Skip to main content
Log in

Local–global approach using experimental and/or simulated data to predict distortion caused by mechanical joining technologies

  • Assembly
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Performance and quality of joined assemblies depend on the joining technology and its characteristics. To predict these characteristics in advance simulation tools are used. This paper deals on the one hand with determining the results quality of 2D rotational simulations to predict characteristics of mechanical joining technologies and on the other hand with the results quality of simplified models to predict car body quality (shape, gap, flush). Compliance of 2D simulations and experimental results is shown by performing investigations with different setups looking at joints’ quality and caused distortion. Finally, the results of joining simulations for car body assemblies are compared to measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Dolle N (2001) Numerische Simulation des Fügeprozesses beim Stanznieten mit Halbhohlniet von duktilen Blechwerkstoffen. Dissertation, Universität Paderborn, Shaker-Verlag

  2. Eckstein J (2009) Numerische und experimentelle Erweiterung der Verfahrensgrenzen beim Halbhohlstanznieten hochfester Bleche. Dissertation, Universität Stuttgart

  3. Eckert A, Altermann T, Roessinger M, Wahl M, Schulz F (2011) Beitrag zur Prozesskettensimulation im Karosseriebau. Pam-Stamp Forum, Landshut

    Google Scholar 

  4. Eckert A, Neugebauer R, Roessinger M, Wahl M, Schulz F, Hofmann A, Hecht B (2011) Application limits of a method to predict distortion caused by mechanical joining technologies in car body construction. In: Numisheet conference, Seoul, 2011

  5. Schmid E (2004) Numerische Analyse des Clinchprozesses mit dreiteiliger Matrize. Dissertation, Universität Paderborn, Shaker-Verlag, Aachen

  6. Neugebauer R, et al (2008) Prüfmethode zur direkten Steifigkeitsmessung von punktförmigen Fügeverbindungen. Forschungsgesellschaft für Blech-bearbeitung e.V., Forschungsbericht Nr. 276, Hannover

  7. Neugebauer R, Mayer B, Israel M, Fricke H (2011) Qualitätssicherung beim Hybridfügen. Europäische Forschungsgesellschaft für Blechbearbeitung e.V., Forschungsbericht Nr. 330, Hannover

  8. Neugebauer R, Roessinger M, Wahl M, Schulz F, Eckert A, Schuetzle W (2011) Predicting Dimensional Accuracy of Mechanically Joined Car Body Assemblies. In: SheMet Conference, Leuven

  9. Casalino G, Rotondo A, Ludovico A (2008) On the numerical modelling of the multiphysics self piercing riveting process based on the finite element technique. Adv Eng Softw 39:787–795

    Google Scholar 

  10. Hahn O, Heger M (2008) Auswahl und Optimierung von Werkzeugen sowie Hilfsfügeteilen für den Setzprozess beim Stanznieten mit Halbhohlstanzniet auf PC-Basis. Europäische Forschungs-gesellschaft für Blechbearbeitung e.V., Forschungs-bericht Nr. 279, Hannover

  11. Hahn O et al (2002) Verfahrenssimulation des Durchsetzfügens kaltverfestigter Aluminiumwerkstoffe zur rechnergestützten Werkzeugentwicklung. Europäische Forschungsgesellschaft für Blechbearbeitung e.V., Forschungsbericht Nr. 183, Hannover

  12. Neugebauer R, Jesche F, Israel M (2010) Enlargement of the application range of solid punch riveting by two-piece dies. Int J Mater Form 3:999–1002

    Article  Google Scholar 

  13. de Paula AA, Aguilar MTP, Pertence AEM, Cetlin PR (2007) Finite element simulations of the clinch joining of metallic sheets. J Mater Process Technol 182:S.352–S.357

    Google Scholar 

  14. Porcaro R, Hanssen AG, Langseth M, Aalberg A (2006) Self-piercing riveting process: an experimental and numerical investigation. J Mater Process Technol 17:10–20

    Google Scholar 

  15. Lee C-J et al (2010) Design of mechanical clinching tools for joining of aluminium alloy sheets, materials & design. Des Nanomater Nanostruct 31(4):1854–1861

    Google Scholar 

  16. Cai W, Wang PC, Yang W (2005) Assembly dimensional prediction for self-piercing riveted aluminium panels. Int J Mach Tools Manuf 45:695–704

    Article  Google Scholar 

  17. Masters I, Fan X (2005) Predicting distortion in vehicle body assemblies. EuroPam, Potsdam

  18. Liu SC, Hu SJ (1997) Variation simulation for deformable sheet metal assemblies using finite element methods. J Manuf Sci Eng 119:368–374

    Article  Google Scholar 

  19. Camelio J, Ceglarek D, Hu SJ (2003) Modeling variation propagation of multi-station assembly systems with compliant parts ASME. J Mech Des 125(4):673–681

    Google Scholar 

  20. Stapelfeld Ch, Doynov N, Michailov V (2009) Hybride Berechnungsansätze zur Prognostizierung und Minimierung des Verzugs komplexer Schweißkonstruktionen. Sysweld Forum, Germany

    Google Scholar 

  21. Hahn O et al (2002) Verfahrenssimulation des Durchsetzfügens kaltverfestigter Aluminiumwerkstoffe zur rechnergestützten Werkzeugentwick-lung. Hannover, Europäische Forschungsgesell-schaft für Blechbearbeitung e.V., Forschungsbericht Nr. 183

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Israel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckert, A., Israel, M., Neugebauer, R. et al. Local–global approach using experimental and/or simulated data to predict distortion caused by mechanical joining technologies. Prod. Eng. Res. Devel. 7, 339–349 (2013). https://doi.org/10.1007/s11740-012-0431-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-012-0431-5

Keywords

Navigation