in-process spectroscopic investigation. Opt Lasers Eng 44:1039–1051

    Article  Google Scholar 

  26. Dudeck S, Rieger D, Puente León F (2006) Zeitlich und raeumlich aufgeloeste Spektroskopie gepulster Laserschweißprozesse. 13te ITG/GMA-Fachtagung: Sensoren und Messsysteme. Freiburg, VDE

  27. Sokolowski W (1991) Diagnostik des laserinduzierten Plasmas beim Schweissen mit CO2-Lasern. Fakultät für Maschinenwesen. Aachen, Rheinisch-Westfälische Technische Hochschule Aachen

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Huber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaeh, M.F., Huber, S. Characteristic line emissions of the metal vapour during laser beam welding. Prod. Eng. Res. Devel. 5, 667–678 (2011). https://doi.org/10.1007/s11740-011-0337-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-011-0337-7

Keywords

Navigation