Skip to main content
Log in

Simulation algorithm for the assessment and modification of multi-directional forging processes and tool geometries

  • Computer Aided Engineering
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

In automotive industry, parts made of aluminum alloys are used with increasing frequency. During forging operations for the production of aluminum long flat pieces, defects like folds can appear. Especially internal folds are of interest, which are only evident in the fiber orientation and have a negative effect on the dynamic mechanical properties of the forged part. In forging, the forming operation can be realized either from one direction (uni-directional) or from several directions (multi-directional). The boundary conditions for multi-directional forging are described in this article. For a given tool geometry, multi-directional forging permits the realization of fold-free forgings, which has been shown to be not possible with uni-directional operations. A newly developed method based on finite-elements-analysis simulation helps with the design of the forming process and the determination of the appropriate tool geometry. A new algorithm integrates the computer-aided identification of internal folds. For a given process and tool geometry, the area with internal folds is adjusted, until the simulation shows no fold formation. It is shown, that by using this model, a dependable assessment and correction of forging tools and forming process and thus the realization of a fold-free forming are possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

FEA:

Finite-elements-analysis

IPH:

Institut für Integrierte Produktion Hannover gemeinnützige GmbH

References

  1. N N (2009) Verband der Automobilindustrie e. V. Jahresbericht, Frankfurt am Main

  2. Hirsch J (2009) Aluminium in innovative light-weight car design. In: European aluminium congress, pp 101–114

  3. Becker J, Hilpert M, Terlinde G (2009) Aluminiumstrangpressprofile für den Automobilbau—neue Lösungen zum verbesserten Leichtbau. Aluminium 5:34–43

    Google Scholar 

  4. Bittrich A (2003) Wirtschaftlicher Leichtbau mit Aluminium-Schmiedestücken. Konferenz-Einzelbericht: 1. Landshuter Leichtbaukolloquium, Innovation und Erfahrungen im Leichtbau-Kompetenznetzwerk, Landshut, pp 227–234

  5. Doege E, Behrens B-A (2007) Handbuch Umformtechnik—Grundlagen, Technologien, Maschinen. Springer, Berlin

    Google Scholar 

  6. Spieß K (1957) Eine Formenordnung für Gesenkschmiedestücke. Werkstatttechnik und Maschinenbau 47:201–205

    Google Scholar 

  7. Awiszus B, Bast J, Dürr H, Matthes K-J (2009) Grundlagen der Fertigungstechnik. Carl Hanser, München

    Google Scholar 

  8. Westhof J (1990) Einfluß hoher Werkstücktemperaturen auf die Bauteilfestigkeit von Aluminiumknetlegierungen. VDI, Düsseldorf

    Google Scholar 

  9. Li F, Lin JF, Chu GN (2009) Metal flow in the precision forging of aluminum alloys. JOM 61:57–60

    Article  Google Scholar 

  10. Stonis M, Lücke M, Nickel R (2008) Forging of long flat pieces of aluminium with a precise mass distribution operation. In: TMS annual meeting and exhibition: aluminum alloys: fabrication, characterization and applications, 9th–13th March 2008, New Orleans, USA, pp 61–66

  11. Stonis M (2011) Mehrdirektionales Schmieden von flachen Aluminiumlangteilen. Berichte aus dem IPH. PZH Verlag, Garbsen

    Google Scholar 

  12. Behrens B-A, Nickel R, Müller S (2009) Flashless precision forging of a two-cylinder crankshaft. Prod Eng 3:381–389

    Article  Google Scholar 

  13. Czechowski D, Schott A, Telkamp K (2004) Gefügeuntersuchungen beim Aluminiumschmieden. Schmiede J 2:26–27

    Google Scholar 

  14. Ostermann F (1998) Anwendungstechnologie aluminum. Springer, Heidelberg

    Google Scholar 

  15. Müller S (2009) Methode zur Schrumpfungskorrektur beim gratlosen Präzisionsschmieden. Schmiede J 3:26–29

    Google Scholar 

  16. Merziger G, Mühlbach G, Wille D, Wirth T (1996) Formeln + Hilfen zur Höheren Mathematik. Binomi, Springe

    Google Scholar 

Download references

Acknowledgments

The authors thank the German Research Foundation (Deutsche Forschungsgemeinschaft) for the funding of the research project “Aluminiumschmieden von Langteilen mit genauer Massevorverteilung” (DFG Do 190/167-1 and DFG Be 1691/19-2).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Stonis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behrens, BA., Nickel, R. & Stonis, M. Simulation algorithm for the assessment and modification of multi-directional forging processes and tool geometries. Prod. Eng. Res. Devel. 6, 187–198 (2012). https://doi.org/10.1007/s11740-012-0364-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-012-0364-z

Keywords

Navigation