Skip to main content
Log in

Modelling, simulation and experimental investigation of chip formation in internal traverse grinding

  • Computer Aided Engineering
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

We present recent developments in modelling and simulation of internal traverse grinding, a high speed machining process which enables both a large material removal rate and high surface quality. We invoke a hybrid modelling framework, including a process scale model, simulations on a mesoscale capturing the proximity of a single cBN grain and an analysis framework to investigate the grinding wheel topography. Moreover, we perform experiments to verify our simulations. Focus in this context is the influence of the cutting speed variation on the grain specific heat generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Marschalkowski K (2010) Beitrag zur Prozessentwicklung für das Hochleistungsinnenrund-Schälschleifen mit galvanisch gebundenen CBN-Schleifscheiben. Dissertation, TU Dortmund

  2. Klocke F, Brinksmeier E, Weinert K (2005) Capability profile of hard cutting and grinding processes. CIRP Ann Manuf Technol 54:22–45

    Article  Google Scholar 

  3. Holtermann R, Schumann S, Menzel A, Biermann D (2012) Ansätze zur modellierung und simulation des Innenrundschälschleifens. Diam Bus 40:30–41

    Google Scholar 

  4. Treffert C (1994) Hochgeschwindigkeitsschleifen mit galvanisch gebundenen CBN-Schleifscheiben. Dissertation, RWTH Aachen

  5. Tawakoli T, Schmid R, Vesali A, Padilla-Ley A (2011) Rekonstruktion der Schleifscheibentopographie mit Hilfe der Bildverarbeitungsmethoden. dihw Diamant Hochleistungswerkzeuge 4:32–39

    Google Scholar 

  6. Warnecke G, Zitt U (1998) Kinematic simulation for analyzing and predicting high-performance grinding processes. CIRP Ann Manuf Technol 1:265–270

    Article  Google Scholar 

  7. Aurich JC, Kirsch B (2012) Kinematic simulation of high-performance grinding for analysis of chip parameters of single grains. CIRP J Manuf Sci Technol 5:164–174

    Article  Google Scholar 

  8. Hecker R, Liang SY (2003) Predictive modeling of surface roughness in grinding. Int J Mach Tools Manuf 43:755–761

    Article  Google Scholar 

  9. Stepień P (2009) A probabilistic model of the grinding process. Appl Math Model 33:3863–3884

    Article  MATH  Google Scholar 

  10. Klocke F (2009) Manufacturing processes 2—grinding, honing, lapping. Springer, Berlin

    Book  Google Scholar 

  11. Denkena B, Tönshoff HK (2011) Spanen—Grundlagen, 3rd edn. Springer, Berlin

    Google Scholar 

  12. Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th international symposium on Ballistics. The Hague, The Netherlands, pp 541–547

  13. Huang Y, Liang S (2003) Force modelling in shallow cuts with large negative rake angle and large nose radius tools. Int J Adv Manuf Technol 22:626–632

    Article  Google Scholar 

  14. Hortig C (2011) Local and non-local thermomechanical modeling and finite-element simulation of high-speed cutting. Dissertation, TU Dortmund

  15. Hortig C, Svendsen B (2007) Simulation of chip formation during high-speed cutting. J Mater Process Technol 186:66–76

    Article  Google Scholar 

  16. Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int J Num Methods Eng 33:1331–1364

    Article  MathSciNet  MATH  Google Scholar 

  17. Poulachon G, Moisan A (2001) A study of chip formation mechanisms in high speed cutting of hardened steel. In: Schulz H (ed) Scientific fundamentals of HSC. Hanser, Munich, pp 11–21

    Google Scholar 

Download references

Acknowledgments

Financial support by the Deutsche Forschungsgemeinschaft (DFG) in the context of SPP 1480 (project IDs: ME 1745/7–2; BI 498/23-1) is gratefully acknowledged.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Holtermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holtermann, R., Schumann, S., Menzel, A. et al. Modelling, simulation and experimental investigation of chip formation in internal traverse grinding. Prod. Eng. Res. Devel. 7, 251–263 (2013). https://doi.org/10.1007/s11740-013-0449-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-013-0449-3

Keywords

Navigation