Skip to main content
Log in

Estimation of the absolute camera pose for environment recognition of industrial robotics

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

The problem of estimating and predicting the absolute camera pose (the position and orientation of a camera with respect to the world coordinate system) is approached by fusion of measurements from inertial sensors (accelerometers and gyroscopes) and robot control system. The sensor fusion approach described in this paper is based on non-linear filtering of multi-rate extended Kalman filter. In this way, camera pose estimates, with improved accuracy and sampling rate as well as reduced computation complexity, are available. Experiments that an industrial robot moves the sensors (camera and inertial measurement unit) in an indoor-global positioning system (GPS)-based global referencing system are presented. The absolute camera pose, provided by indoor-GPS, allows for a performance evaluation. The experimental results confirm also the dynamics improvement of the estimated absolute camera pose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bay H, Ess A, Tuytelaars T, Gool LV (2008) Surf: speeded up robust features. Comput Vis Image Und 110(3):346–359

    Google Scholar 

  2. Beyer L (2004) Genauigkeitssteigerung von Industrierobotern, Insbesondere mit Parallelkinematik. Ph.D. thesis, University of the Federal Armed Forces Hamburg

  3. Corke P, Lobo J, Dias J (2007) An introduction to inertial and visual sensing. Int J Robot Res 26(6):519–535

    Article  Google Scholar 

  4. Gatla CS, Lumia R, Wood J, Starr G (2007) An automated method to calibrate industrial robots using a virtual closed kinematic chain. IEEE Trans Robot 23(6):1105–1116

    Article  Google Scholar 

  5. Grigorescu SM, Macesanu G, Cocias TT, Puiu D, Moldoveanu F (2011) Robust camera pose and scene structure analysis for service robotics. Robot Auton Syst 59:899–909

    Article  Google Scholar 

  6. Harris C, Stephens M (1988) A combined corner and edge detector. Proceedings of the fourth Alvery vision conference, pp 147–151

  7. Hartley R, Zisserman A (2004) Multiple view geometry in computer vision, 2 edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  8. Hol JD (2011) Sensor fusion and calibration of inertial sensors, vision, Ultra-Wideband and GPS. Ph.D. thesis, Linkping University

  9. Hol JD, Schoen TB, Gustafsson F (2010) Modeling and calibration of inertial and vision sensors. Int J Robot Res 29(2):231–244

    Article  Google Scholar 

  10. Kahl F, Agarwal S, Chandraker MK, Kriegman D, Belongie S (2008) Practical global optimization for multiview geometry. Int J Comput Vis 79:271–284

    Article  Google Scholar 

  11. Kailath T, Sayed AH, Hassibi B (2000) Linear estimation. Prentice Hall, New York

    Google Scholar 

  12. Kelly J, Sukhatme GS (2011) Visual-inertial sensor fusion: localization, mapping and sensor-to-sensor self-calibration. Int J Robot Res 30(1):56–79

    Article  Google Scholar 

  13. Kragic D, Christensen HI (2005) Advances in robot vision. Robot Auton Syst 51:1–3

    Article  Google Scholar 

  14. Kuipers JB (1999) Quaternions and rotation sequences: a primer with applications to orbits, aerospace, and virtual reality. Princeton University Press, New York

  15. Lin WY, Cheong LF, Tan P, Dong G, Liu S (2012) Simultaneous camera pose and correspondence estimation with motion coherence. Int J Comput Vis 96:145–161

    Article  MathSciNet  MATH  Google Scholar 

  16. Lobo J, Dias J (2007) Relative pose calibration between visual and inertial sensors. Int J Robot Res 26(6):561–575

    Article  Google Scholar 

  17. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  18. Ma Y, Soatto S, Kosecka J, Sastry S (2003) An invitation to 3-D vision. From images to geometric models. Springer, New York

    Google Scholar 

  19. Maybeck PS (1979) Stochastic models, estimation, and control, vol 1. Academic Press, New York

    MATH  Google Scholar 

  20. Mirzaei FM, Roumeliotis SI (2008) A Kalman filter-based algorithm for IMU-camera calibration: observability analysis and performance evaluation. IEEE Trans Robot 24(5):1143–1156

    Article  Google Scholar 

  21. Moons T, Gool LV, Vergauwen M (2009) 3D reconstruction from multiple images, Part 1: principles. Now Publishers Inc, Hanover

    Google Scholar 

  22. Mueller T, Schwendemann J (2009) iGPS—ein vielseitiges Messsystem hoher Genauigkeit. Allgemeine Vermessungs-Nachrichten 2009(04):146–157

    Google Scholar 

  23. Nister D (2004) An efficient solution to the five-point relative pose problem. IEEE Trans Pattern Anal Mach Intell 26(6):756–777

    Article  Google Scholar 

  24. Norman A, Schoenberg A, Gorlach I, Schmitt R (2010) Cooperation of industrial robots with indoor-GPS. Proceedings of the international conference on competitive manufacturing pp 215–224

  25. Pfeifer T, Schmitt R (2010) Fertigungsmesstechnik, 3 edn. Oldenbourg, Germany

    Book  Google Scholar 

  26. Robertson DP, Cipolla R (2009) Structure from Motion. Varga M (ed) Practical Image Processing and Computer Vision. John Wiley, New York

  27. Schmitt R, Schoenberg A, Damm B (2010) Indoor-GPS based robots as a key technology for versatile production. Proceedings for the joint conference of ISR 2010 (41st international symposium on robotics) and ROBOTIK 2010 (6th German conference on robotics), pp 109–205

  28. Shuster MD (1993) A survey of attitude representations. J Astronaut Sci 41(4):439–517

    MathSciNet  Google Scholar 

  29. Strobl KH, Hirzinger G (2006) Optimal hand-eye calibration. Proceedings of IEEE/RSJ international conference on intelligent robots and systems, pp 4647–4653

  30. Titterton DH, Weston JL (1997) Strapdown inertial navigation technology (IEE radar, sonar, navigation and avionics series). Peter Peregrinus Ltd, London

    Google Scholar 

  31. Triggs B, McLauchlan P, Hartley R, Fitzgibbon A (1999) Bundle adjustment—a modern synthesis. ICCV ’99: proceedings of the international workshop on vision algorithms, pp 298–372

  32. Tsai R, Lenz R (1989) A new technique for fully autonomous and efficient 3D robotics hand/eye calibration. Trans Robot Autom 5(3):345–358

    Article  Google Scholar 

  33. Woodman O (2007) An introduction to inertial navigation. Technical Report UCAM-CLTR-696. University of Cambridge, Cambridge

Download references

Acknowledgments

The authors are very grateful to the DFG (Deutsche Forschungsgemeinschaft, German Research Foundation) for financial supporting this work as part of the research project (SCMH-1856/23-1) "Scene recognition with monocular moving camera in industrial robotics". The authors are also very grateful to the anonymous reviewers for their valuable comments, which helped us to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitt, R., Cai, Y. & Jatzkowski, P. Estimation of the absolute camera pose for environment recognition of industrial robotics. Prod. Eng. Res. Devel. 7, 91–100 (2013). https://doi.org/10.1007/s11740-012-0436-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-012-0436-0

Keywords

Navigation