Skip to main content
Log in

Tool optimization for high speed grinding

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Vitrified bonded cBN grinding wheels catches on for batch production especially in the automotive industry for components of power trains. In pursuit of higher productivity with steady quality the optimization of manufacturing processes and tools are getting more relevant. In this contribution potentials and challenges of structured grinding tools for the optimization of grinding processes are discussed. Technological investigations with structured and non-structured vitrified bonded cBN grinding wheels were carried out and the results of varying setting parameters were analyzed. The main aspects of interest for these studies were the detection of possible coolant savings and phenomena of vibrations, the reduction of the thermal damage of the workpieces as well as the influence on the workpiece roughness and the grinding wheel radial wear. The experiments show the potentials of structured cBN grinding wheels for roughing and finishing in cylindrical plunge grinding processes. But there are some basic requirements for the geometry of the structures especially due to the vibrations of the grinding process. For the roughing tests the adequate structured abrasive layers show less grinding forces and thermal damage of the workpiece. For finishing processes the results show comparable values of roughness and waviness referring to non-structured grinding wheels. In addition, a limit for suitable grinding wheel structures in conjunction with the setting parameters could be identified that offers valuable clues for the dimensioning of structured abrasive layers even for non-circular grinding processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Uhlmann E, Mewis J, Kirchgatter M (2010) Dynamiksimulation von Schleifprozessen. wt Werkstattstechnik online 100(1/2):53–61

    Google Scholar 

  2. Uhlmann E, Mewis J, Hochschild L (2010) Analyse von Schleifprozessen mit genuteten Schleifscheiben. wt Werkstattstechnik online 100(6):494–501

    Google Scholar 

  3. Uhlmann E, Sammler C (2010) Ressourceneffizientes Schleifen—Lösungen und Grenzen. In: Tawakoli T (ed) Moderne Schleiftechnologie und Feinstbearbeitung. Vulkan, Essen, pp 2-1–2-15

    Google Scholar 

  4. Kirchgatter M (2010) Einsatzverhalten genuteter CBN-Schleifscheiben in keramischer Bindung beim Außenrund-Einstechschleifen. Dissertation, TU, Berlin

  5. Uhlmann E, Kirchgatter M (2009) Technologischer Nutzen von Schleifbelagsnutungen. wt Werkstattstechnik online 99(6):390–395

    Google Scholar 

  6. Tawakoli T, Lee DH (2012) Außenrund-Trockenschleifen, neue Erkenntnisse. In: Tawakoli T (ed) Moderne Schleiftechnologie und Feinstbearbeitung. Vulkan, Essen, pp 4c-1–4c-16

    Google Scholar 

  7. Nguyen T, Zhang LC (2009) Performance of a new segmented grinding wheel system. Int J Mach Tools Manuf 49(3/4):291–296

    Article  Google Scholar 

  8. Aurich JC, Herzenstiel P (2008) High-Performance dry grinding using a grinding wheel with a defined grain pattern. CIRP Ann Manuf Technol 57(1):357–362

    Article  Google Scholar 

  9. Lee KW, Wong PK, Zhang JH (2000) Study on the grinding of advanced ceramics with slotted diamond wheels. J Mater Process Technol 100:320–325

    Google Scholar 

  10. Ziebuhr T, Goldbach J, Niebuhr M, Neumann J, Rennert L (2007) ABC der Schleiftechnik. Krebs and Riedel Schleifscheibenfabrik GmbH and Co. KG, Bad Karlshafen

    Google Scholar 

  11. Brinksmeier E (1991) Prozeß- und Werkstückqualität in der Feinbearbeitung. Habilitation, Universität Hannover

  12. Gorgels C (2011) Entstehung und Vermeidung von Schleifbrand beim diskontinuierlichen Zahnflankenschleifen. Dissertation, RWTH Aachen

  13. Klocke F (2005) Schleifen. In: Klocke F, König W (eds) Fertigungsverfahren 2, 4th edn. Springer, Berlin, pp 155–342

    Google Scholar 

  14. Werner G (1971) Kinematik und Mechanik des Schleifprozesses. Dissertation, RWTH, Aachen

Download references

Acknowledgments

The presented results originate from the project “Einfluss der Segmentierung von Schleifscheiben aus das Arbeitsergebnis beim Rundschleifen” (Uh 100/86-2) funded by the “Deutsche Forschungsgemeinschaft” (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Hochschild.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uhlmann, E., Hochschild, L. Tool optimization for high speed grinding. Prod. Eng. Res. Devel. 7, 185–193 (2013). https://doi.org/10.1007/s11740-013-0447-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-013-0447-5

Keywords

Navigation